Overland: define the graph G > H iff LG > LH Pecall LG = Z work (x(a) - x(b))² So, if H is a subgraph of G, H & G Scene if decrease weights to get H. Often consider G > cH where C>O, CH is H, but matt ease lets by c LCH = CLH

Theorem If
$$G \neq cti$$
 then
 $\lambda_E(G) \neq c\lambda_E(H)$ for all E
Proof by CF
 $\lambda_E(G) = \min \max \frac{x^T (G \times x^T)}{x^T \times x^T}$
 $\geq \min \max c \frac{x^T L H \times x^T \times$

Path inequality:
$$(n-1) P_n \ge G_{1,n}$$

 P_n is path from 1 ton. $G_{1,n}$ just has edge $(1,n)$
proof $H \ge e [\mathbb{R}^n, need to show
 $(n-1) \sum_{a=1}^{n-1} (x(a+1) - x(a))^2 \ge (x(n) - x(1))^2$
Set $\Delta(a) = x(a+1) - x(a)$, so $x(a) - x(1) = \sum_{a=1}^{n-1} \Delta(a)$.
 $n! = (n-1) \sum_{a=1}^{n-1} \Delta(a)^2 = (\sum_{a=1}^{n-1} \Delta(a))^2$. Is (and y schwatz.)
 $(\sum_{a=1}^{n-1} \Delta(a))^2 = (1_{n-1}^T \Delta)^2 \le ||(1_{n-1})|^2 ||\Delta||^2 = (n-1) \sum_{a=1}^{n-1} \Delta(a)^2$$

Now, let's see how to use this to prove a locan
bound on
$$\lambda_2(P_n)$$
.
Lest class saw $\lambda_2(P_n) \approx \frac{\pi^2}{n^2}$ and $\lambda_2(P_n) = \frac{12}{n(h\pi n)}$

To love bound will prove

$$P_n \neq C K_n$$
, and recall $\lambda_2(K_n) = n$,
so implies $\lambda_2(P_n) = Cn$

Write
$$K_n = \sum_{a \ge b} G_{a,b}$$

For $a \ge b$, write $P_{a,b}$ for subgraph of P_n from $a \ge b$
 $G_{a,b} \le (b-a) P_{a,l} \le (b-a) P_n$
 $\Longrightarrow K_n = \sum_{a \le b} G_{a,b} \le \sum_{a \le b} (b-a) P_n = \frac{n(n+1)(n-b)}{6} P_n$
so, $P_n \ge \frac{6}{n(n+1)(n-1)}$

$$\implies \lambda_{z}(P_{n}) \geq n \cdot \frac{6}{(h + i)(h - i)n} = \frac{6}{(m + i)(n - i)}$$

Complete barary tree. The
$$n = 2^{3t} - 1$$

 $a = 2^{3t} - 1$
 a

$$\leq \binom{n}{2} (2 \lg_2 n) \overline{I_n} = n (n - 1) \lg_2 n \overline{I_n}$$

$$\Rightarrow \lambda_{z}(T_{n}) \geq \frac{1}{n(n-1)(g_{zn})} \lambda_{z}(k_{zn}) = \frac{1}{(n-1)(g_{zn})}$$

Differs from test vector bound by (g_{zn})

Sometimes use many paths.
Sometimes weight them.
Let P be the weighted path with
edges (0,000 of at us.
Then G in
$$4\left(\sum_{\alpha=1}^{m} \frac{1}{\alpha \alpha}\right) P$$

proof For $x \in \mathbb{R}^{n}$, let $\Delta(a) = x(ax) - x(a)$.
Set $x(a) = \Delta(a) \int wa$
 w^{-12} be vector sA . $w^{-12}(a) = w(a)^{-12}$
Then $\sum_{\alpha} \Delta(a) = x^{-12}w^{-12}$
so $x^{T}G_{1}m x = (\sum_{\alpha} \Delta(a))^{2} = (x^{T}w^{-12})^{2}$
 $= (|w^{-12}||^{2} ||x||^{2}$
 $= (\sum_{\alpha=1}^{m-1} \frac{1}{\sqrt{\alpha}}) \cdot \sum_{\alpha} w_{\alpha} \Delta(a)^{2}$
 $= (\sum_{\alpha=1}^{m-1} \frac{1}{\sqrt{\alpha}}) \cdot x^{T}Lp x$

Remula Is resistance of resistors in series, with $r(0) = \frac{1}{\omega(0)}$.

with dn (weighted) edges.