
1 23

Distributed Computing

ISSN 0178-2770
Volume 23
Combined 5-6

Distrib. Comput. (2011)
23:301-319
DOI 10.1007/
s00446-011-0126-8

Incentive-compatible interdomain routing

1 23

Your article is protected by copyright and

all rights are held exclusively by Springer-

Verlag. This e-offprint is for personal use only

and shall not be self-archived in electronic

repositories. If you wish to self-archive your

work, please use the accepted author’s

version for posting to your own website or

your institution’s repository. You may further

deposit the accepted author’s version on a

funder’s repository at a funder’s request,

provided it is not made publicly available until

12 months after publication.

Distrib. Comput. (2011) 23:301–319
DOI 10.1007/s00446-011-0126-8

Incentive-compatible interdomain routing

Joan Feigenbaum · Vijay Ramachandran ·
Michael Schapira

Received: 4 November 2009 / Accepted: 14 January 2011 / Published online: 25 February 2011
© Springer-Verlag 2011

Abstract The routing of traffic between Internet domains,
or Autonomous Systems (ASes), a task known as interdo-
main routing, is currently handled by the Border Gateway
Protocol (BGP, Rekhter and Li in RFC 4271 of the Inter-
net Engineering Task Force, 2006). Using BGP, ASes can
apply semantically rich routing policies to choose interdo-
main routes in a distributed fashion. This expressiveness in
routing-policy choice supports domains’ autonomy in net-
work operations and in business decisions, but it comes at a
price: The interaction of locally defined routing policies can
lead to unexpected global anomalies, including route oscil-
lations or overall protocol divergence (see, e.g., Varadhan
et al. in Comput Networks 32(1):1–16, 2000). Networking

This work was supported in part by the U.S. Department
of Defense (DoD) University Research Initiative (URI) program
administered by the Office of Naval Research (ONR) under grants
N00014–01–1–0795 and N00014–04–1–0725. An extended abstract
appeared in [5]. J. Feigenbaum was supported in part by ONR grants
N00014–01–1–0795, N00014–04–1–0725, and N00014–09–1–0757,
by NSF grants 0208972, 0219018, and 0428422, and by HSARPA
grant ARO–1756303. V. Ramachandran was supported in part
by ONR grant N00014–01–1–0795 and by NSF grants 0524139 and
0751674; work done in part while at ICSI and at the Stevens Institute
of Technology. M. Schapira was supported by NSF grant 0331548
and by grants from the Israel Science Foundation and the USA-Israel
Bi-national Science Foundation; work done in part while visiting Yale
University as a graduate student at the Hebrew University of Jerusalem.

J. Feigenbaum (B)
Yale University, New Haven, CT, USA
e-mail: joan.feigenbaum@yale.edu

V. Ramachandran
Colgate University, Hamilton, NY, USA
e-mail: vramachandran@colgate.edu

M. Schapira
Princeton University, Princeton, NJ, USA
e-mail: ms7@cs.princeton.edu

researchers have addressed this problem by devising con-
straints on policies that guarantee BGP convergence without
unduly limiting expressiveness and autonomy (see, e.g., Gao
and Rexford in IEEE/ACM Trans Network 9(6):681–692,
2001; Griffin et al. in Proceedings of 9th ACM Confer-
ence on Applications, Technologies, Architectures, and Pro-
tocols for Computer Communication (SIGCOMM’03), pp.
61–72. ACM Press, New York, 2003). In addition to taking
this engineering or “protocol- design” approach, researchers
have approached interdomain routing from an economic or
“mechanism-design” point of view. It is known that lowest-
cost-path (LCP) routing can be implemented in an incen-
tive-compatible, BGP-compatible manner (Feigenbaum et
al. in Distribut. Comput 18(1):61–72, 2005; Shneidman and
Parkes in Proceedings of 23rd ACM Symposium on Princi-
ples of Distributed Computing (PODC’04), pp. 88–97. ACM
Press, New York, 2004) but that several other natural clas-
ses of policies cannot (Feigenbaum et al. in Theor Comput
Sci 378(2):175–189, 2007; Feigenbaum et al. in Distribut
Comput 18(4):293–305, 2006). In this paper, we present the
first example of a class of interdomain-routing policies that
is more general than LCP routing and for which BGP itself is
both incentive-compatible and guaranteed to converge. We
also present several steps toward a general theory of incen-
tive-compatible, BGP-compatible interdomain routing.

