Physical models and Harmone Fuctors on Graphs

$$G = (U_1 \in I_1, u)$$
 connected. $B \in V$, $B \neq \phi$. Boundary
 $S = V - B$.
 $X : V \Rightarrow IR$ is hormone on S if
 $V = eS$ $x(q) = \frac{1}{d(q)} \geq W_{q(b)} \times (b)$
weighted average of its neglibers.
Examples Random walte. Distinguish $S, t \in V$
 $B = \frac{5}{5}, t^3$. Consider a reaction walte that
 $stops$ when it with s on t .
 $x(q) = Pr [$ walk that orboth at a star at s ?
 $x(s) = 1$, $x(t) = 0$. become stops there.
 $C(aim \times is harmonic on S$.
For $a \notin \frac{5}{5}, t^3$
 $Prob stops at $t = \sum prob(mous p f) \cdot pob(t = st)$
 $b = a$$

$$\begin{array}{c} (\text{onsider path on } \{l, ..., n\} & t = (, s = n) \\ \times (a) = \frac{a_{-1}}{n_{-1}} & \underbrace{1 - 2 - 3 - 4}_{0 & 1/3 & 7/3 & 1} \end{array}$$

View cach eche as a spring. Was = spring constant higher = stroyer convection.

Hoote: force spring (a16) exerts on a is (x(b)-x(a))ceans Equilibrium: all forces zero, except on B.

$$\sum_{b \sim a} \left[\frac{1}{2} (b) - \frac{1}{2} (a) \right] w_{a,b} = 0 \quad (=) \quad \sum_{b \sim a} \sum_{b \sim a} \frac{1}{2} (b) w_{a,b} = d(b) \times (a) \\ \times (a) = \frac{1}{2} (a) \sum_{b \sim a} \frac{1}{2} (b) \frac{1}{2} (b) \\ + \frac{1}{2} (a) \sum_{b \sim a} \frac{1}{2} (b) \frac{1}{2} (b) \frac{1}{2} (b) \\ + \frac{1}{2} (b) \frac{1}{2}$$

Chargeness of solutions, and how b find them. Harmonic equation is $aes => d(a) \times (a) - Z w_{ab} \times (b) = 0$ that is $\delta_a^T L x = 0$, arow of L, for each ars.

Neve x(t) for $b \in B$ to thes. $d(q) + (q) - \sum_{b \sim a} w_{a,b} + (b) = \sum_{b \sim q} x(b)$ $b \sim a \qquad b \sim q \qquad pot sum over S.$

Becomes $L(S,S) \times (S) = M(S,B) \times (B)$

$$So, \times (S) = L(S,S)^{-1} M(S,B) \times (B)$$

Need to show L(S,S) exists. True if G connected & B+P. Because L(S,S) is nice.

Lem. Let H be connected and X be non-nes, renzero diagond, They LH +X is poss dof.

proof need b show
$$\forall x \in x^{T}[L_{H} + X]_{X} = 0$$

If x is non-constant $x^{T}(L_{H} + X)_{X} = 0$
 $E \in x$ is constant $= C1$, $C \neq 0$ so
 $x^{T}X_{X} = C^{2} \sum X(q,q) = 0$
As $L \in and X psd$, $x^{T}(L_{H} + X)_{X} = min(x^{T}L_{H} \times, x^{T}X_{X}) = 0$.
A (most proces $L(s,s)$ pos def, $txit = G(s)$ (could the
direction of the connected, $B \neq 0$, $S = V - B$,
 $Men L(S,S)$ is pos def.
Let $S_{i,...}S_{E}$ be connected components of $G(s)$.
 $Men L(S,S)$ has form $L(S_{i},S_{i})$
 $L(S_{i},S_{i})$
 $L(S_{i},S_{i})$
 $L(S_{i},S_{i})$
 $L(S_{i},S_{i})$
 $L(S_{i},S_{i})$
 $L(S_{i},S_{i})$

Each GESi) is connected.
And, Baesi sit. X(a,a) > 0, Decouse
G => is an edge of G connecting some center
of Si to B.
L(S,S) =
$$\bigoplus_{i=1}^{k} (L(Si,Si) + X(Si,Si))$$
 each pos def.

