Iterative Linear Equation Solvers

Elimination: even if
$$\#un \ge \varepsilon O(n)$$
,
can regarde space $\Sigma(n^{3})$ and time $\Sigma(n^{3})$.
Iterative: only share matrix and a few vectors.
Approach solution rather than compute it exactly.
Want to solve $Ax=b$, A posidef
Observe $Ax=b \iff dAx=ab$
 $\Longrightarrow x + (aA-I) = ab$
 $\Longrightarrow x = (I - aA) \times t ab$
Iterate on this
 $X_{0} = 0$
 $X_{t} = (I - aA) \times t - i + ab$
Is called Dictordson Iteration
Converses if $||I - aA|| < 1$
 $A = ym = > ||I - aA|| = max ||I - aA||$
 $uhere $0 < \lambda_{1} < \cdots < \lambda_{n}$
 $Set d = \frac{2}{\lambda_{1} + \lambda_{n}}$ gives $\lambda_{1}, \lambda_{n} = \pm \frac{\lambda_{n} - \lambda_{1}}{\lambda_{n} + \lambda_{1}}$$

and
$$\|I - \forall A\| = \left(-\frac{2\lambda_{i}}{\lambda_{i} + \lambda_{n}}\right)$$

If
$$\alpha < \frac{2}{\lambda_1 + \lambda_n}$$
, $|(I - \alpha A)| \in |-\lambda_1 \alpha$

Conversance: Consider
$$\times - \times t$$
.
 $\times - \times t = ((I - \kappa A) \times + \kappa b) - ((I - \kappa A) \times t - i + \kappa b))$
 $= (I - \kappa A)(\times - \times t - i)$
 $= (I - \kappa A)^{t}(\times - \times b)$
 $= (I - \kappa A)^{t} \times b$

To get
$$\frac{|(x-x+t)|}{|(x+t)|} \leq 2$$

saffires to have $t = ln(1/\epsilon) \frac{\lambda_{\ell} + \lambda_{n}}{2\lambda_{\ell}}$ = $\left(\frac{\lambda_{n}}{2\lambda_{\ell}} + \frac{\lambda_{\ell}}{2}\right) l_{\ell} \left(\frac{1}{2}\right)$

Every term is $\frac{\lambda_n}{\lambda_i} \stackrel{<}{=} H(A)$, the condition number. # ites $\approx \frac{1}{2}h(A) \cdot \ln(12)$

Issue: might not thow
$$\lambda_{I}, \lambda_{n}$$
, so only guess of.
(an not tell if have consider.
(an measure $b - Ax_{t} = Ax_{0} - Ax_{t} = A(x_{0} - x_{t})$
 $= A(I - \alpha A)^{t}x_{0} = (I - \alpha A)^{t}Ax_{0}$
 $= (I - \alpha A)^{t}b$
So, $||b - Ax_{t}|| \le ||I - \alpha A||^{t} ||b||_{1}$
What could be more reserve.
But, $||b - Ax_{t}|| \le \epsilon \|b\|$ does not imply $x \neq x_{t}$
Only implies $||x - x_{t}|| \le \epsilon \|H| \cdot R(A)$

A view through polynomials.
Can corrite
$$X_t$$
 as $P_t(A)b$, for some polynomial P_t
Check: $X_0 = O$
 $X_1 = O b$
 $X_2 = (I - vA)xb + oxb$
 $X_3 = (I - vA)xb + (I - vA)vb + vb$
 $X_4 = \sum_{i=0}^{t} (I - vA)^i a b$

Will see that
$$P_{t}(A) \approx A^{7}$$

First, take the limit as $t \rightarrow 00$
 $P_{t}(A) \rightarrow \alpha \sum_{i \geq 0} (I - \alpha A)^{i} = \alpha (I - (I - \alpha A))^{-1}$
 $= \alpha (\alpha A)^{-1}$
 $= A^{-1}$

In several, a poly
$$P$$
 gives an ε -accurate solution if
 $\|P(A) \cdot b - x\| \le \varepsilon \|x\|$
 $\iff \|P(A) A_x - x\| \le \varepsilon \|x\|$
 $\iff \|P(A) A_x - x\| \le \varepsilon \|x\|$