Keywords Inter domain-routing protocols · BGP ·
Algorithmic mechanism design · Routing policies

1 Introduction

1.1 Interdomain routing

The Internet comprises many separate administrative
domains known as Autonomous Systems (ASes). Routing

123

Author's personal copy

302 J. Feigenbaum et al.

occurs on two levels, intradomain and interdomain, imple-
mented by two different sets of protocols. Intradomain-
routing protocols, such as OSPF [19], compute routes
within a single AS. Interdomain routing, currently han-
dled by the Border Gateway Protocol (BGP) [21], computes
routes between different ASes. For many years, interdo-
main routing has been studied by computer scientists from
an engineering or “protocol-design” perspective, and, more
recently, it has been studied from an economic or “mech-
anism-design” perspective as well. Combining algorithmic
and economic considerations in the study of interdomain
routing is very natural, because the many separate domains
that make up the Internet really are independent economic
agents that execute a distributed algorithm in order to choose
routes.

In their seminal paper [20], Nisan and Ronen gave the
following formulation of interdomain routing as a mechan-
ism-design problem: Each AS incurs a per-packet cost for
carrying traffic, where the cost represents the additional load
imposed on the internal AS network by this traffic. To com-
pensate for these incurred costs, each AS is given a payment
for carrying transit traffic, which is traffic neither originating
from nor destined for that AS. It is through these costs and
payments that consideration of “incentive compatibility” was
introduced to the interdomain-routing framework, which, as
currently realized by BGP, does not explicitly consider incen-
tives. The goal in [20] was to optimize the use of network
bandwidth by routing packets along lowest-cost paths (LCPs)
and to do so with a truthful mechanism that can be com-
puted in polynomial time. Nisan and Ronen observed that
the Vickrey-Clarke-Groves (VCG) mechanism, well known
to be truthful, solves the LCP mechanism-design problem
and can be computed in polynomial time.

Many researchers have followed up on Nisan and Ronen’s
original work, including Feigenbaum, Papadimitriou, Sami,
and Shenker [4], who showed that lowest-cost paths and
VCG payments could be computed in a “BGP-compati-
ble” fashion, i.e., computed by a distributed algorithm that
requires fairly small modifications to the (already universally
deployed) Border Gateway Protocol.

Although it was viewed as a step forward in our under-
standing of the interplay of engineering, algorithmics, and
economics in interdomain routing, the work in [4] was by
no means a fully satisfactory solution. In particular, one of
the valuable features of BGP is that it allows ASes to choose
interdomain routes according to semantically rich policies
that meet their operational and business requirements; LCP
routing is just one example of a valid policy, and, in practice,
many ASes do not use it [1]. Thus, it is natural to ask whether
more expressive interdomain-routing policies admit truthful,
BGP-compatible computation of routes and payments. Previ-
ous work on this question was discouraging, producing only
negative results, i.e., proofs that various natural classes of

policies did not admit such computation; we give pointers to
some examples in Sect. 1.4 below.

In this paper, we continue the work begun in [4] and give
the first positive result along these lines by exhibiting a nat-
ural class of routing policies strictly more general than LCP
for which routes and payments can be computed in a truth-
ful, BGP-compatible manner. A fortiori, we exhibit such a
class for which BGP itself is guaranteed to converge and is
incentive-compatible.

1.2 Routes and policies

We now give a short and informal explanation of the inter-
domain-routing problem so that we can state our main results
in Sect. 1.3 below. The problem is presented more formally
and in considerably more detail in Sect. 2.

An interdomain-routing instance consists of an AS graph
G and a set of routing policies. In the vertex set of G, there
are n source nodes {1, . . . , n} and a destination node d �∈
{1, . . . , n}, each representing an AS. Each source AS i has
a routing policy, in part given by a real-valued function vi

defined on the set of routes (i.e., simple paths) from i to d
in G. The value that source AS i assigns to route R captures
the desirability, from i’s point of view, of packets’ traveling
from i to d along R. For example, in an instance of LCP
routing, vi (R) = −cost (R), for all i and R.

