Adjustercy matrices, espenialue interlacing, PF theory,

$$M(a_1b) = \begin{cases} w_{a_1b} & \text{if } (a_1b) \in E \\ 0 & 0.w. \end{cases}$$

Denote eignals
$$M_1 \ge \mu_2 \ge \cdots \ge \mu_n$$

Reasons for d-regular, $L = dI - M$
so $\lambda_i = d - M_i$ $\lambda_i = 0 \le \lambda_2 \le \cdots \le \lambda_n$

Thy
$$\int dave = \mu_{i} = dmax.$$

proof. By CF
 $\mu_{i} = \max \frac{xTMx}{xTx} = \frac{1^{T}M1}{1^{T}1} = \frac{1^{T}d}{D} = \frac{z}{aev} \frac{d(q)}{n} = dave$
Let Ψ_{i} be eigned of μ_{i}
let $a = ars \max \Psi_{i}(q)$. Then
 $\mu_{i} \cdot \Psi(q) = \sum_{b \neq a} W_{a,b} \Psi(b) \in \sum_{b \neq a} W_{a,b} \Psi(q) \in d(q) \Psi(q)$
 $\sum_{b \neq a} W_{a,b} \Psi(b) \in \sum_{b \neq a} W_{a,b} \Psi(q)$

$$\frac{(audry's Interlactus Theorem}{(audry's Interlactus Theorem}}$$
Let A be a method and let B be a principal soburation (obtended by deleting a row and colorny).
eigs (A) = d, 2 d 22 - 2 d m, eigs (B) = B 2 P 22 - 2 B and
Then $d_1 \ge B_1 \ge d_2 \ge B_2 2 - 2 d m (2 B a - 2 d m)$.
proof: Assume remode first row (col to get B).
First, $d = B E$.
 $CF = d = Max$ min $\frac{x^T Ax}{x^T x}$
S d in to $x \in S$ $\frac{x^T Ax}{x^T x} = \frac{Max}{S \subseteq IR^{n/2}} \frac{(O)^T B(O)}{(O)^T (O)}$
 $B = Max$ min $\frac{x^T B x}{x^T x} = \frac{Max}{S \subseteq IR^{n/2}} \frac{(O)^T B(O)}{(O)^T (O)}$
 $\leq N = S = R^{n/2}$

dEtl = BE follows by changing Aad Bto - Aad -B

If remove a vertex, otstæller saburatoris as adjuratoris. Ju lan anly so down, while dave can go yp or down.

Prople For every SEV, dave (G(S)) = M1. Proof (audy => max eig of M(S) = M1, and can apply Thm (

Profit : Graph coloring.
A
$$\models$$
 - coloring of G is C: $\{1, \pm\} \rightarrow V$ set.
 $\forall (a, b) \in E, C(d) \neq C(b).$
 $\chi(b) = \min \{\pm : G \} = E - colorable \}.$
 $Easy : \chi(b) = dmax \pm I, by greedy.$
 $Wilf: \chi(b) = LMIJ \pm I.$
node μ_i can be much less than dmax.
 $\sigma = \mu_i = J_2, dmax = 2$
 χ with net ventries, $\mu_i = J_1, dmax = 1$
Proof: by induction on $|V|$. Base case $|V| = 1.$
 $\chi(b) = J, \mu_1 = 0.$
Enduction: We know durin $\leq dave \leq \mu_1.$ So
 G has a ventex, π , with $d(a) \neq \mu_1 g$. let $S = U - Eas$.
 $(auchy = > \mu_i(A(S)) \leq \mu_i(G), so induct hyp = J)$
 $(an color G(S) with |\mu_1| \pm 1 colors.$
Nematus to Pick a color for a . It has $\in [\mu_1]$ noishbors,
so a color is available.

Lem 3 let
$$G$$
 be connected and let 4 be a non-negative
etgeniector of M . Then H is strictly positive.
proof Assume, bunce, $\exists a \text{ s.t. } \psi(q) = 0$.
As G connected => $\exists (a,b) \text{ s.t. } \psi(q) = 0 \times \psi(b)$.
let μ be the eignal. Then
 $\mu \cdot \psi(q) = \sum M(a,z) \psi(z) \ge M(a,b) \psi(b) > 0$, $\#$
 $z = a$

$$\frac{q \operatorname{roof} \operatorname{of} q}{\operatorname{let} \Psi_{1}} = \operatorname{erguec} \operatorname{of} \Psi_{1}, \quad x(q) = \left[\Psi_{1}(q) \right] \forall q.$$

$$Will show \times is \operatorname{erguec} \operatorname{of} \Psi_{1}. \quad len \quad \mathfrak{Z} = s \operatorname{sfactly} \operatorname{positive}$$

$$\Psi_{1} = \Psi_{1}^{2} \mathcal{M} \Psi_{1} = \sum_{\substack{a \in b \\ (a,b) \in E}} \mathcal{M}(a,b) \Psi_{1}(q) \Psi_{1}(b)$$

$$\in \sum_{\substack{a \in b \\ a \neq b}} \mathcal{M}(a,b) \left[\Psi_{1}(q) \right] \cdot \left[\Psi_{1}(b) \right] = x \operatorname{T} \mathcal{M} \times \leq \mathcal{M}_{1}$$

