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Convergence of Random Walks

Daniel A. Spielman September 30, 2010

9.1 Overview

We begin by reviewing the basics of spectral theory. We then apply this theory to show that
lazy random walks do converge to the steady state. In fact, we show that the rate of convergence
depends on the gap between the first and second largest eigenvalues of the lazy walk matrix.

An obvious obstruction to convergence of random walks are sets of vertices with very few edges
leaving them. We measure this by the conductance of the set, and show that the convergence time
is at least the reciprocal of the conductance. We finish by stating Cheeger’s inequality, which gives
a close relation between conductance and the spectral gap. It says that, at least to first order, the
only barriers to rapid mixing are sets of low conductance.

I defer the holistic proof of the convergence of random walks to next lecture.

9.2 Review of Spectral Theory

Last lecture, we showed that the distribution of a the ordinary random walk on a graph after t
steps is pt = W tp0, where W is the walk matrix of the graph. For the lazy random walk, it is
given by Ŵ

t
p0. The important point for us is that it is obtained by mutiplying many times by

the same matrix. Spectral theory (the eigenvalues and eigenvectors) is what we use when we want
to understand what happens when we multiply by a matrix.

I now recall the basics of the theory. First, recall that v is an eigenvector of a matrix W with
eigenvalue λ if

λv = Wv .

The geometric multiplicity of the eigenvalue λ is the dimension of the space of vectors v for which
this equation holds.

For symmetric matrices, the spectral theory is particularly elegant. While the walk matrices we
consider are not usually symmetric, we begin by recalling the theory for the symmetric case.

Theorem 9.2.1. [Spectral Theory of Symmetric Matrices] For every n-by-n symmetric matrix M
there is an orthornormal basis of n eigenvectors v1, . . . , vn and a set of n eigenvalues λ1, . . . , λn
such that

λiv i = Mv i

for all i.
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Note that some eigenvalues may be repeated in this list. The orthonormality of v1, . . . , vn gives us
an easy way of expanding every vector in this basis. For every vector x

x =
n∑
i=1

(vTi x )v i.

Here the terms vTi x are scalars, and so are the coefficients of the vectors v i in the expansion.

Multiplication by M is easily performed by first expanding in the eigenbasis:

Mx = M
n∑
i=1

(vTi x )v i =
n∑
i=1

M (vTi x )v i =
n∑
i=1

(vTi x )λiv i.

Similarly,

M kx =
n∑
i=1

(vTi x )λki v i.

While the walk matrices W are not symmetric, they are similar to symmetric matrices. Let D1/2

denote the diagonal matrix whose uth diagonal is
√
d(u) and let D−1/2 be the matrix with 1/

√
d(u)

on its corresponding diagonal. We have

D−1/2WD1/2 = D−1/2
(
AD−1

)
D1/2 = D−1/2AD−1/2,

which is symmetric. For the rest of this lecture, we define

M = D−1/2AD−1/2

and
M̂ = (1/2)(I + M ) = D−1/2ŴD1/2.

Observe that M and W have the same eigenvalues, and an easy translation between their eigen-
vectors. For each eigenvector v of M , we have

λv = Mv =
(
D−1/2WD1/2

)
v ,

so
λ
(
D1/2v

)
= W

(
D1/2v

)
,

and we see that D1/2v is a right-eigenvector of W . This gives the following formula for multipli-
cation by powers of W :

W tx =
(
D1/2MD−1/2

)t
x = D1/2M tD−1/2x =

∑
i

λtiD
1/2v i

(
vTi D

−1/2x
)
. (9.1)

The key point here is that as t increases, the only terms that are changing are the powers of
the eigenvalues. Moreover, every eigenvalue of absolute value less than 1 will have diminishing
contribution. This is why the lazy random walk converges to the steady state: we will show that
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all of its eigenvalues are between 0 and 1 and that the steady-state vector is the only one with
eigenvalue 1.