In a path-vector routing protocol, of which BGP is an
example, a confluent tree of routes to d is built up, round by
round, as nodes pass route announcements to their neighbors.
In round 1, the process is begun by the destination d, which
announces its existence to its neighbors; each neighbor i of
d now has a route to the destination that consists of the one
link (i, d). In subsequent rounds, a node i that has a route R
to d may announce or export R to a neighbor j ; if node j
does not appear in R, then j at this point has a route through
i to d, which we denote by (j, i)R. It is important to note that
i need not inform j of every route to d that it knows about;
if it does not export R to j , then i is said to have filtered R
with respect to j . As the protocol proceeds, each AS inde-
pendently chooses from the routes that have been announced
to it, and the hope is that these choices will converge on a
stable tree of routes to d.

From a mechanism-design point of view, a natural goal is a
path-vector routing protocol that builds welfare-maximizing
routing trees, i.e., those for which the sum, over all source
nodes i , of the valuations vi (Ri) is as large as possible, where
Ri is the unique route from i to d in the final tree.

1.3 Our results

In this paper, we show that welfare-maximizing route compu-
tation is feasible for routing policies that are more expressive
than LCP. We identify three properties that together form a

123

Author's personal copy

Incentive-compatible interdomain routing 303

sufficient constraint on policies to permit the computation
of welfare-maximizing routes by any path-vector protocol
(including BGP):

1. Policy consistency: The next hop of a route is the source
AS’s immediate neighbor along that route. An AS has
a next-hop policy if it chooses among available routes
to a destination based solely on the routes’ next hops.
Next-hop policies capture an essential feature of inter-
domain routing as it is currently done: An AS cannot
control packet forwarding beyond the neighboring AS
to which it initially sends the packets. For this reason,
many researchers have studied next-hop policies in order
to gain insight into the behavior of interdomain proto-
cols [6,13,24]. Policy consistency, one of the three prop-
erties that together comprise our sufficient condition for
welfare maximization, is a generalization of next-hop
policies. Note that, although next-hop policies have been
a natural and fruitful topic of research, they are not suffi-
cient for practical use; it has been shown that uncoordi-
nated and unconstrained local configuration of next-hop
policies can produce route instability [13,24].

2. Consistent filtering: As explained in Sect. 1.2, ASes need
not announce to their neighbors all of their known routes
to a given destination; instead, an AS i may engage in
export filtering with respect to its neighbor j by not
announcing a route R to j , i.e., not offering to j the
option of sending traffic to d along the route (j, i)R.
In order to guarantee welfare maximization, we do not
allow ASes to engage in arbitrary export filtering. Spe-
cifically, the second part of our sufficient condition is
that, for all pairs i and j of neighboring ASes, i filters
consistently with respect to j , meaning that it only filters
out routes that it values less than those it announces: If
i does not announce route R to j , then vi (R) < vi (Q),
for all routes Q that i does announce to j .

3. No dispute wheel: Gao and Rexford [9] proposed con-
straints on policies that guarantee route stability with-
out global coordination. They assume that two types of
business relationships exist between neighboring pairs
of ASes: customer-provider, in which one AS purchases
connectivity from another, and peering, in which two
ASes agree to carry transit traffic to and from each oth-
er’s customers, e.g., to shortcut routes through providers.
These relationships accurately represent today’s com-
mercial Internet (see [16]), and they naturally induce
route preferences. Gao and Rexford formalized these
preferences (we review the formalization in Sect. 4.1)
and proved that they induce stable routing if there are
no customer-provider cycles, i.e., if no AS is an indirect
customer of itself. No dispute wheel, the third constitu-
ent property of our sufficient condition, is a well studied
generalization of the Gao-Rexford constraints [13].

Conversely, we show that, if any of these three properties
does not hold, the price of anarchy [17]—a measure of how
far the computed routing tree is from welfare-maximizing—
for path-vector routing is unbounded.

