
An Algebraic Language for Specifying�antum Networks

ANITA BUCKLEY, USI Lugano, Switzerland
PAVEL CHUPRIKOV, USI Lugano, Switzerland
RODRIGO OTONI, USI Lugano, Switzerland
ROBERT SOULÉ, Yale University, USA
ROBERT RAND, University of Chicago, USA

PATRICK EUGSTER, USI Lugano, Switzerland

Quantum networks connect quantum capable nodes in order to achieve capabilities that are impossible only

using classical information. Their fundamental unit of communication is the Bell pair, which consists of two

entangled quantum bits. Unfortunately, Bell pairs are fragile and difficult to transmit directly, necessitating

a network of repeaters, along with software and hardware that can ensure the desired results. Challenging

intrinsic features of quantum networks, such as dealing with resource competition, motivate formal reasoning

about quantum network protocols. To this end, we developed BellKAT, a novel specification language for

quantum networks based upon Kleene algebra. To cater to the specific needs of quantum networks, we

designed an algebraic structure, called BellSKA, which we use as the basis of BellKAT’s denotational semantics.

BellKAT’s constructs describe entanglement distribution rules that allow for modular specification. We give

BellKAT a sound and complete equational theory, allowing us to verify network protocols. We provide a

prototype tool to showcase the expressiveness of BellKAT and how to optimize and verify networks in practice.

CCS Concepts: • Networks→ Formal specifications; • Hardware→ Quantum technologies; • Theory of

computation → Formal languages and automata theory.

Additional Key Words and Phrases: Kleene algebra, quantum networks, entanglement

ACM Reference Format:

Anita Buckley, Pavel Chuprikov, Rodrigo Otoni, Robert Soulé, Robert Rand, and Patrick Eugster. 2024. An

Algebraic Language for Specifying Quantum Networks. Proc. ACM Program. Lang. 8, PLDI, Article 200

(June 2024), 23 pages. https://doi.org/10.1145/3656430

1 INTRODUCTION

Quantum networks are distributed systems providing communication services to distributed quan-

tum applications. They bring numerous advantages over what is possible in a classical setting,

improving the capabilities of existing applications and allowing for fundamentally new ones to

arise. Most notable benefits are related to enhanced communication capabilities leading to increased

security, with examples including unconditionally secure client-server communication, blind cloud

computing, and secure multi-party computation [Gyongyosi and Imre 2022; Pirandola et al. 2020;

Wang et al. 2023]. Distribution is also essential to expand quantum computation beyond capabilities

of individual quantum-enabled computers to quantum clusters [Kozlowski and Wehner 2019].

Authors’ addresses: Anita Buckley, USI Lugano, Lugano, Switzerland, anita.buckley@usi.ch; Pavel Chuprikov, USI Lugano,

Lugano, Switzerland, pavel.chuprikov@usi.ch; Rodrigo Otoni, USI Lugano, Lugano, Switzerland, otonir@usi.ch; Robert

Soulé, Yale University, New Haven, USA, robert.soule@yale.edu; Robert Rand, University of Chicago, Chicago, USA,

rand@uchicago.edu; Patrick Eugster, USI Lugano, Lugano, Switzerland, eugstp@usi.ch.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/6-ART200

https://doi.org/10.1145/3656430

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 200. Publication date: June 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0002-4493-2999
HTTPS://ORCID.ORG/0000-0002-6673-1143
HTTPS://ORCID.ORG/0000-0003-1097-2367
HTTPS://ORCID.ORG/0000-0002-2825-6660
HTTPS://ORCID.ORG/0000-0001-6842-5505
HTTPS://ORCID.ORG/0000-0003-3864-9078
https://doi.org/10.1145/3656430
https://orcid.org/0000-0002-4493-2999
https://orcid.org/0000-0002-6673-1143
https://orcid.org/0000-0003-1097-2367
https://orcid.org/0000-0002-2825-6660
https://orcid.org/0000-0002-2825-6660
https://orcid.org/0000-0001-6842-5505
https://orcid.org/0000-0003-3864-9078
https://doi.org/10.1145/3656430

200:2 Anita Buckley, Pavel Chuprikov, Rodrigo Otoni, Robert Soulé, Robert Rand, and Patrick Eugster

The basic unit of communication between two nodes in a quantum network is a distributed

Bell pair or EPR pair (named after Bell [1964] and Einstein, Podolsky, and Rosen [1935]) – a pair

of quantum bits (qubits), one at each node, that are entangled. Entangled qubits are correlated

in a much stronger way than can be achieved with classical information. As entanglement is

a fundamentally quantum property, quantum networks must operate within the constraints of

quantum hardware, one of which is decoherence – quick degradation of quantum state quality over

time. The issues attached to decoherence are compounded with the fact that it is not possible to

copy unknown quantum states, which together with noise and qubit loss represent major obstacles

to realizing long-distance quantum communication in the spirit of store-and-forward as in classical

networks. These factors turn end-to-end distribution of Bell pairs, the core quantum network

service, into a stateful task that requires non-trivial runtime coordination between distributed

nodes. Moreover, it includes steps like distillation or initial entanglement generation that have

intrinsically high probability of failure.

The need for distributed coordination, statefulness, and failure-prone primitive operations all

contribute to the complex behavior of quantum network protocols – distributed programs that

govern end-to-end distribution of Bell pairs among remote nodes [Illiano et al. 2022; Kozlowski

et al. 2023]. The scarcity of resources in quantum networks (e.g., memory and communication

qubits) prompts intensive resource sharing and competition among quantum network protocols

executing in parallel, further increasing protocol complexity. This makes formal reasoning about

the network’s behavior critical to enable protocol optimization, efficient compilation to hardware,

and safe co-existence of multiple protocols, in addition to the verification of correctness properties

of individual protocols (e.g., that the Bell pairs are indeed being generated between the right nodes).

Quantum networks already require tight coordination, and are thus a natural fit for logically

centralized architectures, similar to software-defined networking (SDN), which allow reasoning

about global behavior.

To enable global behavior analysis of quantum network protocols, we propose a novel spec-

ification language, called BellKAT. We take inspiration from the extensive body of work done

with regard to specification of classical networks, particularly NetKAT [Anderson et al. 2014],

but present a language with distinct features that cater to the fundamentally new way in which

communication occurs in a quantum setting. BellKAT is built on a solid mathematical foundation,

called BellSKA, which is a novel algebraic structure enabling equational reasoning about quantum

network protocols. The BellSKA structure is in turn based on Kleene algebra (KA) [Kozen 1994],

specifically synchronous Kleene algebra (SKA) [Prisacariu 2010], and is designed to tackle round-

based behavior, which is inherent to quantum networks as currently envisioned by the Quantum

Internet Research Group (QIRG)1 of the Internet Research Task Force (IRTF). With BellKAT, it is

possible to specify and check properties such as reachability and traffic isolation, as well as manage

network resources by predicting occurrences and effects of race conditions. BellKAT can also

form the foundation for a unified high-level interface between control and data plane in quantum

networks, similar to what OpenFlow [McKeown et al. 2008], and later P4 [Bosshart et al. 2014] and

P4-Runtime [P4 API Working Group 2021] became for classical networks.

In addition to formally defining BellKAT, we present soundness and completeness results for its

axiomswith respect to its denotational semantics. Concretely, we prove soundness and completeness

for both a single round, with respect to end-to-end behavior, and for multiple rounds, with respect

to execution traces. We design BellKAT to favor expressiveness in order to faithfully represent

quantum network behavior. Lastly, we implemented a prototype tool that enables the practical

specification of protocols in BellKAT and allows users to verify the effects of protocol executions.

1See https://irtf.org/qirg.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 200. Publication date: June 2024.

https://irtf.org/qirg

An Algebraic Language for Specifying�antum Networks 200:3

To summarize, the contributions of this paper are the following:

(1) We propose a novel language to specify quantum networks, BellKAT, and the algebraic

structure that underpins it, BellSKA.

(2) We prove multi- and single-round soundness and completeness of BellKAT’s axioms w.r.t.

their corresponding semantics, with these results forming the basis for equational reasoning.

(3) We show that the equality of isolated protocol executions is decidable.

(4) We present a prototype tool that showcases how automated reasoning of quantum network

specifications written in BellKAT can be carried out.

The remainder of the paper is structured as follows: In Section 2, we introduce the necessary

background and provide a literature review of quantum networks and of approaches for specification

and verification of networks. In Section 3, we present an overview of our formalization. In Section 4,

we formally describe all aspects of BellKAT and BellSKA and prove their properties. In Section 5,

we discuss the relevant quantum network properties and how they can be verified. Finally, in

Section 6, we present our closing remarks and future work.

2 BACKGROUND AND RELATED WORK

Repeater with classical
and quantum data plane

Quantum capable
end node

Quantum channel

Classical channel

*
Quantum source

*

*

Fig. 1. Illustration of a quantum
network with five nodes.

In this section, we first introduce the basic concepts surrounding

quantum networks, together with their advantages and limita-

tions. Then, we describe the concrete network model proposed

by the IRTF’s QIRG. Finally, we discuss existing approaches for

network specification and verification.

Quantum Networks. Quantum networks are governed by the

laws of quantum mechanics, which impose constraints on their

design while enabling fundamentally new capabilities that are

impossible when only using classical information. The no-cloning

theorem prevents copying unknown quantum states without ir-

reversibly altering them [Nielsen and Chuang 2011]. This means

that it is impossible to forward quantum information following the

receive-copy-retransmit paradigm of classical network switches.

On the positive side, the no-cloning theorem makes quantum

communication inherently secure, allowing for novel applica-

tions that are resistant to eavesdropping and man-in-the-middle

attacks [Pirandola et al. 2020].

Our work focuses on the core service provided by quantum

networks, namely generation and distribution of entangled quan-

tum states. Bell pairs, also called Bell states, form the basis of

communication, since all distributed quantum applications (tele-

portation being most notable) can be built on top of (distributed)

Bell pairs [Briegel et al. 1998; Kozlowski et al. 2023]. Bell pairs are

maximally entangled states, having the strongest possible quan-

tum correlations among two-qubits, which makes them easier to

create, distribute, and apply error handling to. For instance, with

the entanglement-based quantum key distribution (QKD) pro-

tocol E91 [Ekert 1991], which has inherent source-independent

security, it is possible to avoid the trusted relays that pose secu-

rity risks in long-distance implementations of the original QKD

protocol BB84 [Bennett and Brassard 2014].

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 200. Publication date: June 2024.

200:4 Anita Buckley, Pavel Chuprikov, Rodrigo Otoni, Robert Soulé, Robert Rand, and Patrick Eugster

In the following, we provide a high-level overview of key components of a quantum network [Ko-

zlowski and Wehner 2019], which are illustrated in Figure 1. Quantum applications are run on

quantum capable end nodes. They must be capable of receiving and processing entangled pairs of

qubits. Most architectures rely on hardware that uses a dedicated subset of qubits, called communi-

cation qubits, to generate distributed entanglement; once a Bell pair is generated, the constituent

qubits can be transferred into memory. A Bell pair is first generated locally by a quantum source,

and then one or both of the entangled qubits are transmitted over quantum channels. However,

the probability that a photon representing a qubit reaches the target node by direct transmission

decreases exponentially with the distance. Hence, entanglement distribution over long distances is

implemented using quantum repeaters, making them the core active building blocks of quantum

networks [Briegel et al. 1998; Towsley 2021]. A quantum repeater acts as an intermediary node

between two other nodes, consuming the Bell pairs it shares with each of the other two nodes

in order to create a new Bell pair connecting them. To illustrate, the top two end nodes in the

network shown in Figure 1 can be entangled via the repeater to which they are connected. This

physical process is known as entanglement swapping, and it can be extended with multiple quantum

repeaters acting as intermediate nodes. Decoherence (quantum state degradation) is addressed

by entanglement distillation (also called purification), the process of generating a single Bell state

from two or more imperfect entangled states. When distillation succeeds, the quality of the state

is improved. Distillation may, however, probabilistically fail, thus it substantially increases the

resource demands [Pompili et al. 2021]. In order to distinguish between successful attempts and

failures, heralded schemes are deployed that announce when attempts succeed [Wehner et al. 2018].

