
Graphs and Networks Lecture 10

Holistic Convergence of Random Walks

Daniel A. Spielman October 5, 2010

10.1 Overview

There are two things that I want to do in this lecture. The first is the holistic proof of the
convergence of random walks. This will use the plot of the cumulative distribution we developed
in Lecture 8. This proof was developed by Lovàsz and Simonovits [LS90]. The name “holistic” is
my fault.

I give this non-spectral proof for three reasons. First, it’s just cool. Second, its very different
from the spectral proof, and so is likely to extend to different situations. Third, it has algorithmic
applications that the spectral proof does not.

10.2 The Holistic Approach to Convergence

Recall from Lecture 8 that we can view a random walk as actually living on the sockets in a graph
instead of on the vertices. For this lecture, we will exploit this view by transforming every edge into
two directed edges (going in opposite directions). We now view the walk as living on the edges. As
soon as it enters a vertex, it choose one of the edges leaving that vertex at random.

But, in this lecture we want to consider lazy random walks. These stay put with probability one-
half. We model this by putting self-loops at every vertex. If a vertex has d out-going edges, then
it should get d self-loops as well. These loops are directed edges from the node to itself. If our
original graph had m edges, then this directed graph has 4m edges: the edges first double to make
the directed edges, and they double again to make the self-loops. Every vertex in the original
that had degree d now has 2d in-coming and out-going edges, d of which are the same as they are
self-loops. Recall that the stable distribution occupies each vertex with probability proportional to
its degree. So, it becomes uniform on the directed edges.

Let pt be the probability distribution of the lazy random walk after t steps. We will let q t denote the
induced distribution on the directed edges. That is, for a directed edge (u, v), q t(u, v) = pt(u)/d(u).
We now consider the cumulative distribution function of q t, which we call Ct. We defined Ct(k)
to be the sum of the largest k values of q t.

Let’s see an example using an insanely simple graph: the path with 3 vertices and two edges. Note
that this results in 8 directed edges. We run the walk for a few steps, plot the function C, and list
the values on the edges.
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>> A = diag([1 1],1);
>> A = A + A’

A =

0 1 0
1 0 1
0 1 0

>> deg = sum(A);
>> Di = diag(1./deg);
>> Wl = (1/2)*(eye(3) + A*Di)

Wl =

0.5000 0.2500 0
0.5000 0.5000 0.5000

0 0.2500 0.5000

>> [ai,aj] = find(A);
>> sock = sparse([1:4],ai,1./deg(ai));
>> sock = [sock;sock]/2;
>> p0 = [1;0;0];
>> sock*p0

ans =

0
0.5000

0
0
0

0.5000
0
0

>> C = cumsum(sort(sock*p0,’descend’));
>> plot([0:8],[0;C])
>> hold on;
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>> p1 = Wl*p0

p1 =

0.5000
0.5000

0

>> C = cumsum(sort(sock*p1,’descend’))

C =

0.2500
0.5000
0.6250
0.7500
0.8750
1.0000
1.0000
1.0000

>> plot([0:8],[0;C])
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>> p2 = Wl*p1

p2 =

0.3750
0.5000
0.1250

>> C = cumsum(sort(sock*p2,’descend’))

C =

0.1875
0.3750
0.5000
0.6250
0.7500
0.8750
0.9375
1.0000

>> plot([0:8],[0;C])
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A few things should become obvious from examining these plots. First, I am drawing the plot as a
piecewise linear function between the integer points. But, it is piecewise linear over a longer range.
It is always flat accross the odd integers, because every probability value on a directed edge occurs
at least twice. In fact, for a node of (original) degree d, each of its 2d outgoing directed edges
will carry the same value (note that there are d self-loops and d edges leaving). Imagine that the
vertices have been numbered so that

pt(1)/d(1) ≥ pt(2)/d(2) ≥ · · · ≥ pt(n)/d(n).

We will then have

Ct(d(1)) = pt(1),
Ct(d(1) + d(2)) = pt(1) + pt(2) and

Ct(d(1) + d(2) + · · ·+ d(k)) = pt(1) + pt(2) + · · ·+ pt(k).