One important implication of our sufficient condition is
that ASes cannot do any better than executing BGP, pro-
vided that valuation functions are non-negative (or, equiva-
lently, that ASes always prefer participating in the resulting
routing tree to not participating in it). In such cases, pay-
ments are not needed to incentivize AS participation in route
computation (see [7]). Indeed, no changes to BGP are needed
at all.

In some cases, it may be necessary to incentivize ASes to
participate by paying them; for example, “backbone carriers”
that are in the business of carrying transit traffic between local
networks may need to be paid to do so. Equivalently, valua-
tion functions may assign negative values to some routes. We
give a positive result for this case by presenting the first exam-
ple of a class of policies that is more general than LCP and that
admits incentive-compatible and BGP-compatible computa-
tion of both routes and payments: next-hop policies that obey
the Gao-Rexford conditions. We use the term “BGP-compat-
ible” to mean that the protocol has the same basic structure
as BGP and that it is space-efficient, in that it requires only
a modest increase to the storage requirement of the standard
BGP; the protocol that we present does, however, require the
enhancement of BGP with signature and payment capabil-
ities. This is consistent with the use of “BGP-compatible”
in [4].

The policy-consistency, consistent-filtering, and no-dis-
pute-wheel properties are presented in detail in Sect. 3. Our
algorithm to compute routes and payments is presented in
Sect. 4.

1.4 Related work

The networking-research community’s study of BGP was
begun by Varadhan et al. [24], who showed that completely
unconstrained routing policies can result in protocol diver-
gence, i.e., protocol executions that do not produce a sta-
ble routing tree that all source ASes would continue to use,
given the alternative routes available to them. This funda-
mental observation led to the formulation of stable routing
as an NP search problem [13], the formulation of path-vec-
tor protocols as a distributed-computational model [12], and
the search for constraints on policies, e.g., the Gao-Rexford
constraints [9] and generalizations thereof [8], that guarantee
BGP convergence. Griffin et al. [11] provide the most gen-
eral formulation to date of path-vector protocol properties
and inherent tradeoffs among them. These and other works
by the networking-research community formulate the ASes’
policies as ordinal preferences on available routes: If R and Q
are routes available to source AS i , then i’s policy determines

123

Author's personal copy

304 J. Feigenbaum et al.

whether it prefers R to Q or vice versa but does not assign
numerical values to R and Q.

As explained in Sect. 1.1, Nisan and Ronen [20]
formulated the interdomain-routing problem as a mecha-
nism-design problem, and Feigenbaum et al. [4] added to
this formulation considerations of distributed computation
and BGP compatibility. The mechanism-design formulation
entailed the generalization from policies that capture ordi-
nal preferences to those that capture cardinal preferences.
For the LCP case, welfare-maximizing, incentive-compati-
ble algorithms were obtained in both centralized [20] and
distributed [4] computational models, leading naturally to
the question addressed in this paper, i.e., whether such algo-
rithms could be found for more general classes of routing pol-
icies. This question was answered in the negative for general
policy routing [6], “subjective-cost” policy routing [3], “for-
bidden-set” policy routing [3], and unconstrained next-hop
routing [6]. More precisely, it is shown in [6] that welfare-
maximizing routing trees for unconstrained next-hop policies
can be found by a polynomial-time centralized algorithm but
not by an efficient distributed algorithm. As explained in
Sect. 1.3, we present herein the first positive answer to this
basic open question from [4,20].

After our results were presented in preliminary form [5],
Feigenbaum, Schapira, and Shenker [7] used our main result
to prove that BGP is incentive-compatible even in the pres-
ence of coalitions of manipulating nodes. Levin, Schapira,
and Zohar [18] showed that following BGP may not be incen-
tive-compatible under the simpler assumption that the Gao-
Rexford conditions hold but that following a “secure” version
of BGP (in which nodes cannot lie about the presence of non-
existent routes) is incentive-compatible under Gao-Rexford.
Goldberg et al. [10] showed that the security property in [18]
may not suffice to prevent lying during route computation
when nodes’ utilities are based on the amount of traffic they
transit on behalf of others in addition to the route they are
assigned in the final routing tree.