The final crucial components are classical channels, as entanglement generation schemes depend

on tight synchronization and timely signaling among remote network entities.

Network Model. This paragraph describes our network model for end-to-end Bell pair creation,

which follows the principles of quantum Internet outlined by IRTF’s QIRG [Kozlowski et al. 2023].

A quantum network has a classical control plane, as well as two data planes – one classical and

one quantum. The control plane is responsible for discovering the network topology, managing

resources, and coordinating the actions of the nodes. In addition, it also manages routing and

signaling. The classical data plane handles the forwarding of classical packets, while the quantum

data plane oversees the generation and distribution of Bell pairs. Several authors propose to embed

quantum networks within classical networks and use the existing infrastructure to send and receive

control messages [Illiano et al. 2022; Kozlowski and Wehner 2019; Rabbie et al. 2022]. This may be

achieved by adding a quantum data plane to the classical data plane to build repeaters, and by using

both classical and quantum physical channels to connect quantum-capable nodes. End-to-end Bell

pair distribution between distant nodes is a stateful, distributed task. The task is initiated by a set of

requests for Bell pair creation, each indicating the two endpoints and quality of service parameters.

For each request, a quantum virtual circuit [Illiano et al. 2022] between the corresponding end-

points needs to be created, which entails identifying available paths between those end-points.

An entanglement routing scheme then (with the use of a traffic engineering function, taking into

account the capacity of the routers and channels, and the resources already consumed by other

virtual circuits) computes the optimal path, i.e., the best sequence of repeaters and links that

guarantees the requested quality of service. Finally, the entanglement generating rules are installed

into the data plane of each quantum repeater on the paths.

This work focuses on the specification of these generating rules, which is the way entanglement

generating protocols are implemented, enabling formal reasoning. Such specification requires

sensible hardware abstractions for quantum networks, similar to those found in classical net-

works [Anderson et al. 2014]. The following abstract building blocks, which we call actions, are the

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 200. Publication date: June 2024.

An Algebraic Language for Specifying�antum Networks 200:5

� �

�

�

�

1 1

11

22

(a)

� �

�

�

�

1 1

11

22

2 2

33

(b)

Physical path

Transmitted link Swapped link

Node

Fig. 2. Illustration of two entanglement generating protocols
on the 5-node network from Figure 1, establishing Bell pairs
between nodes � and � and nodes � and �. Physical paths are
the sequences of repeaters and channels connecting nodes �
and � with �. The numbers on virtual links indicate the order
in which transmi�ed links and swapped links are established.

cornerstone of the specification of the

generating rules: create a Bell pair lo-
cally at a source, transmit qubits of

a Bell pair over a quantum channel,

swap Bell pairs via repeaters, and distill
Bell pairs. We describe these actions us-

ing the following example, to specify

two different entanglement generating

protocols for the network in Figure 1.

The two protocols in Figure 2 gener-

ate Bell pairs between nodes � and �

and nodes � and �, which we denote as

�∼� and �∼�, but with different capa-

bilities at the source� . At node �, both

protocols act in the same manner, cre-

ating two Bell pairs and sending half

of each to � . Protocol (a) has node �

distribute a Bell pair between � and �

and another between � and � , to ob-

tain �∼� and �∼� , then performs two

swaps at � with �∼� , resulting in �∼�
and �∼�. In contrast, protocol (b) trans-

mits half of each Bell pair created at �

to a neighbor and keeps the other half

in �’s memory, leading to �∼�, �∼�, and two copies of �∼� , then performs two swaps at � , to

obtain�∼� and �∼� , and finally two swaps at � , resulting in�∼� and �∼�. In Figure 2 the physical

paths connecting nodes � and � with node � are drawn in black, and the red virtual links depict

the order in which Bell pairs are being generated.

Adding parallelism among subprotocols can immediately lead to contention between them, as

illustrated with the next example. Assume that, due to network constraints, the first round of

protocol (a) only succeeds in transmitting Bell pairs �∼� , �∼� , and one copy of �∼� (instead of

two). The missing �∼� Bell pair will lead to resource competition. Then, when the second round

performs two swaps at � in parallel (one that requires �∼� , �∼� to produce �∼� and the other

that requires �∼� , �∼� to produce �∼�), only one of the two swaps will succeed (i.e., either�∼� or

�∼� will be produced). On the other hand, if the second round performs the two swaps sequentially

on the same input Bell pairs�∼� , �∼� , �∼�, e.g., the swap that aims to produce �∼� is called after

the swap for �∼�, the first swap always succeeds and in this case outputs �∼�.
Given the intricacies above, we strive to answer the following questions, which naturally arise:

• Does protocol (a) always produce Bell pairs �∼� and �∼�?
• Are protocols (a) and (b) equivalent?

• Is protocol (a) an optimized version of protocol (b)?

Algebraic Specification. It is natural to ask whether we can draw analogies with existing ap-

proaches for the specification and verification of classical networks. In order to benefit from strong

mathematical foundations, we opt for an algebraic approach. In classical networks, this line of

research originated with the seminal work of Anderson et al. [2014] on NetKAT, a high-level

programming language and logic for specifying and reasoning about packet-switched networks.

NetKAT is an instance of Kleene algebra with tests (KAT) whose equational theory is sound

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 200. Publication date: June 2024.

200:6 Anita Buckley, Pavel Chuprikov, Rodrigo Otoni, Robert Soulé, Robert Rand, and Patrick Eugster

and complete with respect to its denotational semantics. The foundation of KAT is Kleene alge-

bra (KA) [Kozen 1994], which has been used for decades as the algebraic structure of finite automata

and regular events. KAT is an extension of KA with Boolean actions (called tests) that increases its

expressiveness, to the extent that KAT subsumes propositional Hoare logic [Kozen 1997; Kozen and

Smith 1997]. Quantum actions, the building blocks of our language, are fundamentally different

from NetKAT actions, whose assignments and tests are abstractions for packet field modifications

and filters, respectively. In addition, quantum packets that represent Bell pairs (network resources)

in quantum networks have no counterpart in classical networks, which instead contain classical

packets (information carriers). Furthermore, in quantum networks concurrent behaviors cannot

be ignored – contrary to the forwarding of packets in classical networks – since, to produce a

single end-to-end Bell pair, we need to create and distribute many entangled pairs among the

intermediate nodes. On top of that, multiple nodes simultaneously compete for the same Bell pairs.

These features, combined with the fact that our actions take several Bell pairs as inputs while

NetKAT programs act instead on a single input packet at a time, prevent us from drawing direct

analogies with the stateless network model of NetKAT.

Concurrent NetKAT (CNetKAT) [Wagemaker et al. 2022] is an algebraic language for modeling

and analyzing stateful, concurrent classical networks. CNetKAT combines the language models of

NetKAT and partially-observable concurrent Kleene algebra (POCKA) [Wagemaker et al. 2020],

in which tests are replaced with observations that are more suitable for addressing concurrency

[Kappé et al. 2020]. Parallel CNetKAT programs can execute at different speeds, leading to arbi-

trary interleavings. Due to resource and time constraints in quantum networks, we need tight

synchronization that limits interleaving, and the protocol can be seen as progressing in rounds.

Synchronous Kleene algebra (SKA) [Prisacariu 2010] allows for an alternative way of handling

concurrency by layering synchronous actions into rounds, providing a formalism more suitable to

our setting. However, pure SKA is not capable of faithfully expressing the complex orderings of

actions in entanglement-generating protocols.

By contrast, Peng et al. [2022] have successfully applied KA to reason about quantum programs,

although not in a distributed setting. Challenges related to quantum applications in a distributed

setting have been discussed by Buckley et al. [2023], but no solutions have been proposed.

In summary, compositionality of algebraic structures fits well with the need for scalable and

robust quantum network architectures. However, there are many features that existing classical

KA structures cannot cater to, as discussed above. The nature of Bell pairs, being distributed across

two different network nodes and as constituting undirected network resources, further contrasts

with classical packet forwarding.

3 BELLKAT OVERVIEW

This section presents the principles of our network specification approach. We use the quantum

network illustrated in Figure 1 and detailed in Figure 2 as a running example, which motivates

and introduces the key elements of our language. Abstractly, a quantum network protocol can be

thought of as an automaton that coordinates the distribution of entangled qubits across different

nodes, along both physical and virtual quantum links. This distribution is done through generating

rules, which are faithful abstractions of hardware behavior.

Network behavior. We divide the entanglement generating protocols in the spirit of Van Meter

and Touch [2013] into rounds, each representing a time window. Rounds contain actions, which we

refer to as basic actions, that are executed synchronously, i.e., they are performed in the same time

window. Progression from one round to the next is represented by sequential composition, while

iteration across rounds is encoded using the Kleene star. Basic actions of a single round can only

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 200. Publication date: June 2024.

An Algebraic Language for Specifying�antum Networks 200:7

act on the set of Bell pairs present in the network at the start of the corresponding time window,

with race conditions emerging if resources are insufficient, i.e., not enough Bell pairs are available.

In order for an individual basic action to be successfully executed it must first acquire a specific set

of Bell pairs, said to be required by that action, from those available in the corresponding round,

and after that use these Bell pairs to generate new entangled pairs. If the required set of Bell pairs

cannot be acquired due to insufficient number of Bell pairs, the action is not executed and no Bell

pairs are consumed, leaving them available to other actions in the same round. If the action acquires

the required Bell pairs but fails to generate a new pair, the acquired Bell pairs are destroyed. A

heralding classical signal is sent from the quantum data plane to acknowledge the success or failure

of each action. The next round then proceeds in the same manner, acting on the set of Bell pairs

either produced or not consumed by the prior round.

Bell pairs. The fundamental unit in quantum networks are Bell pairs, like packets are in classical

networks. Yet, unlike packets, qubits carry no headers, therefore control information needs to be

sent via separate classical channels. The nodes then correlate this information with the qubits

stored in their memory. Another difference is that a Bell pair consists of two qubits distributed

across two nodes, and these nodes must coordinate to ensure that they are operating on qubits that

belong to the same Bell pair. The identity of nodes entangled via a Bell pair should be properly

shared across the network, hence we assume that nodes have unique efficiently representable

identifiers. We write �∼� or �∼� to denote a Bell pair between nodes � and � . For a given qubit

in a Bell pair, the node of the other qubit can dynamically change with each action at runtime,

making actions stateful, as opposed to the classical mostly stateless packet switching.

Actions. A basic action has form A ⊲ > , whose effect entails consuming a multiset of required

Bell pairs A and producing a multiset of Bell pairs > . For example, a swap of �∼� and �∼� at node

� , denoted sw⟨�∼�@�⟩, is represented as {{�∼�, �∼�}} ⊲ {{�∼�}}, and a local creation at node

�, denoted cr⟨�⟩, can be represented as ∅ ⊲ {{�∼�}}. Similarly, tr⟨�→�∼�⟩ represents physically
forwarding one qubit of the Bell pair�∼� to node� and the other qubit to node� , and tr⟨�→�∼�⟩
represents physically forwarding one qubit of the Bell pair �∼� to node � and keeping the other

qubit in�’s memory; the former can be written as {{�∼�}}⊲{{�∼�}}, and the latter as {{�∼�}}⊲{{�∼�}}.
Modeling failures of actions is necessary to capture decoherence and loss, as well as inherently

probabilistic operations like distillation, where di⟨�∼�⟩ inputs two copies of �∼� and returns

{{�∼�}} or ∅. We model such failures as A ⊲ > + A ⊲ ∅, where + represents nondeterministic choice.