The function Ct will be piecewise linear between these points. We call these points the extreme
points as they are the only points at which the function can be non-linear. Let’s give them names.
Set

xt
k = d(1) + d(2) + · · ·+ d(k).
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Note that to make this precise we need to re-number the nodes for each t. That is, xt
k is the sum

of the degrees of the k vertices for which the value of pt(v)/d(v) is largest.

Here are a few other useful properties of the curve Ct.

Lemma 10.2.1. Extend Ct(x) to all real x ∈ [0, 4m] by making it piecewise linear between integral
points.

a. The funcation Ct(x) is concave.

b. For every x ∈ [0, 4m], every s such that x± s ⊂ [0, 4m] and every r < s,

1
2
(
Ct(x+ s) + Ct(x− s)

)
≤ 1

2
(
Ct(x+ r) + Ct(x− r)

)
.

c. For every set of directed edges F that does not contain any self-loops,

q t(F ) ≤ 1
2
Ct(2 |F |).

Proof. Parts a and b will be on problem set 2, so I won’t prove them. But, I will give the geometric
explanation of the expression in part b. The line segment between the points(

x− s, Ct(x− s)
)

and
(
x+ s, Ct(x+ s)

)
.

Is a chord lying under the curve Ct. It contains exactly the points(
x− s+ 2sα, (1− α)Ct(x− s) + αCt(x+ s)

)
,

for α between 0 and 1. Setting α = 1/2 gives the point with ordinate x.

Part c is almost obvious. From the definition of Ct, it is clear that

q t(F ) ≤ Ct(|F |).

To prove part c, observe that for every edge in F there is a self loop will the same probability under
q t.

We will eventually prove convergence by proving that for each critical point xt
k, Ct(xt

k) lies below
a chord accross the curve Ct−1, and that the width of this chord increases with the conductance of
the graph. But, we first just show that the curve at time t lies beneath the curve at time t− 1.

Lemma 10.2.2. For all t and all integers 0 ≤ k ≤ n,

Ct(xt
k) ≤ Ct−1(xt

k)

Proof. Observe that Ct(xt
k) is the sum of the probabilities at time t on the edges leaving some set

of k vertices. So, it is also the sum of the probabilities that the walk was at those vertices at time
t, and thus the sum of the probabilities at time t − 1 on the edges pointing in to those vertices.
There are exactly xt

k such edges. As Ct−1(xt
k) is the sum of the largest probabilities on that many

edges at time t− 1, this sum on the edges entering those k vertices is at most this large.
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As Ct−1 is concave, Ct is piecewise linear and Ct lies below Ct−1 at all its exteme points, we may
conclude that Ct lies beneath Ct−1.

We now prove a stronger inequality.

Theorem 10.2.3. Let G be a graph with conductance at least φ. Then, for every initial probability
distribution p0, every t ≥ 0 and every extreme point xt

k,

a. if xt
k ≤ 2m then

Ct(xt
k) ≤ 1

2
(
Ct−1

(
xt

k − φxt
k

)
+ Ct−1

(
xt

k + φxt
k

))
,

b. if xt
k ≥ 2m then

Ct(xt
k) ≤ 1

2
(
Ct−1

(
xt

k − φ(4m− xt
k)
)

+ Ct−1
(
xt

k + φ(4m− xt
k)
))
.

This theorem says that each extreme point on the curve Ct lies beneath a chord drawn accross
the curve Ct−1. The width of the chord depends on how close xt

k is to either endpoint. On the
right-hand side the length of the chord is proportional to xt

k. When xt
k is past the half-way point,

the length of the chord is proportional to the distance from xt
k to the right side: 4m− xt

k.

Proof. As in the proof of Lemma 10.2.2, we first observe that Ct(xt
k) is the sum of pt over some set

of k vertices. Let’s call this set S. We now partition the directed edges attached to S. Let Sself be
all the self-loops attached to S. Of the edges that are not self-loops, we let Sout denote the set of
directed edges leaving vertices in S and we let Sin denote the set of directed edges entering vertices
in S. Note that Sin and Sout can overlap. Their intersection consists of exactly those edges that
go from one vertex of S to another.