$$\operatorname{Now}, \quad use \quad \operatorname{maximum} = s \quad ergenvector.$$

$$\frac{p \operatorname{vool} d b}{\left(\operatorname{Hu} \right)^{2}} = \operatorname{essuec} \operatorname{of} \operatorname{Hu}_{n}, \quad \gamma(o) = \left(\operatorname{Hu}(o) \right), \quad \forall a \cdot \operatorname{Heep} \left(\operatorname{Hu} \right)^{2} = \left(\operatorname{Hu}(o) \right), \quad \forall a \cdot \operatorname{Hu}_{n} = \left(\operatorname{Hu}(a) \right) \\ \left(\operatorname{Hu} \right)^{2} = \left(\operatorname{Hu} \right)^{2} \operatorname{Hu}_{n} = \left(\operatorname{Hu} \right) \\ \operatorname{Hu}_{n} = \left(\operatorname{Hu} \right)^{2} \operatorname{Hu}_{n} = \left(\operatorname{Hu}_{n} \right) \\ \operatorname{Hu}_{n} = \left(\operatorname{Hu}_{n} \right)^{2} \operatorname{Hu}_{n} = \left(\operatorname{Hu}_{n} \right) \\ \operatorname{Hu}_{n} = \left(\operatorname{Hu}_{n} \right)^{2} \operatorname{Hu}_{n} = \left(\operatorname{Hu}_{n} \right) \\ \operatorname{Hu}_{n} = \left(\operatorname{Hu}_{n} \right)^{2} \operatorname{Hu}_{n} = \left(\operatorname{Hu}_{n} \right) \\ \operatorname{Hu}_{n} = \left(\operatorname{Hu}_{n} \right)^{2} \operatorname{Hu}_{n} = \left(\operatorname{Hu}_{n} \right) \\ \operatorname{Hu}_{n} = \left(\operatorname{Hu}_{n} \right)^{2} \operatorname{Hu}_{n} = \left(\operatorname{Hu}_{n} \right) \\ \operatorname{Hu}_{n} = \left(\operatorname{Hu}_{n} \right)^{2} \operatorname{Hu}_{n} = \left(\operatorname{Hu}_{n} \right) \\ \operatorname{Hu}_{n} = \left(\operatorname{Hu}_{n} \right)^{2} \operatorname{Hu}_{n} = \left(\operatorname{Hu}_{n} \right) \\ \operatorname{Hu}_{n} = \left(\operatorname{Hu}_{n} \right)^{2} \operatorname{Hu}_{n} = \left(\operatorname{Hu}_{n} \right) \\ \operatorname{Hu}_{n} = \left(\operatorname{Hu}_{n} \right)^{2} \operatorname{Hu}_{n} = \left(\operatorname{Hu}_{n} \right) \\ \operatorname{Hu}_{n} = \left(\operatorname{Hu}_{n} \right)^{2} \operatorname{Hu}_{n} = \left(\operatorname{Hu}_{n} \right) \\ \operatorname{Hu}_{n} = \left(\operatorname{Hu}_{n} \right)^{2} \operatorname{Hu}_{n} = \left(\operatorname{Hu}_{n} \right)$$

proof of c.
$$\mu_2 \leftarrow \mu_1$$
.
Let Ψ_2 be ergued of μ_2 . As $\Psi_2 \perp \Psi_1$, Ψ_2 has possible
neg entries. Let $Y(q) = [\Psi_2(q)]_1 \quad \forall a$.
 $\mu_1 = \Psi_2 \quad M \quad \Psi_2 \leq Y^T \quad M \quad Y \leq \mu_1$
If $\mu_2 = \mu_1$, Y is nonneg ergued of μ_1 , and thus
structly positive \Longrightarrow Ψ_2 is never zero
 $= 2 \quad \mathcal{F}(q_1 \mathcal{G}) \quad \text{sit.} \quad \Psi_2(q) \leq 0 \leq \Psi_2(\mathcal{G})$.
 $= 2 \quad \Psi_2 \quad \text{TM} \quad \Psi_2 \leq Y^T \quad M_1$, as $M(q_1 \mathcal{G}) \quad \Psi_2(q) \quad \Psi_2(\mathcal{G}) \leq 0$
 $\leq M(q_1 \mathcal{G}) \quad Y(\mathcal{G}) \quad \mathcal{F}(\mathcal{G})$.

Contradiction.
What if
$$\mu_n = -\mu_n$$
?
This If G connected, $\mu_n = -\mu_n$ iff G is typertite.
If $\mu_n = -\mu_n$, \neq is tight
 $= s \ \gamma \ an \ eigned of \ \mu_n$, strictly positive,
 $= s \ \gamma \ an \ eigned of \ \mu_n$, strictly positive,
 $= s \ \gamma \ an \ eigned \ zero, \ ad \ \exists (a,b) \ srt. \ \forall_n(a) < o < \forall_n(b)$

$$= \int_{anb} \left[\sum_{anb} \mathcal{M}(a|b) + \mathcal{M}(a|b) + \mathcal{M}(b) \right] = \sum_{anb} \mathcal{M}(a|b) + \mathcal{M}(a|b) + \mathcal{M}(b|b) = \sum_{anb} \mathcal{M}(a|b) = \mathcal{M}(b|b) = \sum_{anb} \mathcal{M}(b|b) = \mathcal{$$