We remark that our actions also abstract away the control operations over the classical network.

For example, Bell state measurement performed in the repeater during entanglement swapping

requires two bits of classical control signals to be exchanged.

Policies. BellKAT policies are specifications of entanglement generating protocols. Intuitively,

policies ? and @ can be thought of as functions that take a multiset of Bell pairs as input and

return two multisets of Bell pairs: those that were produced and those that were not consumed.

Within a single round, the produced Bell pairs and the Bell pairs that were not consumed are kept

separate, since the fresh Bell pairs cannot be consumed in the round in which they were generated

due to timing constraints. When the round is finished, all Bell pairs in the network are together

made available to the next round. Concretely, single round policies are functions fromM(BP) to
P(M(BP) ×M(BP)), and multi-round policies are functions from M(BP) to P(M(BP)); where
elements ofM(BP) are multisets of Bell pairs, and the ranges are powersets due to nondeterminism.

In order to build more sophisticated policies, we introduce policy composition operators. When

acting on the input multiset, the union operator (? + @) yields the union of the sets produced

by ? and @. The sequential composition operator (? ; @) first applies ? to the input multiset and

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 200. Publication date: June 2024.

200:8 Anita Buckley, Pavel Chuprikov, Rodrigo Otoni, Robert Soulé, Robert Rand, and Patrick Eugster

then applies @ to each multiset produced by ? . The Kleene star operator (?★) expresses iteration.
Furthermore, operators (? · @) and (? ∥ @) model ordered and parallel composition of policies,

respectively, that occur synchronously within a single round. Here, operator · imposes that ? has

preference over @ in accessing the available Bell pairs, while ∥ allows for resource competition.

Policies of our running example. The entanglement generating protocol in Figure 2a can be

expressed with the following policy:
(

cr⟨�⟩ ∥ cr⟨�⟩ ∥ cr⟨�⟩ ∥ cr⟨�⟩
)

;
(

tr⟨�→�∼�⟩ ∥ tr⟨�→�∼�⟩ ∥ tr⟨�→�∼�⟩ ∥ tr⟨�→�∼�⟩
)

;
(

sw⟨�∼�@�⟩ ∥ sw⟨�∼�@�⟩
)

(P1)

Similarly, the generating protocol in Figure 2b can be expressed with the following policy:
(

cr⟨�⟩ ∥ cr⟨�⟩ ∥ cr⟨�⟩ ∥ cr⟨�⟩
)

;
(

tr⟨�→�∼�⟩ ∥ tr⟨�→�∼�⟩ ∥ tr⟨�→�∼�⟩ ∥ tr⟨�→�∼�⟩ ∥ cr⟨�⟩ ∥ cr⟨�⟩
)

;
(

sw⟨�∼�@�⟩ ∥ sw⟨�∼�@�⟩ ∥ tr⟨�→�∼�⟩ ∥ tr⟨�→�∼�⟩
)

;
(

sw⟨�∼�@�⟩ ∥ sw⟨�∼�@�⟩
)

(P2)

Histories. Quantum histories record the behaviors that the generating rules produce. Concretely,

they capture the order of operations in a given execution of the protocol. To illustrate, the execution

histories of protocols P1 and P2 can be seen in Figure 3 below. Unlike NetKAT histories, which

encode paths of classical packets, our histories record the basic actions that execute successfully.

Histories are not needed for protocol implementation and execution, they are, however, very useful

when carrying out verification tasks, as detailed in Section 5.

Tests. Our policies can be guarded by tests, which act as additional explicit checks over the avail-

able Bell pairs. These tests check for the absence of multiset elements, in addition to the checking for

�∼�

�∼� �∼�

�∼� �∼�

sw

tr

tr

cr

cr

�∼�

�∼� �∼�

�∼� �∼�

sw

tr

tr

cr

cr

(a)

�∼�

�∼� �∼�

�∼�

�∼� �∼�

�∼� �∼�

sw

sw

tr

tr

tr

cr

cr

cr

�∼�

�∼� �∼�

�∼�

�∼� �∼�

�∼� �∼�

sw

sw

tr

tr

tr

cr

cr

cr

(b)

Fig. 3. Sample execution histories of the two protocols in Figure 2, gener-
ating Bell pairs �∼� and �∼� in different ways. The histories shown in (a)
have three rounds and one swap each, and the histories shown in (b) have
four rounds and two swaps each. Actions are annotated in gray, but they
are not part of the execution histories.

required Bell pairs that is in-

herent to every action. This

allows us to capture condi-

tional behaviors with expres-

sions of form [C]? + [C ′]?′,
with [C]? denoting that pol-

icy ? is guarded by test C .

Iterative policies with Kleene

star. Due to the probabilistic

nature of operations, early

generations of quantum net-

works will inevitably employ

the strategy of repeated at-

tempts of distillation and cre-

ation [Van Meter et al. 2011].

This was demonstrated by

Pompili et al. [2021] realizing

the first multinode quantum

network, in which a pair of

directly connected quantum

nodes repeatedly attempts to

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 200. Publication date: June 2024.

An Algebraic Language for Specifying�antum Networks 200:9

generate an entangled pair until the heralding signal announcing success is received. Their protocol

involves repeated rounds of distillation – in our language, this iterative behavior is expressed

with Kleene star. To showcase the expressiveness of our language, we now specify the protocol of

Pompili et al. as a guarded iterative policy. We make use of the network in Figure 2 (a), which has

all the necessary components. The goal is end-to-end entanglement distribution between nodes

� and �, by swapping �∼� and �∼� at node � . In this scenario, however, before performing the

swap, we improve the quality of entangled states �∼� and �∼� with distillation. To achieve this,

we first transmit two Bell pairs from the source � to the nodes � and � , and then distill �∼� . The
distillation requires two copies of�∼� to produce one copy of the same Bell pair of a higher quality.

This is expressed by the policy ?3 :

?3 =
(

cr⟨�⟩ ∥ cr⟨�⟩
)

;
(

tr⟨�→�∼�⟩ ∥ tr⟨�→�∼�⟩
)

; di⟨�∼�⟩

Since distillation is an inherently probabilistic operation, ?3 must be repeatedly executed until the

success signal arrives. With 1 denoting the test that checks for the absence of�∼� , the while-loop of

repeated executions is expressed with Kleene star as specified in the policy ?3 ; ([1] ?3)
★. Similarly

to ?3 , an improved Bell state �∼� can be generated by guarded iterations of the policy ?′
3
:

?′3 =
(

cr⟨�⟩ ∥ cr⟨�⟩
)

;
(

tr⟨�→�∼�⟩ ∥ tr⟨�→�∼�⟩
)

; di⟨�∼�⟩

This leads to the policy ?′
3
; ([1′] ?′

3
)★, where 1′ tests for the absence of �∼� . Then the repeater

swap protocol of Pompili et al. is expressed with the policy below:
(

(

?3 ; ([1] ?3)
★
)

∥
(

?′3 ;
(

[1′] ?′3
)

★
)

)

; sw⟨�∼�@�⟩ (P3)

4 LANGUAGE

BellKAT is designed to be a simple but expressive specification language for quantum networks. Its

semantics satisfies the axioms of our BellSKA algebraic structure together with additional axioms

that capture domain-specific features of entanglement distribution in quantum networks. This

section presents the syntax, semantics, and equational theory in a formal manner. For brevity, we

omit the detailed proofs, they can be found in the long version of this paper.2

4.1 Preliminaries

A Bell pair bp is represented by an unordered pair of nodes. We assume a finite number of nodes

�1, . . . , �: . Bell pairs may have additional classical metadata, like tags denoting the action by which

they were produced, or a timestamp (which we omit here for simplicity). A quantum network must

keep track of the Bell pairs it contains. If a multiset 0 ∈ M(BP) contains =8 9 Bell pairs �8∼� 9 , we

say that the multiplicity of�8∼� 9 in 0 is =8 9 . We will be using the common terminology of multisets

(also called msets or bags) and relations between them. In particular, we write 0 ⊎ 0′ for additive

union of multisets and 0\0′ for multiset difference. When nodes perform a basic action A ⊲ > , they

only need a partial view of the Bell pairs in the network, in order to determine whether the network

contains the required multiset of Bell pairs A . This permits us to define the network state as a partial

function �8∼� 9 ↦→ =8 9 . We will use the terms multiset and (total) network state interchangeably.

Tests act as guards for policies. They are positive Boolean terms over atomic propositions, denoting

multiset absence, with an additional operation ⊎. Here, test 1 ∈ M(BP) has the semantics that

1 ⊈ 0 for a given input multiset 0. In particular, ∅ is a valid test which is false on any multiset. On

the other hand, 1 signifies the test which is true on any multiset, i.e., no test.

An atomic action [C]A ▶ > ∈ Π behaves the same as a basic action when its required Bell

pairs are available and test C succeeds, meaning that it consumes the multiset A and outputs the

2Available at https://swystems.usi.ch/files/BellKAT-PLDI24-long.pdf.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 200. Publication date: June 2024.

https://swystems.usi.ch/files/BellKAT-PLDI24-long.pdf

200:10 Anita Buckley, Pavel Chuprikov, Rodrigo Otoni, Robert Soulé, Robert Rand, and Patrick Eugster

multiset > together with the unconsumed Bell pairs. On the other hand, when this is not the

case, the action aborts, resulting in no output. Atomic actions are the core building blocks (i.e.,

cannot be decomposed) of our language and thus form the basis for algebraic reasoning. The

language users, however, will express their protocol using only basic actions and guards, as il-

lustrated in policies P1, P2, and P3. We note that basic actions are broken down into atomic

components as follows: A ⊲ > ≜ [1]A ▶ > + [A]∅ ▶ ∅. (In principle, users could use atomic actions

directly to specify quantum protocols, but we advise against it, since it may lead to mistakes like

expressing protocols that unintentionally abort or do not correspond to valid quantum opera-

tions.) Constant policy 0 acts as abort, and constant policy 1 displays no-op behavior, which is

P � (−) P(Π∗)

⟦−⟧�

M(BP) → P(M(BP))

PBPB

L − M

M(BP) → P(M(BP) ×M(BP))

(−)
⟦−⟧

Fig. 4. Overview of BellKAT key ingredients: arrows→
and d indicate soundness and completeness, → is re-
striction frommulti-round to single round policies. Single
round meaning factors (→) thorough # (−), which modi-
fies a single round policy into its normal form.→ signifies
merging the freshly produced with unused Bell pairs.

different in different contexts – within a sin-

gle round it acts as skip, whereas in multi-

rounds it represents the absence of actions,

which we refer to as no-round.

4.2 Overview

The diagram in Figure 4 overviews the key

components of BellKAT’s syntax and seman-

tics and relations among them. L− M interprets
policies in PB consisting of a single round.

Standard interpretation � (−) transforms a

policy into a set of strings of atomic actions.

The semantics ⟦−⟧ of multi-round policies P
is defined through ⟦−⟧� that converts each
string in Π

∗ to a sequential composition of

atomic actions. Formal definitions are elabo-

rated on below and detailed in Figure 5. If ?

is a single round policy, � (?) is a finite set of
strings of length one.