Every - lost term to identify.
Every in spring with const w user stretcled
to length
$$L$$
 is $\pm wl^2$
So, every in network is
 $\pm \sum w_{a,b} (x(a) - x(b))^2 - \pm xT(x)$
(a) I + E

Physics says energy minimized at equillibrium, so, Hats $\frac{\partial}{\partial x_{0}} \frac{1}{2} x^{T} L x = 0$

$$\frac{\partial}{\partial x_{(a)}} \stackrel{i}{=} \stackrel{i}{=} \stackrel{j}{=} \frac{\partial}{\partial x_{(a)}} \stackrel{i}{=} \stackrel{i}{=} \stackrel{j}{=} \stackrel{j}{=} \frac{\partial}{\partial x_{(a)}} \stackrel{j}{=} \frac{\partial}{\partial x_{(a)}} \stackrel{j}{=} \frac{\partial}{\partial x_{(a)}} \stackrel{j}{=} \stackrel{j}{=} \stackrel{j}{=} \frac{\partial}{\partial x_{(a)}} \stackrel{j}{=} \stackrel{j}{=} \stackrel{j}{=} \frac{\partial}{\partial x_{(a)}} \stackrel{j}{=} \stackrel{j}$$

Pesister Networks
Desistance of edge aits is
$$T_{aits} = \frac{1}{Waits}$$

Associate voltages with vertices, and flows on edges.
Ohms law: $U = IR$
instance
 $i(aits) = (uvert vertically)$
 $difference$
 $i(aits) = (uvert flow from a to b)$
 $i(b,a) = -i(aits)$
 $v(a) - v(b) = i(aits) T_{aits}$
 $i(aits) = Waits [v(a) - v(bi)]$ cannot flow high to low.
 $U = signed$ edge-verter adj. met is EXV
 $U((aits), c) = \begin{cases} 1 & a=c \\ -1 & b=c \\ 0 & ow \end{cases}$
are proteing an arbitrary orientation for each edge.
 $W = ExE$ diagonal edge weight matrix.
 $i = WUN$
 $i = WUN$

$$\hat{i}_{ext}(a) = \sum_{b \neq a} \hat{i}(a|b) \quad \text{no current stored at a node,}$$

$$\hat{i}_{ext} = \mathcal{U}^{T} \hat{i} \qquad -1$$

$$Check \quad signs : \qquad C \stackrel{a}{\longrightarrow} \stackrel{b}{\longrightarrow} \stackrel{c}{\longrightarrow} \stackrel{c}{\longrightarrow} \stackrel{c}{\longrightarrow} \stackrel{a}{\longrightarrow} \stackrel{b}{\longrightarrow} \stackrel{c}{\longrightarrow} \stackrel{c}{\longrightarrow} \stackrel{c}{\longrightarrow} \stackrel{a}{\longrightarrow} \stackrel{b}{\longrightarrow} \stackrel{c}{\longrightarrow} \stackrel{c}{\longrightarrow$$

 $L = UTWU \qquad \hat{v}_{ext} = LN$ = $\sum_{(a_1b)\in E} W_{a_1b} (\delta_a - \delta_b) (\delta_a - \delta_b)^T$ $(G_{1b})\in E$ B = $\{a: \hat{v}_{ext}(0) \neq 0\}$

For
$$a \in S$$
, $iest(a) = 0$
=> $iest(a) = 0$
=> $d(a)v(a) = \sum_{b \sim a} w_{a,b}v(b)$

v is hormonic at a.

As
$$i(a,b) = w_{a,b}(v_{a}) - v(b)$$

=) $\sum_{bna} i(a,b) = \sum_{bna} w_{a,b}(v_{a}) - v(b) = 0$
bna bna
=S zero net flow at α .

Given text, how solve for
$$v$$
?
Lext = Lv , so $v = L^{-1} Lext$
But there is no L^{-1} [?
There is a solution if $\sum_{a} Lext(a) = 0$, and G connected.
Called the pseudo-inverse L^{+}
 $L^{+}L = LL^{+} = I - \pm 11^{-1} = \pm LK_{n}$
 $= projection acto par(L)$
 L^{+} is identity on the span.

$$\mathbb{E} \mathcal{E} = \sum_{i} \lambda_{i} \mathcal{V}_{i} \mathcal{V}_{i}^{T}, \quad L^{\dagger} = \sum_{i=\lambda_{i} \neq 0} \mathcal{V}_{i} \mathcal{V}_{i}^{T}$$