2 Technical preliminaries

We begin this section by formally defining the interdomain-
routing problem and providing some useful notation. We then
review the Border Gateway Protocol (BGP), the standard pro-
tocol used for interdomain routing today.

2.1 Welfare-maximizing route allocation

In the interdomain-routing problem, we are given an AS
graph G = (N , L) that describes the network topology.
The set of nodes N corresponds to the ASes in the graph.
Because routes are computed independently for each desti-
nation, without loss of generality, we assume that N consists

of n source nodes {1, . . . , n} and a destination node d. The
set of links L corresponds to connections between ASes. Let
Li ⊂ 2L be the set of all simple routes (i.e., routes with no
loops) from i to d in G.

An instance I = (G,P,V) of the interdomain-routing
problem is defined by an AS graph G, a set of permitted
routes P(i)= Pi ⊂ Li for each node i ∈ [n], and the val-
uation function V (i)= vi : Pi → R of each node. Every
set Pi contains the paths in Li that are not removed from
consideration by either i itself or i’s neighbors. Every valua-
tion function vi specifies the “monetary value” of each route
R ∈ Pi from node i . We assume that vi (∅)= 0, i.e., no route
is worth nothing, and that, for all pairs of routes R1 and R2

through different neighboring nodes, vi (R1) �= vi (R2), i.e.,
there are no ties in valuations.1 The routing policy of each
node i is thus captured by vi and Pi : The only routes consid-
ered for i are those in Pi , and preference among these routes
is given by the valuation function vi .

The goal is to allocate to each source node i ∈ [n] a route
Ri ∈ Pi . The resulting route allocation Td = {R1, . . . , Rn}
should form a confluent tree to the destination d. Further-
more, we are interested in route allocations that maximize
the “total social welfare” of the nodes, i.e., we want to find
an allocation satisfying

Td = argmaxT ={R1,...,Rn}
n∑

i=1

vi (Ri).

Incentive compatibility is introduced into this problem by
attempting to incentivize truthful behavior. In particular, a
node i may have to be given some payment si (Td) for its
contribution to the routing tree Td .

We define the utility function of each node i, ui :∏
i Pi → R, to be ui (Td) = vi (Ri) + si (Td). Although

the global goal is to maximize the total social welfare, every
rational node i would only be interested in maximizing its
own utility, even if this comes at the expense of not achieving
the global goal. An algorithm (protocol) is truthful if it is in
the best interest of each node to reveal its true valuation func-
tion to the algorithm. An algorithm is incentive-compatible
(with respect to some notion of equilibrium) if it is in the
best interest of each node to comply with all the algorithm’s
instructions (with respect to the same notion of equilibrium);
compliance includes, but is not limited to, providing truthful
input of valuation functions.

A distributed model such as ours poses an inherently
different challenge for the design of incentive-compatible

1 This assumption is consistent with BGP and the model of interdo-
main routing in [13]: Because at most one route can be installed in a
router’s forwarding table to each destination, nodes have some deter-
ministic way to break ties, e.g., based on the next hop’s IP address; so,
valuations can be adjusted accordingly to match this. However, because
only one route per neighbor is considered at a time, ties in valuation are
permitted for routes through the same neighboring node.

123

Author's personal copy

Incentive-compatible interdomain routing 305

mechanisms (see [4,22]) than a centralized one. This is
because the computation is performed by the strategic agents
themselves and not by a reliable third party. In this paper, we
focus on achieving incentive compatibility in ex-post Nash
equilibrium, which has been argued to be most appropriate
for distributed-mechanism computation [22]; using this con-
cept enables the consideration of several forms of rational
manipulation other than lying about inputs (see Sect. 4.4.2
for a detailed discussion).

We are interested in efficient, distributed, and incentive-
compatible welfare-maximizing algorithms for the interdo-
main-routing problem. We require our algorithms to assume
no prior knowledge of the nodes of the topology of the net-
work.