4.3 Syntax

The complete BellKAT syntax is given in Figure 5. Atomic actions [C]A ▶ > together with constants

0 and 1 form the constituents of policies. Users will typically write protocols as (guarded) policies

consisting of basic actions A ⊲> . We provide shorthand notations for the most common basic actions:

swap sw⟨�∼�@�⟩ ≜ {{�∼�, �∼�}} ⊲ {{�∼�}}
transmit tr⟨�→�∼�⟩ ≜ {{�∼�}} ⊲ {{�∼�}}
create cr⟨�⟩ ≜ ∅ ⊲ {{�∼�}}
wait wait⟨A ⟩ ≜ A ⊲ A

fail fail⟨A ⟩ ≜ A ⊲ ∅

With our syntax, it is possible to express basic actions that may fail to generate new Bell

pairs even if there are enough required Bell pairs in the network. We write such policies as

A ⊲> +A ⊲ ∅ ≜ A ⊲> + fail⟨A ⟩ where, if the required Bell pairs A are available, either the multiset of new

Bell pairs > is created or the action fails, in both cases consuming A . For example, for distillation,

which is inherently probabilistic, we use the following shorthand notation:

distill di⟨�∼�⟩ ≜ {{�∼�,�∼�}} ⊲ {{�∼�}} + {{�∼�,�∼�}} ⊲ ∅

Basic actions enable users to specify many other quantum operations, for instance, create a Bell pair

between neighboring nodes directly, or variants of distillation that require more that two Bell pairs.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 200. Publication date: June 2024.

An Algebraic Language for Specifying�antum Networks 200:11

Syntax
Nodes N ::= �, �,�, ...

Bell pairs BP ∋ 1? ::= N∼N
Multisets M(BP) ∋ 0, 1, A, > ::= {{1?1, ..., 1?: }}
Tests) ∋ C, C ′ ::= 1 no test

| 1 multiset absence

| C ∧ C ′ conjunction

| C ∨ C ′ disjunction

| C ⊎ 1 multiset union

Atomic actions Π ∋ c, G,~ ::= [C]A ▶ >

Policies P ∋ ?, @ ::= 0 abort

| 1 skip or no-round

| c atomic action

| A ⊲ > basic action

| [C]? guarded policy

| ? + @ nondeterministic choice

| ? · @ ordered composition

| ? ∥ @ parallel composition

| ? ; @ sequential composition

| ?★ Kleene star

Basic actions A ⊲ > ::= [1]A ▶ > + [A]∅ ▶ ∅
Guarded policy [C]? ::= [C]∅ ▶ ∅ · ?

Test semantics
⟨|C |⟩ ∈ M(BP) → { ⊤,⊥ }

⟨|1|⟩0 ≜ ⊤ ⟨|C ⊎ 1 |⟩0 ≜ (⟨|C |⟩0 \ 1 ∧ 1 ⊆ 0) ∨ ⟨|1 |⟩0
⟨|1 |⟩0 ≜ 1 ⊈ 0 ⟨|C □ C ′ |⟩0 ≜ ⟨|C |⟩0 □ ⟨|C ′ |⟩0, with □ is either ∧ or ∨

Single round semantics
L? M ∈ M(BP) → P(M(BP) ×M(BP))
L 0 M0 ≜ ∅
L 1 M0 ≜ { ∅ ⊲⊳ 0 }

L [C]A ▶ > M0 ≜

{

{ > ⊲⊳ 0\A } if A ⊆ 0 and ⟨|C |⟩0 = ⊤
∅ otherwise

L? + @ M0 ≜ L? M0 ∪ L@ M0
L? · @ M0 ≜

(

L? M · L@ M
)

0

L? ∥ @ M0 ≜
(

L? M ∥ L@ M
)

0

Multi-round semantics
⟦?⟧ ∈ M(BP) → P(M(BP))
⟦l⟧� ∈ M(BP) → P(M(BP)), where l = c1 # c2 # . . . # c:
⟦?⟧0 ≜

⋃

l∈� (?)⟦l⟧�0
⟦n⟧�0 ≜ { 0 }

⟦[C]A ▶ >⟧�0 ≜

{

{ > ⊎ 0\A } if A ⊆ 0 and ⟨|C |⟩0 = ⊤
∅ otherwise

⟦c1 # c2 # . . . # c:⟧�0 ≜ (⟦c1⟧� • ⟦c2 # . . . # c:⟧�)0

Fig. 5. Syntax and semantics. 0 ⊲⊳ 1 and 0 ⊎ 1 are a pair and a multiset union, and • stands for Kleisli
composition for P(−) monad. Semantics of · and ∥ in L− M are detailed in defs. 4.2-4.3, whereas ⟦−⟧ (including
;) is defined via standard interpretation � (cf. Sec. 4.6.2), where � (?) is a set of c strings concatenated by #.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 200. Publication date: June 2024.

200:12 Anita Buckley, Pavel Chuprikov, Rodrigo Otoni, Robert Soulé, Robert Rand, and Patrick Eugster

We follow the conventional precedence of the operations: ★
> ; > · > ∥ > + , with ★ binding

the tightest and + the weakest. For example, ?1 ∥ ?2 ;?3+?4 ·?
★

5
is parsed as (?1 ∥ (?2 ;?3))+(?4 · (?

★

5
)).

4.4 Axioms

In this section we introduce our algebraic structure BellSKA, which is the foundation of the BellKAT

language, and its related equational theory. All the axioms are listed in Figure 6.

Definition 4.1. BellSKA is an algebraic structure (P, +, ·, ∥, ; , ★, 0, 1, Π) obtained from a Kleene

algebra by adding operations ∥ and · for synchronous composition of actions. Formally, BellSKA

satisfies the KA and SKA axioms in Figure 6, where Π ⊆ P is closed under · and ∥.

BellSKA is a KA designed to tackle multi-round behavior, by modeling sequential progress

throughout rounds. BellSKA contains two SKAs, catering to two different synchronous behaviors

that arise from sequential and parallel compositions of atomic actions within single rounds.

Formally, (P, 0, 1, +, ; ,★) is a KA, meaning that P is an idempotent semiring under (+, ; , 0, 1)
together with Kleene star axioms. (We use the standard abbreviation ? ≤ @ for ? + @ = @.) In

addition, there are extra axioms for parallel and ordered compositions, such that (P, 0, 1, +, ; ,★ , ∥) is
a non-idempotent SKA, and (P, 0, 1, +, ; ,★ , ·) is an SKA that is neither commutative nor idempotent.

BellKAT is an instantiation of the BellSKA algebraic structure for our multi-round quantum

network model. A key aspect of BellSKA are the axioms Net-Prl (stating that c and c ′ can be

applied in any order) and Net-Ord (stating that the former action always acts first) combine

language symbols in such a manner that c ∥ c ′ ∈ Π and c · c ′ ∈ Π.

Tests follow the monotone axioms of Boolean algebra, with the additional axioms listed in

Figure 6. Tests are predicates over multisets of Bell pairs. In BellKAT, tests are part of atomic

actions, unlike in KAT, where Boolean algebra is a subalgebra in KA. A guarded policy [C]? is

provably equivalent to the expression that adds an additional test to the first round of ? . For

example, axioms SKA-Ord-Dist-L and Net-Ord imply:

[C]A ⊲ > ≜ [C]∅ ▶ ∅ · A ⊲ > ≡ [C]∅ ▶ ∅ · ([1]A ▶ > + [A]∅ ▶ ∅) ≡ [C]A ▶ > + [C ∧ A]∅ ▶ ∅

Single round policies are the terms constructed from basic actions, with the following grammar:

PB ∋ ? ::= 0 | 1 | [C]A ▶ > | ? + ? | ? · ? | ? ∥ ?

Single round policies are composed with single round BellKAT axioms in Figure 6. The resulting

algebraic structure (PB , +, · , ∥, 0, 1) is a trioid, i.e., (PB , +, · , 0, 1) is an idempotent semiring and

(PB , +, ∥ , 0, 1) is a commutative idempotent semiring. However, trioid axioms are not complete for

the underlying single round BellKAT model. To establish single round completeness, we need to

add axioms that relate atomic actions which have equivalent single round behaviors. Axiom Sr-Exc,

called the exchange law, relates the ordered and parallel structures within single rounds (however, it

does not hold for multi-round policies). Concurrency in BellKAT is governed by the synchrony laws

SKA-Prl-Seq and SKA-Ord-Seq that relate the sequential and synchronous algebraic structures of

multi-round policies. BellKAT’s round-by-round architecture provides simple equational reasoning,

and at the same time its semantics faithfully expresses the behaviors of quantum networks. We

compare BellKAT to other concurrent KAs in the long version of the paper.

The next section deals with the semantics of single round policies, and the following section deals

with the semantics of multi-round policies. Importantly, in Section 4.6 we prove that BellKAT’s

equational theory is sound and complete with respect to the standard interpretation, which permits

us to express multi-round policies as sets containing sequential compositions of atomic actions.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 200. Publication date: June 2024.

An Algebraic Language for Specifying�antum Networks 200:13

KA axioms

(? + @) + A ≡ ? + (@ + A) KA-Plus-Assoc

? + @ ≡ @ + ? KA-Plus-Comm

? + 0 ≡ ? KA-Plus-Zero

? + ? ≡ ? KA-Plus-Idem

(? ; @) ; A ≡ ? ; (@ ; A) KA-Seq-Assoc

? ; (@ + A) ≡ ? ; @ + ? ; A KA-Seq-Dist-L

(? + @) ; A ≡ ? ; A + @ ; A KA-Seq-Dist-R

? ; 1 ≡ ? KA-Seq-One

1 ; ? ≡ ? KA-One-Seq

0 ; ? ≡ 0 KA-Zero-Seq

? ; 0 ≡ 0 KA-Seq-Zero

1 + ? ; ?★ ≡ ?★ KA-Unroll-L

? ; A ≤ A ⇒ ?★ ; A ≤ A KA-Lfp-L

1 + ?★ ; ? ≡ ?★ KA-Unroll-R

A ; ? ≤ A ⇒ A ; ?★ ≤ A KA-Lfp-R

SKA axioms for ∥

(? ∥ @) ∥ A ≡ ? ∥ (@ ∥ A) SKA-Prl-Assoc

? ∥ (@ + A) ≡ ? ∥ @ + ? ∥ A SKA-Prl-Dist

(G ; ?) ∥ (~ ; @) ≡ (G ∥ ~) ; (? ∥ @) SKA-Prl-Seq

? ∥ @ ≡ @ ∥ ? SKA-Prl-Comm

1 ∥ ? ≡ ? SKA-One-Prl

0 ∥ ? ≡ 0 SKA-Zero-Prl

SKA axioms for ·

(? · @) · A ≡ ? · (@ · A) SKA-Ord-Assoc

? · (@ + A) ≡ ? · @ + ? · A SKA-Ord-Dist-L

(? + @) · A ≡ ? · A + @ · A SKA-Ord-Dist-R

(G ; ?) · (~ ; @) ≡ (G · ~) ; (? · @) SKA-Ord-Seq

1 · ? ≡ ? SKA-One-Ord

? · 1 ≡ ? SKA-Ord-One

0 · ? ≡ 0 SKA-Zero-Ord

? · 0 ≡ 0 SKA-Ord-Zero

Boolean axioms (in addition to monotone axioms)

1 ⊎ 1 ≡ 1 Bool-One-U

1 ∧ (1 ⊎ 1′) ≡ 1 Bool-Conj-Subset

1 ∨ 1′ ≡ 1 ∪ 1′ Bool-Disj-U

(C ∧ C ′) ⊎ 1 ≡ C ⊎ 1 ∧ C ′ ⊎ 1 Bool-Conj-U-Dist

(C ∨ C ′) ⊎ 1 ≡ C ⊎ 1 ∨ C ′ ⊎ 1 Bool-Disj-U-Dist

Network axioms

[C]A ▶ > · [C ′]A ′ ▶ > ′ ≡ [C ∧ (C ′ ⊎ A)]Â ▶ >̂ if Â = A ⊎ A ′ and >̂ = > ⊎ > ′ Net-Ord

[C]A ▶ > ∥ [C ′]A ′ ▶ > ′ ≡ [(C ⊎ A ′) ∧ (C ′ ⊎ A)]Â ▶ >̂ if Â = A ⊎ A ′ and >̂ = > ⊎ > ′ Net-Prl

Single round axioms

[1]∅ ▶ ∅ ≡ 1 Sr-One

[∅]A ▶ > ≡ 0 Sr-Zero

(? ∥ ?′) · (@ ∥ @′) ≤ (? · @) ∥ (?′ · @′) Sr-Exc

[1 ∧ C]A ▶ > ≡ [(A ∪ 1) ∧ C]A ▶ > Sr-Can

[C]A ▶ > + [C ′]A ▶ > ≡ [C ∨ C ′]A ▶ > Sr-Plus

Fig. 6. BellKAT equational axioms. Set union ∪ of multisets by definition takes the maximum cardinality of
each element, in contrast to multiset union ⊎ which is the sum of cardinalities of each element. Single round
BellKAT axioms exclude the axioms containing operators ; or ★. Multi-round BellKAT axioms exclude the
axioms starting with Sr.