Before I do that, let’s do a sanity check. I’d like to observe that we can use (9.1) to show that
W tπ = π, a fact that we already know. As π is an eigenvector of W of eigenvalue 1, M has a
corresponding eigenvector of eigenvalue 1, which we will call v1 and which is given by

v1 =
D−1/2π∥∥∥D−1/2π

∥∥∥ .
We have to divide by the norm because we require v1 to be a unit vector. Let’s see what that norm
is. Recall that π(a) = d(a)/2m, so (D−1/2π)(a) =

√
d(a)/2m. Thus,∥∥∥D−1/2π

∥∥∥ =
1

2m

√∑
a

√
d(a)

2
=

1
2m

√∑
a

d(a) =
1√
2m

As the basis v1, . . . , vn is orthnormal and D−1/2π lies in the same direction as v1, we know that

vTi D
−1/2π = 0

for every i ≥ 2 and

vT1 D−1/2π =
∥∥∥D−1/2π

∥∥∥ =
1√
2m

.

So, when we apply equation 9.1, we get

W tπ = D1/2v1(1/
√

2m) = D1/2D
−1/2π

1/
√

2m
(1/
√

2m) = π.

9.3 The eigenvalues of the Walk Matrix

So that we can apply this theory, we now prove some elementary facts about the eigenvalues of the
walk matrix.

Theorem 9.3.1. Let W be the walk matrix of a connected graph. Then, all eigenvalues of W lie
between 1 and −1, and the eigenvalue 1 has multiplicity 1.

Proof. Our proof of this will be very similar to the proof from last class that the steady-state
distribution is unique. Actually, in that proof we already established that the eigenvalue 1 has
multiplicity 1. If you check the proof, you will see that we never used the fact that p was a
non-negative vector.

Let v be an eigenvector of W of eigenvalue λ. Let a be a vertex for which

|v(a)| /d(a) ≥ |v(b)| /d(b),
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for all b. We have
λv(a) =

∑
(a,b)∈E

v(b)/d(b),

and so

|λ| |v(a)| =

∣∣∣∣∣∣
∑

(a,b)∈E

v(b)/d(b)

∣∣∣∣∣∣
≤

∑
(a,b)∈E

|v(b)| /d(b)

≤
∑

(a,b)∈E

|v(a)| /d(a)

= |v(a)| .

So, |λ| ≤ 1.

Corollary 9.3.2. All eigenvalues of Ŵ lie between 0 and 1, and the eigenvalue 1 has multiplicity
1.

Proof. As
Ŵ = (1/2)I + (1/2)W ,

Ŵ has the same eigenvectors as W . Moreover, for every eigenvalue λ of W the matrix Ŵ has an
eigenvalue of (1 + λ)/2.

We now know enough to show that a lazy random walk must converge to the steady state. We will
now make that statement more quantative.

For the rest of the lecture, we let λ1, . . . , λn denote the eigenvalues of the walk matrix, with the
convention

1 = λ1 > λ2 ≥ λ3 ≥ · · · ≥ λn.

We now measure how quickly the random walk approaches the steady state.

Theorem 9.3.3. Consider the lazy random walk on a connected graph. For every initial probability
distribution p0 and every t ≥ 0 we have

‖pt − π‖ ≤

√
maxa d(a)
mina d(a)

λt2.

If the walk starts at vertex a, then for every vertex b we have

|pt(b)− π(b)| ≤

√
d(b)
d(a)

λt2.
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Proof. Let p0 be any probability distribution on the vertices. If it is concentrated on one vertex
then ‖p0‖ = 1, and you should check that otherwise ‖p0‖ < 1. We will now write

D−1/2p0 =
∑
i

αiv i,

where
αi = vTi D

−1/2p0.

As the largest entry of D−1/2 is the square root of the minimum degree of a vertex in G, we know∥∥∥D−1/2p0

∥∥∥ ≤ 1
min d(a)

.

As the v i form an orthornormal basis, we also have∑
i

α2
i =

∥∥∥D−1/2p0

∥∥∥ ≤ 1
min d(a)

.

We are most interested in α1, which we may compute from the formula for v1.

α1 = vT1 D−1/2p0 =
√

2mπT
1 D−1/2D−1/2p0 =

√
2mπT

1 D−1p0 =
√

2m(1/2m)1Tp0 = 1/
√

2m,

as 1Tp = 1 for every probability vector p.

Applying equation 9.1 and separating the first term from the rest we find

pt = W tp0 = D1/2v1α1 + D1/2
∑
i≥2

λtiαiv i.