2.2 Routing notation

First, we present some notation for the representation of
routes. A simple route is a finite sequence of consecutive
links from a source node to the destination node that con-
tains no loops (cycles). All routes in this paper are simple
unless stated otherwise. We say that node i is in route R
(or write i ∈ R) if i participates in one of the links in R.

If R is a route from j (its source) to the destination d,
and i is a node that is not in R and is adjacent to j in G, we
denote by (i, j)R the route that has (i, j) as a first link and
then follows R to the destination. We call this an extension
of R (to i). If j and k are intermediate nodes on a route R,
we denote by R[j,k] the subpath of R from j to k.

Throughout this paper, we will consider sub-instances of
the interdomain-routing problem obtained by removing one
node from the AS graph G. For every node i , we denote
by G−i the subgraph of G that contains all nodes in N
except i and all links in L except those i participates in. We
can now define I −i = (G−i ,V ′,P ′) to be a sub-instance
of the original interdomain-routing instance I , in which the
AS graph is G−i and, for each node j �= i, P ′(j)= {R ∈
P(j) | i �∈ R}, i.e., any route containing i is removed from
the permitted-route set of j , and V ′(j) is V (j) restricted
to the sub-domain P ′(j), i.e., the valuation of a permitted
route in I −i is identical to the valuation of that route in I .
We denote by T −i

d a welfare-maximizing route allocation
for I −i .

2.3 Overview of BGP

The Border Gateway Protocol (BGP) [21] belongs to the
family of path-vector protocols, the abstract properties of
which were studied in [12]. A sketch of how BGP computes
routes is shown in Fig. 1. The basic idea is that a routing
tree to a given destination is built, hop-by-hop, as knowl-
edge of how to reach that destination propagates through the

Announce
destination

BGP Router BGP RouterBGP Router

to neighborsfrom neighbors
Import routes

Choose best
route based
on policy

Export route

in routing table
Store routes

If best route
changes

If best route
is unchanged

Wait for updatesmessages
via update

BGP Router at one AS

via update
messages

Update messages between neighboring ASes

destination AS
Initialize at

Fig. 1 Route computation using BGP

network. Communication between nodes takes place through
update messages that announce chosen routes.

The process is initialized when some destination AS d
announces itself to its neighbors by sending update messages.
Then, each node i iteratively establishes routes to d by:

1. importing, via update messages, routes to d chosen by
neighbors2 and storing the routes in a routing table;

2. choosing the best route from i to d (through a neighbor
of i) among those available in the routing table based on
local routing policy; and

3. if there is a change to i’s best route, exporting the newly
selected route to all of i’s neighbors using update mes-
sages.3

At any given time, each node’s (internally stored) routing
table contains the route updates received from its neighbors,
and each node is assigned at most one best route based on
its policy. (A node may not have a best route if it has not yet
received any updates or if its neighbors have withdrawn their
routes, e.g., because of network failures). We assume that the
network is asynchronous; so, it is possible that the network
delays the arrival of update messages along selective links.

Path-vector routing has several advantages. First, as the
only routes considered are those announced by neighbors,
the protocol enforces that the route choices form a confluent
tree. Second, each node is able to maintain its autonomy by
making its route choice based on local, expressive routing
policies. Third, changes in the network due to the addition
or subtraction of nodes or links can be announced through
update messages, and routers can use alternate routes stored
in the routing table to adapt quickly. Fourth, because entire

2 Some neighbors may refuse to announce particular routes.
3 Again, nodes may not announce certain routes to certain neighbors.

123

Author's personal copy

306 J. Feigenbaum et al.

paths are announced, nodes can check for loops and exclude
them from routing tables.

Because BGP is currently the standard protocol for Inter-
net interdomain routing, we desire algorithms that are BGP-
compatible, i.e., that can be implemented using only small
modifications to BGP; in particular, we are interested in algo-
rithms that can be implemented using a message structure
similar to BGP and that operate without a significant increase
in the size or number of messages.

3 A sufficient condition for incentive compatibility

Path-vector protocols like BGP function much like an
iterative game, because, at each step of the protocol, ASes
examine the routes chosen by their neighbors and make local
decisions as to which routes are best. Convergence to some
equilibrium is thus an implicit goal of the protocol. We say
that a route allocation is stable if no node prefers changing
its allocated route to a different route that follows one of its
neighbors’ allocated routes. A stable route allocation can be
regarded as a Nash equilibrium.