4.5 Semantics of Single Round Policies

The denotational semantics L− M : P → M(BP) → P(M(BP) ×M(BP)) of single round policies

is defined in Figure 5. Semantically, a policy denotes a function that takes a multiset of Bell pairs

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 200. Publication date: June 2024.

200:14 Anita Buckley, Pavel Chuprikov, Rodrigo Otoni, Robert Soulé, Robert Rand, and Patrick Eugster

as input and returns a set of pairs of multisets as output. Each returned pair of multisets (written

1 ⊲⊳ 1′) has the freshly created Bell pairs as its first element and the Bell pairs that were not acted

on as its second element. The output set can be empty, which models aborting behavior, or it can

contain a number of multiset pairs, each one modeling a possible way in which entangled states

are distributed between end nodes. In particular, a basic action (which constitutes the user-facing

syntax of single round policies) is interpreted as a function that acts by the rule:

L A ⊲ > M : 0 ↦→

{

{ > ⊲⊳ 0\A } if A ⊆ 0

{ ∅ ⊲⊳ 0 } otherwise

It creates Bell pairs > if the input multiset 0 contains the required Bell pairs A , otherwise the entire

0 is passed on. Similarly, an action which may fail is expressed with A ⊲ > + A ⊲ ∅ and produces:

0 ↦→

{

{ > ⊲⊳ 0\A }
⋃

{ ∅ ⊲⊳ 0\A } if A ⊆ 0

{ ∅ ⊲⊳ 0 } otherwise

In contrast with basic action, semantics of an atomic policy [C]A ▶ > produces the empty set if

either test A ⊆ 0 or ⟨|C |⟩0 fails. Semantically, tests act as guards of atomic actions to which they are

atomically tied. The intuition behind our definition of ⟨|C ⊎ 1 |⟩ is that ⟨|1′ ⊎ 1 |⟩0 checks for multiset

absence 1′ ⊎1 ⊈ 0 (one can prove that the definition (⟨|1′ |⟩0\1 ∧ 1 ⊆ 0) ∨ ⟨|1 |⟩0 is symmetric), and

the general case follows by distributivity of ⊎ over ∧ and ∨. The relation between the test C and

the inclusion test for A in [C]A ▶ > is captured with the Sr-Can axiom. Tests can model filters with

the action L [C]∅ ▶ ∅ M. Constant 0 aborts on every input and behaves as the action [∅]A ▶ > with

arbitrary A and > , since test ∅ will only succeed for a given 0 if ∅ ⊈ 0. Constant 1 acts as skip and

has the same behavior as [1]∅ ▶ ∅ – it requires no Bell pairs and produces no Bell pairs. Thus we

declare these equivalences as single round axioms Sr-Zero and Sr-One. However, in Section 4.6.2

we elaborate why they cannot hold for multi-round policies.

The union operation + denotes a function that produces the union of the sets generated by the

operands. Axiom Sr-Plus relates union with disjunction. Ordered composition · models actions

that occur in a fixed sequential order within a single round. Intuitively, the actions occurring later

in the policy expression can act only on the Bell pairs that have not been used by the previous

actions. Contrawise, parallel composition ∥ connects the policies which are to be executed in the

same round with no specified order.

Definition 4.2. Consider functions 5 , 6 : M(BP) → P(M(BP) ×M(BP)). We define 5 · 6 by

using the Kleisli composition of functions on the right component. The exact definition is as follows:

5 · 6 : 0 ↦−→
⋃

1⊲⊳0\05 ∈ 5 (0)

{1 ⊎ 1′ ⊲⊳ 0\(05 ⊎ 06) | 1′ ⊲⊳ 0\(05 ⊎ 06) ∈ 6(0\05) }

Definition 4.3. For functions 5 , 6 : M(BP) → P(M(BP) ×M(BP)), we define 5 ∥ 6 as:

5 ∥ 6 : 0 ↦−→
⋃

05 ⊎06⊆0

{

1 ⊎ 1′ ⊲⊳ 0\(05 ⊎ 06) |
1 ⊲⊳ 0\(05 ⊎ 06) ∈ 5 (0\06),
1′ ⊲⊳ 0\(05 ⊎ 06) ∈ 6(0\05)

}

The next example illustrates the difference between ∥ and · when there is resource contention.

Example 4.1. Consider the third round policy P1 in Figure 2a: @ = sw⟨�∼�@�⟩ ∥ sw⟨�∼�@�⟩.
Then, L@ M = L sw⟨�∼�@�⟩ M ∥ L sw⟨�∼�@�⟩ M, and for the input 0 = {{�∼�, �∼�, �∼�}} it holds:

L@ M0 = { {{�∼�}} ⊲⊳ {{�∼�}}, {{�∼�}} ⊲⊳ {{�∼�}} }

If we replace parallel composition with ordered composition, then@′ = sw⟨�∼�@�⟩ ·sw⟨�∼�@�⟩
always attempts to create �∼� before �∼�. For example, from the same multiset 0, it produces:

L@′ M0 = { {{�∼�}} ⊲⊳ {{�∼�}} }

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 200. Publication date: June 2024.

An Algebraic Language for Specifying�antum Networks 200:15

On the other hand, @ and @′ produce the same Bell pairs from the input 1 = {{�∼�, �∼�, �∼�, �∼�}},
since both basic actions find the required Bell pairs in 1: L@ M1 = L@′ M1 = { {{�∼�, �∼�}} ⊲⊳ ∅ }.

4.5.1 Soundness of Single Round. This section proves the soundness of single round BellKAT

axioms with respect to the denotational semantics of a single round. More formally, Corollary 4.1

states that every equivalence provable using the BellKAT axioms also holds in the denotational

model. That is, ⊢ ? ≡ @ ⇒ L? M = L@ M, where ⊢ denotes provability in BellKAT.

Definition 4.4. Set F ⊆ M(BP) → P(M(BP) × M(BP)) is the minimal set generated by

L [C]A ▶ > M, L 1 M, L 0 M for any A and > , that is closed under the operations · and ∥ from Definition 4.2

and Definition 4.3, and under +, defined as (5 + 6) (0) ≜ 5 (0) ∪ 6(0).

We warm up with observations that aid the reasoning about semantic functions in F . The

following lemmas show that F satisfies BellKAT’s axioms, which implies the soundness of single

round policies.

Lemma 4.1. For any 5 ∈ F the following properties hold:

(1) 1 ⊲⊳ 0′ ∈ 5 (0) ⇒ 0′ ⊆ 0

(2) For any A ⊆ 0′ ⊆ 0 we have 1 ⊲⊳ 0 \ A ∈ 5 (0) ⇒ 1 ⊲⊳ 0′ \ A ∈ 5 (0′)

Lemma 4.2. Functions in F satisfy the trioid axioms in Figure 6 - these are the KA axioms involving

the + and the SKA axioms involving · and ∥, excluding the axioms that contain ; or ★.

Lemma 4.3. Test semantics is sound. This means, C ≡ C ′ implies ⟨|C |⟩0 = ⟨|C ′ |⟩0 for all multisets 0.

Lemma 4.4. The L− M meaning of network axioms and single round axioms in Figure 6 is sound.

Lemma 4.5 (Exchange law). For 5 , 5 ′, 6, 6′ ∈ F it holds: (5 ∥ 5 ′) · (6 ∥ 6′) ≤ (5 · 6) ∥ (5 ′ · 6′)

Lemma 4.2, Lemma 4.4, and Lemma 4.5 imply the soundness of single round policies.

Corollary 4.1. BellKAT axioms are sound w.r.t. the denotational semantics of a single round.

We conclude with an example, showing that parallel composition of actions does not simply

reduce to interleaving. Accordingly, 5 · (6 ∥ (5 ′ · 6′)) + 5 ′ · ((5 · 6) ∥ 6′) ≠ (5 · 6) ∥ (5 ′ · 6′).

Example 4.2. Consider the following basic actions and the multiset 0 = {{�∼�, �∼�,�∼�,�∼�}}:

5 = {{�∼�}}⊲{{�∼�}} 6 = {{�∼�,�∼�}}⊲{{�∼�}} 5 ′ = {{�∼�}}⊲{{�∼�}} 6′ = {{�∼�,�∼�}}⊲{{�∼�}}

Notice that {{�∼�,�∼�}} ⊲⊳ ∅ ∈ ((5 · 6) ∥ (5 ′ · 6′)) (0), since the entire 0 can be consumed by 5 · 6
acting on {{�∼�,�∼�}} = 0\{{�∼�,�∼�}} and by 5 ′ · 6′ acting on {{�∼�,�∼�}} = 0\{{�∼�,�∼�}}.

In contrast, in 5 · (6 ∥ (5 ′ ·6′)) function 5 acts first on 0 consuming�∼� , meaning that 6′ cannot

act on 0\{{�∼�}}. Similarly, in 5 ′ · ((5 · 6) ∥ 6′), 5 ′ acting on 0 prevents 6 from acting on 0\{{�∼�}}.
This proves that, ∀ 1′ ⊲⊳ 0′ ∈ (5 · (6 ∥ (5 ′ ·6′)) + 5 ′ · ((5 ·6) ∥ 6′)) (0), either�∼� ∈ 1′ or �∼� ∈ 1′.

4.5.2 Completeness of Single Round. Next we prove the completeness of BellKAT axioms with

respect to the denotational semantics of a single round. This means that single round BellKAT

expressions which are semantically equal, are provably equivalent by BellKAT axioms. In order to

prove completeness, we will find a normal form of policies that captures their semantic meaning.

Definition 4.5 (Normal form of tests). A test is in normal form if it is a finite conjunction of

multiset absences (by convention, empty conjunction is test 1), C =
∧

1, where 1 ∈ M(BP), and
for no two multisets 1 and 1′ in C the inclusion 1 ⊆ 1′ holds.

Lemma 4.6. Every test C is equivalent to a test in normal form # (C). Moreover, if tests in normal

form have the same test semantics, they are syntactically identical (up to permutations of conjuncts).

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 200. Publication date: June 2024.

200:16 Anita Buckley, Pavel Chuprikov, Rodrigo Otoni, Robert Soulé, Robert Rand, and Patrick Eugster

Definition 4.6 (Canonical form of tests). Let C be a test and # (C) =
∧

1 its normal form. The

normalized test of
∧

(A ∪ 1) is called canonical form of C with respect to A . Canonical form of 1 is 1.

Lemma 4.7. Let c = [C]A ▶ > and c ′
= [C ′]A ▶ > be atomic actions. Then Lc M = Lc ′ M if and only

the canonical forms of C and C ′ with respect to A coincide.

Definition 4.7 (Normal form of policies). A policy ? is in normal form if it is a finite sum, s.t. every

summand has a unique (A, >) pair with the corresponding C in canonical form w.r.t. A and C ≠ A :

? =

∑

[C]A ▶ >

A corollary of Lemma 4.7 is that an atomic action [C]A ▶ > aborts if and only if the canonical

form of C is A . This ensures that normal form of a policy is unique as stated in the next lemma.

Lemma 4.8. Every single round policy is normalizable, i.e., it is provably equivalent to a policy in

normal form. Furthermore, policies in normal form with the same single round semantics coincide.