We have
pt(S) = q t−1(Sself ) + q t−1(Sin).

As each edge in Sout may be paired with an edgein Sself that carries the same probability,

q t−1(Sself ) = q t−1(Sout),

so

pt(S) = q t−1(Sout) + q t−1(Sin)

= q t−1(Sout ∪ Sin) + q t−1(Sout ∩ Sin).

Now, the number of edges in Sout∩Sin is exactly equal to the number of edges attached to vertices
in S minus the number that leave. So,∣∣Sout ∩ Sin

∣∣ = d(S)− |∂(S)| .

Similarly, ∣∣Sout ∪ Sin
∣∣ = d(S) + |∂(S)| .
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So, by part c of Lemma 10.2.1,

q t−1(Sout ∪ Sin) + q t−1(Sout ∩ Sin) ≤ 1
2
(
Ct−1(d(S) + |∂(S)|) + Ct−1(d(S)− |∂(S)|)

)
.

For the rest of the proof, let’s assume that d(S) = xt
k ≤ 2m. The other case is similar. In this case,

|∂(S)| ≥ φd(S),

so part b of Lemma 10.2.1 implies

1
2
(
Ct−1(d(S) + |∂(S)|) + Ct−1(d(S)− |∂(S)|)

)
≤ 1

2
(
Ct−1(d(S) + φd(S)) + Ct−1(d(S)− φd(S))

)
=

1
2
(
Ct−1(xt

k + φxt
k) + Ct−1(xt

k − φxt
k)
)
.

Question We have only proved this for the extreme points. Does it hold for all x?

Theorem 10.2.3 tells us that when the graph has high conductance, the extreme points of the curve
Ct must lie well beneath the curve Ct−1. It remains to use this fact to prove a concrete bound
on how quickly Ct must converge to a straight line. We do this by establishing that each Ct lies
beneath some conrete curve that we can understand well. That is, we will show that C0 lies beneath
some initial curve. We then show that Ct lies beneath the curve that we get by placing chords
accross this initial curve t times, and we analyze how this curve behaves when we do that. We will
call these curves U t. We define

U t(x) = x/4m+ min
(√
x,
√

4m− x
)(

1− 1
8
φ2

)t

.

As t grows, these curves quickly approach the straight line.

We will prove two lemmas about these curves.

Lemma 10.2.4. For every x ∈ (0, 2m],

U t(x) ≤ 1
2
(
U t−1(x− φx) + U t−1(x+ φx)

)
,

and for every x ∈ [2m, 4m),

1
2
(
U t−1(x− φ(4m− x)) + U t−1(x+ φ(4m− x))

)
. ≤ U t(x).

Proof. This proof follows by considering the Taylor series for
√

1 + x:

√
1 + x = 1 +

1
2
x− 1

8
x2 + · · · ,

from which we learn √
1 + x ≤ 1 +

1
2
x− 1

8
x2.
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We apply this to show that

√
k − φk+

√
k + φk =

√
k
(√

1− φ+
√

1 + φ
)
≤
√
k

(
1− φ

2
− φ2

8
+ 1 +

φ

2
− φ2

8

)
=
√
k

(
2− 2φ2

8

)
.

Lemma 10.2.5. For every t ≥ 0 and every x ∈ [0, 4m],

Ct(x) ≤ U t(x).

Proof. We prove this by induction on t. The base case of t = 0 is simple, so we skip it. To handle
the induction, assume that for every x

Ct−1(x) ≤ U t−1(x).

For every extreme point xt
k ≤ 2m, we may apply Theorem 10.2.3 and Lemma 10.2.4 to show

Ct(xt
k) ≤ 1

2
(
Ct−1(xt

k − φxt
k) + Ct−1(xt

k + φxt
k)
)

≤ 1
2
(
U t−1(xt

k − φxt
k) + U t−1(xt

k + φxt
k)
)

≤ U t(xt
k).

Here’s the implication of this lemma for convergence of the random walk.

Theorem 10.2.6. For every initial probability distribution and every set of vertices S,

pt(S)− π(S) ≤
√
d(S)

(
1− 1

8
φ2

)t

≤
√
d(S) exp

(
−1

8
tφ2

)
.