Now, we can search for better polynomials. We need that for λ_i' eignals of A, $\left(p(\lambda_i) \lambda_i' - 1 \right) \in \mathcal{E}$ Def $q(x) = p(\eta x - 1)$. We need q(0) = 1, $\left(q(\lambda_i) \right) \leq \mathcal{E}$

Thui For every t=1 and O <
$$\lambda \min \le \lambda \max$$

 $\exists \deg t \in poly \quad q_t(x) \quad s.t.$
 $l = \lfloor q^t(t) \rfloor \le \varepsilon \quad for \quad \lambda \min \le x \le \lambda \max$
 $2 = q^t(0) = 1$
 $for \quad 2 \le \frac{2}{(l + \frac{2}{JK})^t} \le 2e^{-\frac{2t}{JK}}$
 $H = \frac{\lambda \max}{\lambda \min}$
 $A = \frac{\lambda \max}{\lambda \min}$

Before proving, consider with Loplacians.
As work enthogonal to 1,
$$\lambda min = \lambda z$$
.
A degree t polynomial only moves data t skips
through a grouph. So, should need t= diameter;
For path of length n, $K = \frac{\lambda max}{\lambda min} \approx N^2$;
so $JK = n$ iterations makes sense.
For expander, $K = constant$
hyperate, $K \approx logn$
these can be solved quickely.

Prove that using Cheby she polynomials.

$$Def T_{t}(X) = \left(COS(t \cdot acos(X)) | H \leq 1 \right)$$

$$Cosh(t - acosh(X)) | H \geq 1$$

To see is a polynomial,
def
$$T_{\delta}(x) = 1$$
 $T_{i}(x) = x$
 $T_{t}(x) = 2xT_{t-i}(x) - T_{t-2}(x)$

To verify trig identities,
recall
$$\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
 $\cosh(\theta) = \frac{e + e}{2}$

$$if \Theta = a(osh(x) \angle =) \quad (osh(x) = \Theta_{1})$$

$$ad \quad 2 \times T_{t-1}(x) - T_{t-2}(x)$$

$$= 2\left(\frac{\Theta + \Theta}{2}\right)\left(\frac{\Theta + \Theta}{2}\right)\left(\frac{\Theta + \Theta}{2}\right) - \frac{\Theta + \Theta}{2}$$

$$= \frac{1}{2} \begin{bmatrix} t0 & -t0 & -(t-2)0 & (t-2)0 & (t-2)0 & (t-2)0 \\ e + e & + e & + e & -e & -e \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} e^{t0} + e^{-t0} \end{bmatrix} = \cosh(t0)$$

For
$$|x| \leq 1$$
, $|T_t(x)| \leq 1$,
because $\exists \Theta \text{ s.t. } OS \Theta = x$, $Ocd (COS(t \Theta)) = 1$
 $(Calm!: For $x > 0$, $T_t(I + \delta] \geq \frac{1}{2}(I + J2x)^t$
 $using a cosh(x) = I_n(x + Jx^{2-1})$ for $x = 1$
 $Proof of Thus I$
 $Enow T_t(x)$ has degree t
 $T_t(x) \in (-1, 1)$ for $x \in (-1, 1)$
 $T_t(x) \in (-1, 1)$ for $x \in (-1, 1)$
 $T_t(x) \geq \frac{1}{2}(I + J2x)^t$$

Write
$$q_{\pm}(x) = T_{\pm}(l(x)) / T_{\pm}(l(d))$$

where $l(x) = \frac{\lambda max + \lambda min - 2x}{\lambda max - \lambda min}$

$$l(\lambda mar) = -($$

$$l(\lambda min) = 1$$

$$l(0) = \left[+ \frac{2\lambda min}{\lambda mar + \lambda min} \right] = \left[+ \frac{2}{R} \right]$$

 $\begin{aligned} & \text{By def}, \quad q_{\pm}(o) = 1 \\ & \text{for } \times \in \text{Amin}, \text{Amax}, \quad l(\neq) \in [-1,1] \quad \text{so} \\ & \left(\text{T}_{\pm}(l(\neq)) \right) \leq 1, \text{ and } \quad |q_{\pm}(\neq)| \leq \frac{1}{\text{T}_{\pm}(l(o))} \quad \neg \\ & \rightarrow \leq \frac{2}{\left(1 + \frac{2}{J_{\text{K}}}\right)^{\pm}} \leq 2e^{-2t/J_{\text{K}}} \end{aligned}$