The proofs of the above lemmas (provided in the long version of the paper, where we also include

examples of policies in normal form) follow by rigorously applying the definitions.

Proposition 4.1 (Completeness). Let ?, @ be single round policies such that L? M = L@ M. Then ?
and @ are provably equivalent by the BellKAT axioms.

Proof. By the definition of single round policies, L? M and L@ M are in F . By Lemma 4.8 policies

? and @ are provably equivalent to their normal form ⊢ ? ≡ # (?) and ⊢ @ ≡ # (@). Then soundness

in Corollary 4.1 yields L? M = L# (?) M and L@ M = L# (@) M. Completeness then follows from the

implication L# (?) M = L# (@) M ⇒ # (?) = # (@) proven in Lemma 4.8. □

4.6 Semantics of Multi-Round Policies

In this section we tackle the standard issue with the algebraic models dealing with concurrency,

also encountered by Wagemaker et al. [2020, 2022]: some behaviors of an executed policy can

only be observed when executed concurrently with another policy, and not in isolation. This goes

against the algebraic approach, which requires capturing policy behavior in all contexts. Hence, in

the sequel, we include complete execution traces in the semantics that do not directly correspond to

the observable end-to-end behavior. We present the standard interpretation of policies by defining a

homomorphism that maps a policy (as an expression in BellSKA and obeying axioms in Figure 6)

into a synchronous set of strings of atomic actions.

4.6.1 Soundness and Completeness of BellSKA.

Definition 4.8 (Synchronous policy sets). In a quantum network, consider the set of atomic actions

(denote them by G,~ ∈ Π). String policies over Π are strings of atomic actions including the empty

string n (denote them by D, E ∈ Π
∗). A synchronous policy set is a set of policy strings in P(Π∗)

(denoted by* ,+). Consider the following definitions and operations on synchronous policy sets,

0 ≜ ∅
1 ≜ {n}

* ++ ≜ * ∪+

* ;+ ≜ {D # E | D ∈ * , E ∈ + }
*★
≜ ∪=≥0*

=

* ·+ ≜ {D ◦ E | D ∈ * , E ∈ + }
* ∥ + ≜ {D | | | E | D ∈ * , E ∈ + }

whereD #E denotes the concatenation of stringsD and E inΠ∗, with layer-by-layer ordered composition

D ◦ E ∈ Π
∗ and layer-by-layer parallel composition D | | | E ∈ Π

∗, defined respectively by the rules,

D ◦ n ≜ D ≜ n ◦D

(G # D) ◦ (~ # E) ≜ (G · ~) # (D ◦ E)
and

D | | | n ≜ D ≜ n | | | D
(G # D) | | | (~ # E) ≜ (G ∥ ~) # (D | | | E)

where G ·~ and G ∥ ~ are the atomic action obtained by the axiomsNet-Ord andNet-Prl in Figure 6.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 200. Publication date: June 2024.

An Algebraic Language for Specifying�antum Networks 200:17

The powers of * are defined recursively as * 0
≜ {n} and * =

≜ * ; * =−1. By convention *★

always contains the empty string, thus when* = ∅ we set*★
= {n}.

Theorem 4.1. Any set of synchronous policy sets that contains 0 and 1 and is closed under the

operations of Definition 4.8 is a BellSKA.

Theorem 4.1 shows that any subalgebra of P(Π∗) is also a BellSKA (see Definition 4.1). Let

"BellSKA be the smallest algebra that contains 0, 1 and all c ∈ Π in a given quantum network.

Definition 4.9 (Standard interpretation). Consider the set of policies P as a BellSKA term algebra.

Standard interpretation � : P −→ "BellSKA maps the generators of P by the rule � (c) = { c } and
� (1) = {n}, � (0) = ∅, and is then homomorphically extended as:

� (?+@) = � (?)+� (@), � (? ∥ @) = � (?) ∥ � (@), � (? ·@) = � (?) ·� (@), � (? ;@) = � (?) ;� (@), � (?★) = � (?)★

Standard interpretation provides a deterministic algorithm for obtaining a model for BellSKA

policies. Indeed, for a given policy we recursively apply homomorphism � to obtain a set of

synchronous strings, as illustrated on the next example.

Example 4.3. Consider policies ? and @ that are sequential compositions of atomic actions,

? = ([1]∅ ▶ {{�∼�}}) ; ([{{�∼�}}]∅ ▶ {{�∼�}}) @ = ([1]∅ ▶ {{�∼�}}) ; ([1]{{�∼�}} ▶ {{�∼�}})

therefore they are interpreted as singletons. Then, � (? ∥ @) is given by the Net-Prl axiom:

� (? ∥ @) = � (?) ∥ � (@) = { ([1]∅ ▶ {{�∼�, �∼�}}) # ([{{�∼�,�∼�}}]{{�∼�}} ▶ {{�∼�,�∼�}}) }

The theorem below shows that � (?) is regular for any policy ? .

Theorem 4.2 (completeness w.r.t. standard interpretation). Policies ?, @ ∈ P are equal

under the standard interpretation if and only if they are provably equivalent using BellKAT’s axioms.

That is, � (?) = � (@) if and only if ⊢ ? ≡ @.

The automata constructed in the proof of completeness can be also used to decide if � (?) = � (@).

4.6.2 Multi-Round Policies as Functions. The denotational semantics of multi-round BellKAT is

defined in Figure 5. In summary, ⟦−⟧ : P → M(BP) → P(M(BP)) is defined through the standard

interpretation as ⟦?⟧0 ≜
⋃

l∈� (?)⟦l⟧�0, where ⟦−⟧� : Π
∗ → M(BP) → P(M(BP)) is recursively

defined as ⟦l⟧� ≜ ⟦c1⟧� • ⟦c2 # . . . # c:⟧� , with (•) denoting the Kleisli composition:

5 • 6 : M(BP) −→ P(M(BP))

0 ↦−→
{

2 | there exists 1 ∈ 5 (0) s.t. 2 ∈ 6(1)
}

=

⋃

1∈ 5 (0)

6(1)

Next we show that executions of provably equivalent policies produce the same Bell pairs.

Theorem 4.3 (Soundness of multi-round policies). If policies ?, @ ∈ P are equivalent under

BellKAT’s axioms, then their denotational semantics coincide. That is, ⊢ ? ≡ @ =⇒ ⟦?⟧ = ⟦@⟧.

Proof. The soundness of multi-round policies follows from the soundness of both the standard

interpretation (Theorem 4.1) and single round policies (Corollary 4.1). A key aspect is that all c ∈ Π

are considered as actions that require time, whereas 1 is considered as the absence of actions (hence

the name no-round). This is why we exclude the Sr-One axiom from multi-round policies. □

Remark 4.1 (Atomic actions c ∈ P vs. c ∈ Ps). For an atomic action c , its multi-round and single

round semantics are closely related. Syntactically, we replace ⊎ with ⊲⊳ in the definitions of ⟦c⟧
and Lc M. This means that ⊲⊳ separates the freshly created Bell pairs from the unused Bell pairs

within a single round, as opposed to ⊎ that combines both multisets to be offered to the next round.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 200. Publication date: June 2024.

200:18 Anita Buckley, Pavel Chuprikov, Rodrigo Otoni, Robert Soulé, Robert Rand, and Patrick Eugster

The following example illustrates that the nature of quantum networks does not permit compo-

sitional observational reasoning at the level of end-to-end behavior when actually executed. The

end-to-end behavior is captured by our multi-round denotational semantics, which assumes isolated

execution. This is consistent with our quantum network architecture, which, before execution,

installs the policy into the network as generating rules. It is precisely the behavior of these rules that

we want to analyze – any future policy modifications, including composition with other policies,

would require a separate analysis. We construct a policy whose semantics is abort, however when

run in parallel with another policy, their combined meaning produces Bell pairs.

Example 4.4. Recall the policies ? and @ in Example 4.3. From � (?) we read that the first round

always creates�∼� , and the test in the second round only passes the multisets which do not contain

�∼� , thus ⟦?⟧ = ⟦0⟧ = ∅ is abort. On the other hand, we showed that � (? ∥ @) is a singleton

containing l = c1 # c2 = ([1]∅ ▶ {{�∼�, �∼�}}) # ([{{�∼�,�∼�}}]{{�∼�}} ▶ {{�∼�,�∼�}}). This
leads to ⟦? ∥ @⟧ = ⟦c1⟧� • ⟦c2⟧� , which on the empty input produces:

⟦? ∥ @⟧∅ = ⟦c2⟧� {{�∼�, �∼�}} = { {{�∼�,�∼�, �∼�}} }

This illustrates that no set of axioms is sound and complete w.r.t. ⟦−⟧, else the application of

Leibniz rule of inference on ? ≡ 0 would lead to ? ∥ @ ≡ 0 ∥ @ ≡ 0, which contradics ? ∥ @ . 0.

The next example shows that BellKAT axioms are not complete w.r.t. ⟦−⟧, even for the fragment

of policies generated with basic actions A ⊲ > . The following policies have clearly distinct second

rounds, however semantically they behave the same on all the inputs provided by the first round.

Example 4.5 (Completeness w.r.t. isolated execution). Policies ? = (cr⟨�⟩ ∥ cr⟨�⟩) ; (tr⟨�→�∼�⟩ ·
tr⟨� → �∼�⟩) and @ = (cr⟨�⟩ ∥ cr⟨�⟩) ; (tr⟨� →�∼�⟩ ∥ tr⟨� → �∼�⟩) have the same meaning.

Indeed, on any input both first rounds generate two copies of �∼� , and then both second rounds

transmit to�∼� and �∼� . This means, ⟦?⟧0 = ⟦@⟧0 = {{�∼�, �∼�}}⊎0. However, in the equational
theory of BellKAT, ? . @ since tr⟨�→�∼�⟩ · tr⟨�→�∼�⟩ . tr⟨�→�∼�⟩ ∥ tr⟨�→�∼�⟩.

4.6.3 Equivalence Checking for Isolated Policy Behaviors. This section presents the tools to reason

about actual end-to-end execution of policies, at which point it is appropriate to factor in the system

constraints, in particular, finite qubit memory at the end nodes. We explicitly deal with atomic

actions whose execution leads to constraint violation. Specifically, we introduce an invalid network

state ⊥ and a notion of valid policies (policies that do not reach invalid states).

Example 4.5 with ⟦?⟧ = ⟦@⟧ and ? . @, shows that checking whether ⟦?⟧ = ⟦@⟧ requires

techniques beyond the equational reasoning we have been focused on so far. On a high level, ⟦−⟧
is designed to faithfully model the network’s behavior, i.e., how protocols represented by policies

are executed; thus, some information about how a policy would behave when composed with other

policies gets lost, as illustrated in Example 4.4. Such information should be present for soundness

and completeness to hold as the congruence rule of inference implies that equivalent functions must

behave equivalently in all contexts. Concretely, Theorem 4.2 guarantees that equational theory is

complete w.r.t. the standard interpretation � (−), which is thus not a proper reflection of ⟦−⟧.
The meanings � (−) and ⟦−⟧ cater for different applications, namely, standard interpretation is

useful for policy optimization (capturing the behavior in all contexts) and end-to-end meaning

facilitates policy verification (whether the policies in isolation do what they were meant to). The

difference between the meanings stems from the shared nature of resources (Bell pairs) that policies

use and produce; through these resources the policies affect each other’s behavior when composed.

To reason about ⟦−⟧, we keep track of the current network state (multiset of Bell pairs). There is

only a finite number of valid network states, denoted byN ⊆ M(BP), as both the number of nodes

in the network and the number of Bell pairs between any two nodes is bounded. Since N captures

the network hardware constraints (e.g., number of available memory qubits), we fix it globally to

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 200. Publication date: June 2024.