The first term in this sum is simply π. We now bound the norm of the second term by first
computing∥∥∥∥∥∥

∑
i≥2

λtiαiv i

∥∥∥∥∥∥
2

=
∑
i≥2

(
λtiαi

)2 (as the v i are an orthonormal basis)

≤
∑
i≥2

(
λt2αi

)2 (as 0 ≤ λi ≤ λ2 for i ≥ 2)

= λ2t
2

∑
i≥2

αi
2

≤ λ2t
2

1
mina d(a)

.

As the largest entry in D1/2 is at most the square root of the largest degree of a vertex in the
graph, multiplying by D1/2 increases the norm of this vector by at most

√
maxa d(a).

We thus have

‖pt − π‖ ≤

√
maxa d(a)
mina d(a)

λt2.
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To prove the second part of the theorem, we consider what happens if we start the walk at vertex
a. In this case we have ∥∥∥D−1/2p0

∥∥∥ =
1√
d(a)

.

To compute the bth entry of pt, let eb be the elementary unit vector in direction b. We have

pt(b) = eTb pt = eTb π + eTb D
1/2
∑
i≥2

λtiαiv i.

We upper-bound this last term by

eTb D
1/2
∑
i≥2

λtiαiv i =
√
d(b)eTb

∑
i≥2

λtiαiv i ≤
√
d(b)

∥∥∥∥∥∥
∑
i≥2

λtiαiv i

∥∥∥∥∥∥ ≤√d(b)λt2
1√
d(a)

,

as before.

It often happens that λ2 is relatively close to 1. In this case, we focus on the gap between λ2 and
1. That is, we write λ2 = 1− µ. The important term in Theorem 9.3.3 then becomes

λt2 = (1− µ)t ≤ e−tµ.

Thus, we see that convergence starts to happen after 1/µ steps.

9.4 The obstructions to rapid mixing

The main reason a random walk would not converge rapidly is if it started inside a set of vertices
that has few edges leaving it. This naturally corresponds to a community or a cluster in the graph.
We will measure the quality of a cluster of vertices S by its conductance, which we now define.

We first define the boundary of S, written ∂(S), by

∂(S) def= {(u, v) ∈ E : u ∈ S, v 6∈ S} .

We will want to divide this by a measure of S. The natural measure on S is given by π, but we
use d for convenience:

d(S) def=
∑
a∈S

d(a).

For small sets S, we define the conductance of S, written φ(S) to be

|∂(S)|
d(S)

,

where |∂(S)| is the number of edges in ∂(S).
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For larger sets, we consider the smaller of d(S) and d(V − S). This gives us the definition1

φ(S) def=
|∂(S)|

min (d(S),d(V − S))
.

If φ(S) is small, than a random walk that starts behind S will take a long time to move its
probability mass outside S. In particular, we can show this for the distribution given by restricting
π to S. We denote this distribution πS , where

πS(a) =

{
d(a)/d(S) if a ∈ S
0 otherwise.

It is easy to show that if p0 = πS then after one step at most a φ(S)/2 fraction of the probability
mass will escape S. The half comes from the laziness of the random walk. In fact, one can prove
the following.

Theorem 9.4.1. If p0 = πS, then after t steps at most a tφ(S)/2 fraction of the probability mass
will escape S.

Let φG = minS⊂V φ(S) measure the least conductance of a set of vertices. This theorem tells us
that there are initial distributions for which the random walk will not begin to converge until at
least after 1/2φG steps.

In fact, there is a tight relation between φG and λ2, given by Cheeger’s inequality.

Theorem 9.4.2. [Cheeger’s inequality for lazy random walks]

φG ≥ µ ≥ φ2
G/4.

Moreover, if v2 is a right-eigenvector of W corresponding to λ2, then there is a number x for which
the set

Sx = {a ∈ V : v2(a)/d(a) ≥ x}

satisfies
φ(Sx)2/4 ≤ µ.

The argument from the beginning of this section can be used to show the left-hand side of Cheeger’s
inequality. The interesting part is the right-hand side. The reason that the spectral gap can differ
quadratically from the minimum conductance is that one can embedd many sets of low conductance
inside each other. This results in even slower mixing.

The last part of Cheeger’s inequality is incredibly useful. It gives us a way to find sets of low
conductance from eigenvectors. Next lecture we will see how to do this more directly from random
walks.

1Some authors prefer to divide by the product d(S)d(V − S).


