To day: The matrix norm and conjugate gradient.
Recall
$$\|\|x\|_A = \int x^T A \times x = \|\|A'\|_2 x \|_1$$
, for $A > 0$
 \overline{X} is an ε -approx solution to $A = b$ if
 $\|\|\overline{X} - x\|_A = \varepsilon \|\|x\|\|_A$.

Richardson and Chebyshe produce these.
let
$$P$$
 be a polynomial s.t. $\| p(A) A - I \| \le \varepsilon$.
Then $\| (p(Ab - x)\|_A = \| A'^{k} p(A A x - A'^{k} x) \|$
 $= \| ((p(A) A - I) A'^{k} x) \|$ because A'^{k} connector
with $p(A)$
 $\in \| p(A|A - I)\| \cdot \| A'^{k} x \|$
 $\in \varepsilon \| \| x \|_A$

The For
$$A, Z \ge O$$

 $\|ZA \times - \times\|_A \le \mathbb{E} \|A\|_A$, for all $X \to \mathbb{C}^+$
iff $(I - \mathbb{E})A^{-1} \le Z \le (I + \mathbb{E})A^{-1}$

Say want to approximate 14, eigned of λ, of A
Use power method on A⁻¹
This tells us could use power method on Z
If
$$\lambda_1 = \frac{1}{n}$$
, $\lambda_2 = \frac{2}{n}$, small gap, power method on
uI-A is slow. But, gap in A⁻¹ is Dig.

Let $P_{0,...,P_t}$ be a basis of S_t , $x = \sum_{i=1}^{t} C_i P_i$

$$x_{t}^{T}Ax_{t} - 2b^{T}x_{t} = \left(\sum_{i}^{T}c_{i}p_{i}\right)^{T}A\left(\sum_{j}^{T}c_{j}p_{j}\right) - 2b^{T}\left(\sum_{i}^{T}c_{i}p_{i}\right)$$
$$= \sum_{i}^{T}C_{i}^{2}p_{i}^{T}Ap_{i} - 2\sum_{i}^{T}C_{i}b^{T}p_{i} + \sum_{i}^{T}c_{i}c_{j}p_{i}^{T}Ap_{j}$$
$$\sum_{i=1}^{i=1}^{i=1}C_{i}c_{i}c_{j}p_{i}^{T}Ap_{j} + \sum_{i=1}^{i=1}C_{i}c_{i}c_{j}p_{i}^{T}Ap_{j}$$

That is
$$P_i^T A_{ij} = 0$$
 for $i \neq j$
Thus, $only$ need to minimize
 $\sum_{i} \left(c_i^2 P_i^T A P_i - 2c_i b^T P_i \right)$
 D_0 by setting $C_i = \frac{b^T P_i}{P_i^T A P_i}$
That is, $X_t = \sum_{i=0}^{t} P_i \frac{b^T P_i}{P_i^T A P_i}$
So, odd one vector to go from X_{t-1} to X_t
 $P_0 \cdots P_t$ is an A -orthogonal basis.
 $P_0 = b$
 $P_i = A_{P_0} \cdots b_{ij}$ wait $P_0^T A P_i = 0$
 $running Grow-Schuidtt$
 $so, set $P_i = A_{P_0} - \frac{P_i^T A^2 P_0}{P_i^T A P_0} P_0$$

Because need to compensate for Pot A2po

General formula is $P_{t+1} = A P_t - \sum_{i=0}^{t} P_i \frac{P_i^T A^2 P_t}{P_i^T A P_5}$ because $P_i^T A^2 P_t$ on left, $-P_i^T A P_i \frac{P_i^T A^2 P_t}{P_i^T A P_i}$ on right,

and
$$P_i^T A P_j = 0$$
 for $i \neq j$
We can compute P_{t+1} quickly because
 $P_i^T A^2 P_t = 0$ for $i \leq t - 1$
because $A P_i \in Span (P_0 \dots P_{i+1})$, where are A-orthogonal
to P_t for $i + l \leq t$

$$P_{t+1} = AP_t - P_t \frac{P_t A^2 P_t}{P_t A P_t} - P_{t-1} \frac{P_{t-1} A^2 P_t}{P_{t-1} A P_{t-1}}$$

Are ways to centralise these conjutations to make them very fast.

$$q(\lambda) = \frac{\prod_{\substack{i=1\\j \neq i}}^{k} (\lambda_i - \lambda)}{\prod_{\substack{i=1\\j \neq i}} q(\lambda_i) = 0}$$

50, should get exact solution after le steps.

hoes only log n distruct eigenvalues. So, log n iterations.