An Algebraic Language for Specifying�antum Networks 200:19

simplify the definitions. Moreover, we allow further restriction on the set of initial network states

N0 ⊆ N in which policies start execution. N0 specifies properties of the initial network state, e.g.,

N0 = ∅ signifies that there are no Bell pairs present yet. Hence, the goal is to check whether for all

0 ∈ N0 we have ⟦?⟧0 = ⟦@⟧0, denoted as ⟦?⟧ =N0
⟦@⟧.

Definition 4.10. A BellKAT policy ? is valid with respect to N0 ⊆ N if and only if any network

state, encountered during any execution of ? on an input from N0, is also in N .

If we consider a finite Π
′ ⊆ Π, we can build a transition system G(Π′) with N⊥ = N ∪ {⊥}

as states and Π
′ as actions; states in N0 are initial, states in N are terminal, and ⊥ is an invalid

network state, for 0, 0′ ∈ N there is a transition from 0 to 0′ labelled with c iff 0′ ∈ ⟦c⟧0, and
there is a transition from 0 to ⊥ labelled with c iff ⟦c⟧0 \ N ≠ ∅. At the same time, for a policy ?

we can build an automaton A(?) as in the proof of Theorem 4.2, which can be seen as another

transition system with the set of actions Π? = {c ∈ l | l ∈ � (?)}. Finally, we can build a transition

system G(Π?) ∥Π?
A(?) that is a parallel composition of G and A(?) with handshaking on the set

of actions Π? (see [Milner 1989]), i.e., the set of states isN × states(A(?)) and there is a transition

from (0, B) to (0′, B′) labelled with c iff there are c-labelled transitions from 0 to 0′ in G and from B

to B′ in A(?). Such a transition system captures isolated behavior of ? .

These definitions of transitions in G(Π?) and A(?) yield the next lemma. As a consequence,

we obtain a tool to reason about the equality of policies w.r.t. ⟦−⟧ in Theorem 4.4. Furthermore,

in Theorem 4.5 we also show that the validity of a policy is decidable. The actual implementation

of the decision procedure, does not explicitly build G(Π?) due to its large size, but constructs

G(Π?) ∥Π?
A(?) directly, adding states from N in a lazy manner.

Lemma 4.9. Let ? ∈ P, 0 ∈ N0, and 0
′ ∈ N . Then, 0′ ∈ ⟦?⟧0 if and only if there is an execution of

G(Π?) ∥Π?
A(?) starting in state (0, B) and ending in (0′, B′) for some B and B′ in states(A(?)).

Theorem 4.4. If ? and @ are valid policies with respect to N0 ⊆ N , then ⟦?⟧ =N0
⟦@⟧ is decidable.

Proof. The question of ⟦?⟧ =N0
⟦@⟧ can be reduced to checking whether for any 0 ∈ N0,

0′ ∈ N , 0′ ∈ ⟦?⟧0 ⇔ 0′ ∈ ⟦@⟧0. Since N is finite, the latter can be answered with Lemma 4.9. □

Theorem 4.5. Policy ? is valid if an only if there is no execution in G(Π?) ∥Π?
A(?) ending in the

state (⊥, B′) for some B′ in A(?).

5 QUANTUM NETWORK VERIFICATION

The limitations of hardware, such as low rates of Bell pair generation, short memory lifetimes,

and limited numbers of communication qubits, make competition for resources unavoidable. This

competition is the main motivation for formal reasoning about quantum network properties.

BellKAT’s equational theory and the decidability result, following from Theorem 4.2, can be

used to verify that policies are equivalent in all contexts, facilitating modular policy optimization,

while the decidability result in Theorem 4.4 can be used for network verification by translating

certain network properties to checking equivalences between end-to-end policy behaviors.

BellKAT serves as an intermediate layer when verifying distributed quantum applications, sepa-

rating them from low level implementations of quantum actions. Users specify protocols as BellKAT

policies, typically starting with a round of create actions. Before deploying the policies on a quan-

tum network, users will verify that resource sharing, arising either from concurrency within the

policy or due to composition with other policies, will not impede the desired Bell pair generation.

Verification tasks. The following properties translate naturally from classical networks to the

quantum setting of entanglement distribution.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 200. Publication date: June 2024.

200:20 Anita Buckley, Pavel Chuprikov, Rodrigo Otoni, Robert Soulé, Robert Rand, and Patrick Eugster

• Reachability. The most basic property of interest is whether the execution of a policy is able

to generate the requested entanglement between end nodes.

• Waypoint correctness. We may wish to guarantee that an entanglement generating protocol

always performs the swapping operation through certain nodes.

• Traffic (protocol) isolation. Composition of policies may lead to undesired behaviors, such

as race conditions. In light of this, it is desirable to prove non-interference properties that

ensure isolation between executions of the composed policies.

• Compilation. Establishing the correctness of the compilation process is a necessary final step

for ensuring correct deployment.

The following properties, which do not have a clear counterpart in classical networks, are posed

as resource constraint problems.

• Resource utilization. What is the number of required memory locations and communication

qubits? For how many rounds must Bell pairs be kept in the memory?

• Quality of service. Does the network have the required capacity (i.e., number of created

end-to-end Bell pairs per second), and what is the confidence in their quality?

• Network state access. Can we minimize the number of costly accesses to the network global

state in a policy? Such optimization can significantly reduce the coordination effort.

From histories it is possible to read whether an underlying protocol obeys the hardware con-

straints (e.g., the number of communication and memory qubits, as illustrated in Figure 3), and also

suggest how to optimize resource allocation over rounds. It is worth noting that Bell pairs between

the same two nodes are indistinguishable for most applications, which can lead to more efficient

provisioning of resources. In addition, the information recorded in histories could shed some light

on the order among communication channels, as investigated by Chandra et al. [2022].

Decidability and Verification. Some of the tasks above can be solved by a directed application of

the decidability results of Section 4.6. An example of verifying the reachability property would be to

check whether policy ? always or never generates an entangled pair �∼�; concretely, we can check

if (? ; [1]{{�∼�}} ▶ {{�∼�}}) ≡N0
? or (? ; [{{�∼�}}]∅ ▶ ∅) ≡N0

? using Theorem 4.4. We can also

verify resource utilization, with an important practical task being to analyze memory requirements

of a policy ? , achieved by trying different sets of valid states N while keeping track of whether ?

remains valid (see Theorem 4.5). In addition, to verify correctness of the compilation procedure

compile : P → P on a policy ? , we can again use Theorem 4.4 to ensure ? ≡N0
compile(?). A

single optimization step opt : P → P can be checked with ⊢ ? ≡ opt(?) using Theorem 4.2.

Prototype implementation. For a given policy, BellKAT histories are records of the successful

basic actions A ⊲> and the order in which they occur. We implemented a prototype in Haskell which

produces a set of histories from a given policy. For improved visualization, the prototype can also

illustrate histories as shown in Figure 3. Furthermore, it can check the validity and equality of

policies by implementing the decision procedure described in Section 4.6.3. This procedure allows

us to verify concrete properties, such as those discussed in the previous paragraph. A last feature

of note is our prototype’s ability to perform network slicing, which facilitates modular construction

of policies by tagging them with unique identifiers in order to keep them differentiated, similar to

the concepts of NetKAT slices and boxes by Brunet and Pym [2020]. By appending such (classical)

metadata to Bell pairs it is possible to model basic interactions between control plane and classical

and quantum data planes. Our prototype is open source and freely available as an online artifact.3

3Artifact available at Zenodo [Chuprikov 2024].

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 200. Publication date: June 2024.

An Algebraic Language for Specifying�antum Networks 200:21

6 CONCLUSION

Successful integration of classical and quantum networks will provide novel solutions for secure

communication tasks, pave the way to distributed quantum computing, and enable other large

scale applications of quantum communication technologies. Significant research and engineering

efforts are still required until quantum networks reach full functionality. Our work focuses on the

specification of entanglement generating protocols, taking into account the distinctive features

of entanglement as the main communication resource. With BellKAT, we provide a foundational

model for quantum network programming languages in a threefold manner. (1) We present a

solid algebraic foundation, called BellSKA, on which the BellKAT language and logic is based.

BellKAT’s axioms faithfully encode the network behavior and allow for equational reasoning. (2)

We showcase the expressiveness of BellKAT by specifying a number of entanglement generating

protocols, including the only long distance repeater protocol currently realized in practice [Pompili

et al. 2021]. (3) We implemented a prototype to support the practical specification of protocols and

verification of relevant properties. The capabilities of our prototype are complementary to those of

existing simulators like NetSquid [Coopmans et al. 2021].

The BellKAT formalism and its underlying BellSKA structure open exciting new research avenues,

including (i) the formalization of probabilistic phenomena of quantum networks, (ii) the extension

of BellKAT to handle quantum states other than Bell pairs, (iii) the investigation of additional

BellKAT semantic models to cater to more verification tasks, and (iv) the exploration of possible

uses of BellSKA. For (i), we envision extending BellKAT with probabilistic semantics by adding

a random choice operation (+?) for specifying probabilities, similar to the work of Foster et al.

[2016] and Smolka et al. [2019b]. For (ii), actions could, for instance, be generalized to handle

the transmission of single qubits {{�}} ⊲ {{�}}, or the creation of EPR pairs from tripartite states

{{�∼�∼�}} ⊲ { {{�∼�}}, {{�∼�}}, {{�∼�}} } with the distillation process of Dür et al. [2000]. For (iii),

a potential semantic extension could record the state of the network at the end of each round,

allowing for the capture of intermediate results. For (iv) we could consider possible instantiations

of BellSKA to handle other systems exhibiting 2-dimensional behavior (e.g., bulk-synchronous

parallel model [Valiant 1990] or hardware design [Halbwachs et al. 1991]) and, furthermore, identify

a guarded fragment of BellKAT that is regular, similar to the work of Smolka et al. [2019a].

ACKNOWLEDGMENTS

This material is based upon work supported by Hasler Foundation grant number 23086, Swiss

National Science Foundation (SNF) grant number 197353, US Air Force Office of Scientific Research

(AFOSR) award number FA95502110051, and US National Science Foundation (NSF) Expedition in

Computing (EPiQC) grant number CCF-1730449.

REFERENCES

Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter Kozen, Cole Schlesinger, and David Walker.

2014. NetKAT: Semantic Foundations for Networks. SIGPLAN Notices 49, 1 (2014), 113–126. https://doi.org/10.1145/

2578855.2535862

John Stewart Bell. 1964. On the Einstein Podolsky Rosen Paradox. Physics Physique Fizika 1, 3 (1964), 195–200. https:

//doi.org/10.1103/PhysicsPhysiqueFizika.1.195

Charles H. Bennett and Gilles Brassard. 2014. Quantum Cryptography: Public Key Distribution and Coin Tossing. Theoretical

Computer Science 560 (2014), 7–11. https://doi.org/10.1016/j.tcs.2014.05.025

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin

Vahdat, George Varghese, and David Walker. 2014. P4: Programming Protocol-Independent Packet Processors. ACM

SIGCOMM Computer Communication Review 44, 3 (2014), 87–95. https://doi.org/10.1145/2656877.2656890

Hans Jürgen Briegel, Wolfgang Dür, Juan Ignacio Cirac, and Peter Zoller. 1998. Quantum Repeaters: The Role of Imperfect

Local Operations in Quantum Communication. Physical Review Letters 81, 26 (1998), 5932–5935. https://doi.org/10.1103/

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 200. Publication date: June 2024.

https://doi.org/10.1145/2578855.2535862
https://doi.org/10.1145/2578855.2535862
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1016/j.tcs.2014.05.025
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1103/PhysRevLett.81.5932
https://doi.org/10.1103/PhysRevLett.81.5932

200:22 Anita Buckley, Pavel Chuprikov, Rodrigo Otoni, Robert Soulé, Robert Rand, and Patrick Eugster

PhysRevLett.81.5932

Paul Brunet and David Pym. 2020. Pomsets with Boxes: Protection, Separation, and Locality in Concurrent Kleene Algebra.

