Graphland Hypercube on $n=2^{\frac{1}{2}}$ vertices of decree d>k.

Defined by g_{11} . $g_d \in \{0_1\}^k$ Hos and eignals $\mu_b = \frac{d}{2}(-1)^{g_1^2}$ b mod $\frac{d}{2}$ $\left(-1\right)^k = (-2x + e^{\frac{1}{2}})^{g_1^2}$ Construct $G = \begin{pmatrix} -g_1 - g_1 - g_1 \end{pmatrix}$ earlies in $H_2 = \{0_1\}$ mod $\frac{d}{2}$ $\frac{d}{d} = \frac{d}{d} =$

μ₀= J-2/G b | where | H= #{i= +(i) + o? Howary weight

Mo=d if (|Gb|-\frac{1}{2}|\lequip \text{sed fall \$10}

Then graph is an 25-expander

will see 4 200 is a c st. this holds with deck

Coding to send message in $\{0,1\}^m$, + sensurt $\{0,1\}^n$ n > m.

Parity bit $b_1...b_m \in \{0,1\}$ append $b_{m+1} = \sum_{i=1}^m b_i \mod 2$

Can now defect one error But, cari figure out where it is 1-error correction: Haunius Code.

Nese satisfy

$$\begin{pmatrix}
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

$$M$$

If one but flipped, to create C, say Co = 0

and is 6 in biliary. So, find loration of ONE error.

(ode is a mapping (: $F_2^m \to F_2^n n > m$ (C(5) is a codeword

Take $t = \frac{m}{n}$ Hammy $d_{i} \neq l \in C_i = |C_i - C_2|$ minimum $d_{i} \neq l \neq l \in C_i = d$ $C_i \neq C_2$

Con correct up to d/2 errors. If $d/3+(C,T) < \frac{d}{2}$, then from C $d/3+(C,T) < d/3+(C,T) + d/3+(T,C) < \frac{d}{2} + d/3+(T,C)$ =5 $d/3+(T,C) = \frac{d}{2}$

minimum relative distance $J = \frac{d}{d}$ Sequence of codes, $C_1, C_2, ..., \tilde{C}_i \approx \text{symptotically sound if}$ $T(Ci) \geq t > 0$, $S(Ci) \geq d > 0$ $\forall i$ N(Ci) should grow. Linear code: C(t) = Gt, for some $G \in \mathbb{F}_2^{n\times m}$ As G(t) + t = Gt + Gt = Gt - Gt (mod 2) C_1 , C_2 codewords = $C_1 - C_2$ a codeword win dG = min |G|

Cc = { cc6 \: belt_2 }

Will see a radon G is good.

len Par [Cc has min dist 2 d] = 1 - 2 = 2 [[]

proof to G randon, Gt is rendon to every $b \neq 0$ $Pr(|Gh| = i) = \frac{1}{2^n} Pr(|Gh| = d) = \frac{d}{2^n} \frac{n}{2^n}$

Analysis. Let $H(p) = -p(g_2p - (t-p)\log_2(t-p))$ $\begin{pmatrix} y \\ py \end{pmatrix} = 2^{nH(p)}$

And, for
$$\beta > H(\beta)$$
 $\frac{1}{2^{pn}} \sum_{i=0}^{sn} {n \choose i} \xrightarrow{n} 0$

So
$$\frac{2^{r\eta}}{2^n} \stackrel{\delta^n}{\underset{i=0}{\sim}} \left(\stackrel{\eta}{i} \right) \rightarrow 0$$
 if $\left(\stackrel{\iota}{\iota} - \tau \right) > \mathcal{H}(\mathcal{E})$

Not is, if choose $G \in \mathbb{F}_2$ at zerolon, expect win rel dist δ where $H(\delta) \sim 1-\Gamma$ $\Gamma = \frac{1}{2}, \ \delta \approx \frac{1}{q}$

For ox 2, T is small but >0.

For severalized hypercase also need max reldist, only a factor 2 on probability -> nestigible.

Constructions?

Reed-Solomon is over #p - number models a prime.

we stay $O(x) = \sum_{i=0}^{p-1} x^i f_{i-1}$ for $x \in \mathbb{F}_p$

transmit O(01, O(1),..., O(p-1) So n=p

Lem If O has degree emtand is O at m field elements, then it is O.

They Mindist of RS code is $\geq P-M$ proof let Q' and Q^2 be two polys of degree $\leq u_1$.

So is $Q \triangleq Q'-Q^2$ If $Q' \neq Q^2$ then Q is non-zero.

So, Q is zero at most m times, and $|Q'-Q^2|=dit(Q',Q^2)\geq P-M$.

Bul, This is not over The.

Forney: Choose $C^{inner}: \overline{H_p} \to \overline{H_z} \xrightarrow{\Gamma(w_z, \overline{p})} \overline{H_z}$ st. $2^l \ge \overline{p}$ code

If min dist of Cimer > d, min dist of whole > d(p-m),

How get Cimer?

At random?

By brute Search.

Justesen: use all.