Discuss const accuracy solves - because iterative retilience
provides will's dependence for E-accuracy.
Fastest is
$$\widetilde{O}(m \overline{J} \cdot \overline{g} \cdot \overline{n})$$
 f(u) = $\widetilde{O}(g(u))$ if
 $f(u) = \widetilde{O}(g(u) \cdot g' \cdot \overline{g}(u))$ some const c.
today do $\widetilde{O}(m \cdot g' \cdot \overline{g})$ and sketch $\widetilde{O}(m \cdot g \cdot \overline{g})$
Often divide who two parts:
precomputation Cliffer kectorization, low-strekg tree)
and application.
After precomputation can get time to $O(m)$.

Augmented Spanning Tree:

$$G = Tree + k edges \quad k = \frac{m}{s}$$

eliminate degree l & 2 matrices
so, time to do this is $= O(n)$.
Are left with a Schur complement on $= 4$ k watrices
with ≤ 5 k edges, H.
Alsobraically is $L_{G}^{-} = U^{T} \begin{pmatrix} L & 0 \\ 0 & LH \end{pmatrix} U$
for an upper A-ar U with $= 2n$ entries
Solve systems in LG by solve in LH, U and U^T
As U, U^{T} A-ar, solve in time $O(n)$.
Solve LH reconsiderly, and thus approximately.
Guarantee alg is linear, corresponds to a Z matrix sit.
 $(1-E) \ge 1 \le L_{H} \le (1+E) \ge 1$
 $\Longrightarrow (1-E) (T \begin{pmatrix} T & 0 \\ 0 & E^{+} \end{pmatrix}) \le (1+E) \begin{pmatrix} T & 0 \\ 0 & E^{+} \end{pmatrix} U$

2- approx tousates up in size.

Let
$$M = \mathcal{U}^{T} \begin{pmatrix} T & 0 \\ 0 & z^{+} \end{pmatrix} \mathcal{U}$$

We get $K(L_{G}, M) \leq K(L_{G}, L_{G}^{-}) \cdot K(L_{G}, M)$
 $\leq \frac{(1+\varepsilon)}{(1-\varepsilon)} K(L_{G}, L_{G}^{-})$

$$So_i$$
 loose little.

proof. If
$$2k \leq \frac{n}{2}$$
, is a degree (or 2 center not
touching S. Eliminate it. Still have a tree + k edges.
Stops when $2k > \frac{n}{2}$.

Reff_G(a,b) & Reff_T(a,b) (Rayleigh's Martonicity) = Stretzy (a,b)

Set $\widehat{G} = \widehat{G} + (S - i)T$: mult edge with of T by S Reff $\widehat{G}(a, b) \in \frac{1}{S}$ Stretchy (a, b)

(auf) 6T Pail=1 Cail &T Pail = min (1, 4lun Strebly (aib)) And, construct G. Get an 2 apro+ of G. E=1 with = 2 ZPq,b edges Let or= in Z Stretching (aib) = O(lon) $ZP_{q,b} \in \frac{16(\ln n) \cdot m \cdot \sigma}{2}$ so for Sz const. o. lun, # edges joes down. But, want to solve systems in G. Use $H(G, \widetilde{G}) \in H(G, \widetilde{G}) \mid H(\widetilde{G}, \widetilde{G}) \in 3s$ Will solve in G const. Js times to make a win, wat # off - tree edges $M \widehat{G} = \frac{M}{C \cdot J_{\overline{C}}}$ \Rightarrow $S \ge c(\sigma \cdot (nn)^2)$ Will show this works, and gives time O(m(g2n)

Recussion: start with
$$G_0 = G$$

Will solve systems in G_i by G_{it1} .
Form G_i - scale up tree
 G_i - down sample
Let $O_i = \#$ off tree edges in $G_i = M_i - (n_i - 1)$
If G_i has few off-tree edges, eliminate
degree (and 2 To set Schur complement, G_i th.
 $E(se_i, G_i + i = G_i)$
 NOW_i , $O_{it1} \in \frac{O_i}{anst \cdot \sigma \cdot lm}$
Will show by induction solve in G_i takes time
 $\leq \widetilde{O}(O_i |g^2n)$
By elim, should assume $O_i \geq M_i^2/s$, so essentially some.
Golve in G_i takes coast \overline{Ss} solves in G_{it1} ,
 $malts$ by G_i
 $malts$ by G_i

Takes time

$$\widetilde{O}\left(J\overline{S}\cdot\left(O_{i+1}\left|g^{2}n+O_{i}+n_{i}\right)\right)\right)$$

 $\leq \widetilde{O}\left(J\overline{S}\cdotO\overline{i}\right) \leq \widetilde{O}\left(O\overline{i}\left|g^{2}n\right)$

Saving a log
$$(\#MP2)$$

 $G_0 = G_+ (S-i)T$ is the only big blow up.
Solve systems in Go in time $O(n)$
 $S = const \cdot \sigma \cdot lun$, so $\#iters \sim JS = O(lnn)$.

Because T remains dominant.
After sample, E stretch_T(
$$\tilde{a}$$
-T) = Stretch_T(\tilde{b} -T)
So with high probability, Stretch_T(\tilde{a} -T) = 2 Stretch_T(\tilde{b} -T)
Means set $\tilde{a}_i = \tilde{a}_i + 2T_i$ to coupensate.
Elimination of degree I and 2 vertices in T
does not chanse stretch.
 $\int_{u_2}^{u_1} \Longrightarrow \begin{pmatrix} \frac{1}{Yu_1 + Yu_2} & l_i = \frac{1}{u_1} \\ l_i = \frac{1}{u_2} & l_i = \frac{1}{u_2} \\ Or, can see from Schur component formula.$
Still, need $Oit_i = \frac{Oi}{const}$
 $really, \tilde{a}_i = G_i + constT_i$

ad time ϕ solve $G_{\overline{i}} = O(o_{\overline{i}})$

Long story: have been many simplifications and imporements. And are many fast algorithms.

Beginning: many algo use as a primitive Many generalizations of spectral analysis, Good Luck with the rest of the semester