In 5th International Conference on Formal Structures for Computation and Deduction. 1–16. https://doi.org/10.4230/LIPIcs.

FSCD.2020.8

Anita Buckley, Pavel Chuprikov, Rodrigo Otoni, Robert Rand, Robert Soulé, and Patrick Eugster. 2023. Towards an Algebraic

Specification of Quantum Networks. In 1st Workshop on Quantum Networks and Distributed Quantum Computing. 7–12.

https://doi.org/10.1145/3610251.3610557

Daryus Chandra, Marcello Caleffi, and Angela Sara Cacciapuoti. 2022. The Entanglement-Assisted Communication

Capacity Over Quantum Trajectories. IEEE Transactions on Wireless Communications 21, 6 (2022), 3632–3647. https:

//doi.org/10.1109/TWC.2021.3122962

Pavel Chuprikov. 2024. Artifact for the article An Algebraic Language for Specifying Quantum Networks. https:

//doi.org/10.5281/zenodo.10909730

Tim Coopmans, Robert Knegjens, Axel Dahlberg, et al. 2021. NetSquid, a NETwork Simulator for QUantum Information

using Discrete events. Communications Physics 4, 164 (2021), 1–15. https://doi.org/10.1038/s42005-021-00647-8

Wolfgang Dür, Guifre Vidal, and Juan I. Cirac. 2000. Three Qubits can be Entangled in Two Inequivalent Ways. Physical

Review A 62, 6 (2000), 1–12. https://doi.org/10.1103/PhysRevA.62.062314

Albert Einstein, Boris Podolsky, and Nathan Rosen. 1935. Can Quantum-Mechanical Description of Physical Reality Be

Considered Complete? Physical Review Online Archive 47, 10 (1935), 777–780. https://doi.org/10.1103/PhysRev.47.777

Artur K. Ekert. 1991. Quantum Cryptography based on Bell’s Theorem. Physical Review Letters 67, 6 (1991), 661–663.

https://doi.org/10.1103/PhysRevLett.67.661

Nate Foster, Dexter Kozen, Konstantinos Mamouras, Mark Reitblatt, and Alexandra Silva. 2016. Probabilistic NetKAT. In 25th

European Symposium on Programming Languages and Systems. 282–309. https://doi.org/10.1007/978-3-662-49498-1_12

Laszlo Gyongyosi and Sandor Imre. 2022. Advances in the Quantum Internet. Commun. ACM 65, 8 (2022), 52–63. https:

//doi.org/10.1145/3524455

Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. 1991. The Synchronous Data Flow Programming

Language LUSTRE. Proc. IEEE 79, 9 (1991), 1305–1320. https://doi.org/10.1109/5.97300

Jessica Illiano, Marcello Caleffi, Antonio Manzalini, and Angela Sara Cacciapuoti. 2022. Quantum Internet Protocol Stack: A

Comprehensive Survey. Computer Networks 213, 109092 (2022), 1–26. https://doi.org/10.1016/j.comnet.2022.109092

Tobias Kappé, Paul Brunet, Alexandra Silva, Jana Wagemaker, and Fabio Zanasi. 2020. Concurrent Kleene Algebra with

Observations: From Hypotheses to Completeness. In 23rd International Conference on the Foundations of Software Science

and Computation Structures. 381–400. https://doi.org/10.1007/978-3-030-45231-5_20

Dexter Kozen. 1994. A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events. Information and

Computation 110, 2 (1994), 366–390. https://doi.org/10.1006/inco.1994.1037

Dexter Kozen. 1997. Kleene Algebra with Tests. ACM Transactions on Programming Languages and Systems 19, 3 (1997),

427–443. https://doi.org/10.1145/256167.256195

Dexter Kozen and Frederick Smith. 1997. Kleene Algebra with Tests: Completeness and Decidability. In 10th International

Workshop on Computer Science Logic. 244–259. https://doi.org/10.1007/3-540-63172-0_43

Wojciech Kozlowski and Stephanie Wehner. 2019. Towards Large-Scale Quantum Networks. In 6th Annual ACM International

Conference on Nanoscale Computing and Communication. 1–7. https://doi.org/10.1145/3345312.3345497

Wojciech Kozlowski, Stephanie Wehner, Rodney Van Meter, Bruno Rijsman, Angela Sara Cacciapuoti, Marcello Caleffi, and

Shota Nagayama. 2023. Architectural Principles for a Quantum Internet. RFC 9340. https://doi.org/10.17487/RFC9340

Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker, and

Jonathan Turner. 2008. OpenFlow: Enabling Innovation in Campus Networks. ACM SIGCOMM Computer Communication

Review 38, 2 (2008), 69–74. https://doi.org/10.1145/1355734.1355746

Robin Milner. 1989. Communication and Concurrency. Prentice-Hall, Inc.

Michael A. Nielsen and Isaac L. Chuang. 2011. Quantum Computation and Quantum Information. Cambridge University

Press.

P4 API Working Group. 2021. P4 Runtime Specification. https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html

Yuxiang Peng, Mingsheng Ying, and Xiaodi Wu. 2022. Algebraic Reasoning of Quantum Programs via Non-Idempotent

Kleene Algebra. In 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation.

657–670. https://doi.org/10.1145/3519939.3523713

Stefano Pirandola, Ulrik Lund Andersen, Leonardo Banchi, et al. 2020. Advances in Quantum Cryptography. Advances in

Optics and Photonics 12, 4 (2020), 1012–1236. https://doi.org/10.1364/AOP.361502

Matteo Pompili, Sophie L. N. Hermans, Simon Baier, et al. 2021. Realization of a Multinode Quantum Network of Remote

Solid-State Qubits. Science 372, 6539 (2021), 259–264. https://doi.org/10.1126/science.abg1919

Cristian Prisacariu. 2010. Synchronous Kleene Algebra. The Journal of Logic and Algebraic Programming 79, 7 (2010),

608–635. https://doi.org/10.1016/j.jlap.2010.07.009

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 200. Publication date: June 2024.

https://doi.org/10.1103/PhysRevLett.81.5932
https://doi.org/10.1103/PhysRevLett.81.5932
https://doi.org/10.1103/PhysRevLett.81.5932
https://doi.org/10.4230/LIPIcs.FSCD.2020.8
https://doi.org/10.4230/LIPIcs.FSCD.2020.8
https://doi.org/10.1145/3610251.3610557
https://doi.org/10.1109/TWC.2021.3122962
https://doi.org/10.1109/TWC.2021.3122962
https://doi.org/10.5281/zenodo.10909730
https://doi.org/10.5281/zenodo.10909730
https://doi.org/10.1038/s42005-021-00647-8
https://doi.org/10.1103/PhysRevA.62.062314
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1007/978-3-662-49498-1_12
https://doi.org/10.1145/3524455
https://doi.org/10.1145/3524455
https://doi.org/10.1109/5.97300
https://doi.org/10.1016/j.comnet.2022.109092
https://doi.org/10.1007/978-3-030-45231-5_20
https://doi.org/10.1006/inco.1994.1037
https://doi.org/10.1145/256167.256195
https://doi.org/10.1007/3-540-63172-0_43
https://doi.org/10.1145/3345312.3345497
https://doi.org/10.17487/RFC9340
https://doi.org/10.1145/1355734.1355746
https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html
https://doi.org/10.1145/3519939.3523713
https://doi.org/10.1364/AOP.361502
https://doi.org/10.1126/science.abg1919
https://doi.org/10.1016/j.jlap.2010.07.009

An Algebraic Language for Specifying�antum Networks 200:23

Julian Rabbie, Kaushik Chakraborty, Guus Avis, and Stephanie Wehner. 2022. Designing Quantum Networks Using

Preexisting Infrastructure. npj Quantum Information 8, 5 (2022), 1–12. https://doi.org/10.1038/s41534-021-00501-3

Steffen Smolka, Nate Foster, Justin Hsu, Tobias Kappé, Dexter Kozen, and Alexandra Silva. 2019a. Guarded Kleene Algebra

with Tests: Verification of Uninterpreted Programs in Nearly Linear Time. Proceedings of the ACM on Programming

Languages 4, POPL (2019), 1–28. https://doi.org/10.1145/3371129

Steffen Smolka, Praveen Kumar, David M. Kahn, Nate Foster, Justin Hsu, Dexter Kozen, and Alexandra Silva. 2019b.

Scalable Verification of Probabilistic Networks. In 40th ACM SIGPLAN Conference on Programming Language Design and

Implementation. 190–203. https://doi.org/10.1145/3314221.3314639

Don Towsley. 2021. The Quantum Internet: Recent Advances and Challenges. Keynote at the 29th IEEE International

Conference on Network Protocols. https://icnp21.cs.ucr.edu

Leslie G. Valiant. 1990. A Bridging Model for Parallel Computation. Commun. ACM 33, 8 (1990), 103–111. https:

//doi.org/10.1145/79173.79181

Rodney Van Meter and Joe Touch. 2013. Designing Quantum Repeater Networks. IEEE Communications Magazine 51, 8

(2013), 64–71. https://doi.org/10.1109/MCOM.2013.6576340

Rodney Van Meter, Joe Touch, and Clare Horsman. 2011. Recursive Quantum Repeater Networks. Progress in Informatics 8

(2011), 65–79. https://doi.org/10.2201/NiiPi.2011.8.8

Jana Wagemaker, Paul Brunet, Simon Docherty, Tobias Kappé, Jurriaan Rot, and Alexandra Silva. 2020. Partially Observable

Concurrent Kleene Algebra. In 31st International Conference on Concurrency Theory. 1–22. https://doi.org/10.4230/LIPIcs.

CONCUR.2020.20

Jana Wagemaker, Nate Foster, Tobias Kappé, Dexter Kozen, Jurriaan Rot, and Alexandra Silva. 2022. Concurrent NetKAT. In

31st European Symposium on Programming. 575–602. https://doi.org/10.1007/978-3-030-99336-8_21

Chonggang Wang, Akbar Rahman, Ruidong Li, Melchior Aelmans, and Kaushik Chakraborty. 2023. Application Scenarios for

the Quantum Internet. Technical Report. Internet Engineering Task Force. https://datatracker.ietf.org/doc/draft-irtf-

qirg-quantum-internet-use-cases/16

Stephanie Wehner, David Elkouss, and Ronald Hanson. 2018. Quantum Internet: A Vision for the Road Ahead. Science 362,

6412 (2018), 1–9. https://doi.org/10.1126/science.aam9288

Received 2023-11-16; accepted 2024-03-31

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 200. Publication date: June 2024.

https://doi.org/10.1038/s41534-021-00501-3
https://doi.org/10.1145/3371129
https://doi.org/10.1145/3314221.3314639
https://icnp21.cs.ucr.edu
https://doi.org/10.1145/79173.79181
https://doi.org/10.1145/79173.79181
https://doi.org/10.1109/MCOM.2013.6576340
https://doi.org/10.2201/NiiPi.2011.8.8
https://doi.org/10.4230/LIPIcs.CONCUR.2020.20
https://doi.org/10.4230/LIPIcs.CONCUR.2020.20
https://doi.org/10.1007/978-3-030-99336-8_21
https://datatracker.ietf.org/doc/draft-irtf-qirg-quantum-internet-use-cases/16
https://datatracker.ietf.org/doc/draft-irtf-qirg-quantum-internet-use-cases/16
https://doi.org/10.1126/science.aam9288

	Abstract
	1 Introduction
	2 Background and Related Work
	3 BellKAT Overview
	4 Language
	4.1 Preliminaries
	4.2 Overview
	4.3 Syntax
	4.4 Axioms
	4.5 Semantics of Single Round Policies
	4.6 Semantics of Multi-Round Policies

	5 Quantum Network Verification
	6 Conclusion
	Acknowledgments
	References