10.3 Finding Sets of Small Conductance

I would now like to observe that this theorem gives us another approach to finding sets of small
conductance. Last lecture, we saw Cheeger’s inequality which said that we can find such sets by
examining eigenvectors. We now know that we can find them by studying random walks.

If you look at this proof, you will see that we actually employed a weaker quantity than the
conductance of the graph. We only needed a lower bound on the conductance of the sets S.
That appeared in the proof. If each of these sets had high conductance, then we obtained fast
convergence.

On the other hand, we know that if we start the random walk behind a set of small conductance,
then it will converge slowly. That means that one of the sets S encoutered during the analysis must
have low conductance as well. Let’s make that more concrete. For each t and k, let St

k be the set



Lecture 10: October 5, 2010 10-9

of k vertices u maximizing the quantity pt(u)/d(u). Break ties arbitrarily. If each of these sets St
k

has high conductance then the walk converges quickly. So, if the walk converges slowly, then one
of these sets St

k has low conductance. Actually, many do.

Remark Given pt, you can find the k for which the set St
k has least conductance in time O(m).

You will probably need to do this if you take the experimental route in this problem set.

By simulating the random walk, we can identify these sets, and then check if each has low conduc-
tance. For example, let’s say that you wanted to find a set of low conductance near some particular
vertex v. You could try to do this by starting a random walk at v, and examining the sets St

k that
arise.

We can say something formal about this. First, recall from last lecture that if S is a set of
conductance φ and if p0 = πS is the initial distribution, then

pt(S) ≥ 1− tφ.

We could also express this by letting χS be the characteristic vector of the set S. We could then
say

χT
Spt ≥ 1− tφ and χT

V−Spt ≤ tφ.

What if we instead start from one vertex of S, chosen according to πS?

Proposition 10.3.1. Let v be a vertex chosen from S with distribution πS. Then, with probability
at least 1/2,

χT
V−SŴ

t
χv ≤ 2tφ.

Proof. This follows from Markov’s inequality, as

Ev

[
χT

V−SŴ
t
χv

]
= χT

V−SŴ
t
πS .

So, we know that if we start the walk from most vertices of S, then most of its mass stays inside
S. Let’s see what this says about the curve Ct. For concreteness, let’s consider the case when

π(S) ≤ 1/4 and t = φ/4.

We then know that with probability at least 1/2 over the choice of v,

pt(S) ≥ 1− 2tφ = 1/2.

Question Can you say anything better than this?
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Now, let θ be the lowest conductance among the sets St
k that we find during the walk. By Theo-

rem 10.2.6, we have

1/4 ≤ pt(S)− π(S)

≤
√
d(S) exp

(
−1

8
tθ2

)
≤
√
m/2 exp

(
−1

8
tθ2

)
.

Taking logs and rearranging terms, this gives

θ ≤
√

8 ln 2
√

2m/t =
√

32 ln 2
√

2m
√
φ.

So, we find a set whose conductance is a little more than the square root of the conductance of φ.

With a little more work, one can show that there is a set St
k that satisfies a similar guarantee and

lies mostly inside S. So, starting from a random vertex inside a set of small conductance, we can
find a set of small conductance lying mostly inside that set.

You are probably now asking whether we can find that set. One obstacle is that S might contain
very small sets of low conductance within itself, and we might find one of these instead. Other
obstacles come from computational hardness. It turns out to be NP-hard to find sets of minimum
conductance. It is also computationall hard to find sets of approximate minimum conductance.

But, it is still a very reasonable to improve upon this result. OK, there are even some improvements
(which I’ll eventually work into the notes). But, so far none improve on this

√
φ term. I do not yet

know a really good reason that we should not be able to find a small set of conductance at most
O(φ log n). (although some think this could be hard too, need a reference)

10.4 Thoughts after lecture

There might be a cleaner way to do all of this. Perhaps we should view a lazy random walk as
alternating between vertices and edges. From a vertex, it moves to a random attached edge. From
an edge, it moves to a random attached vertex.
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