Definition 1 A route allocation Td = {R1, . . . , Rn} is stable
iff, for every node i ,

vi (Ri) = argmax{(i, j)R j ∈Pi | (i, j)∈L ∧ i /∈R j}vi
(
(i, j)R j

);
i.e., the route Ri allocated to each node i is the most highly-
valued route consistent with the routes allocated to node i’s
neighbors.

However, a stable route allocation that is reached by local,
selfish decision making may not be welfare maximizing. The
price of anarchy [17], formally defined as follows, measures
how bad selfish computation can be.

Definition 2 In an instance I , let

Wselfish = min
stable Td={R1,...,Rn}

n∑

i=1

vi (Ri)

be the minimum total social welfare obtained by a stable
routing tree, and let

Wopt = max
Td={R1,...,Rn}

n∑

i=1

vi (Ri)

be the maximum total social welfare (over all routing trees).
The price of anarchy of path-vector routing on I is

Wopt
Wselfish

.

To design a welfare-maximizing path-vector protocol—a dis-
tributed protocol in which decisions are made locally and
selfishly—we must find conditions under which the price of
anarchy is 1. We develop such a condition in the remainder
of this section.

1

d

2

4

3

v1 132d 0

v1 1d 100 v2 2d 100

v2 231d 0

v3 31d 100

v3 32d 99

v4 432d 100 α
v4 431d 99

Fig. 2 A routing instance without policy consistency

3.1 Policy consistency

Our interdomain-routing problem is an optimization prob-
lem in which each node assigns cardinal preferences to
the different routes, i.e., the magnitude of valuation differ-
ence between routes is meaningful. However, BGP’s local
decision-making finds a stable route allocation based on
ordinal preferences at each node—although operators can
assign integer preferences to each route, only the rank order-
ing induced by those preferences at each node is relevant to
BGP’s decision process. This does not suffice, because the
value of BGP’s allocation, i.e., the sum of the each node’s val-
uation of the route assigned by BGP, can be much lower than
that of the optimal route allocation (that maximizes that sum).

Figure 2 shows an instance for which this is true. Assume
α > 0. Observe that the unique stable route allocation is
{1d, 2d, 31d, 431d}. However, the optimal route allocation is
{1d, 2d, 32d, 432d}. This allocation will never be chosen by
local decisions, because node 3 would prefer routing through
node 1, a route that is always available for it to choose. The
price of anarchy in this example, 1 + 1

399α, is thus arbitrarily
large.

To overcome this problem, we introduce the policyconsis-
tency property, which helps to ensure that the optimal route
allocation is stable. Informally, a node i is policy-consistent
with an adjacent node j if there are no two routes to d starting
with (i, j) such that i and j disagree about which route is
more preferred.

Definition 3 Let i and j be adjacent nodes in G. We say that
i is policy-consistent with node j iff, for every two routes Q
and R permitted at j with extensions permitted at i (i.e.,
{Q, R} ⊂ P j and {(i, j)Q, (i, j)R} ⊂ Pi):

if v j (Q) > v j (R), then vi ((i, j)Q) > vi ((i, j)R).

Definition 4 An instance is policy-consistent (“policy con-
sistency holds”) iff, for every two adjacent nodes i and j, i
is policy-consistent with j .

123

Author's personal copy

Incentive-compatible interdomain routing 307

One common example of policy consistency is next-hop
valuations, in which nodes only consider the immediate nei-
ghbor along a route:

Definition 5 For node i ∈ [n], define neighbors(i) = { j ∈
N | (i, j) ∈ L}, i.e., the set of nodes adjacent to i . If R′ ∈ L j

is a simple route from source node j , and R = (i, j)R′ is
its extension to node i , then define the next hop on R to be
next(R) = j ; i.e., the next hop of a route is the source node’s
neighbor on that route.

Definition 6 Node i ∈ [n] has a next-hop valuation function
vi iff there exists a function fi : neighbors(i) → R≥0 such
that, for every route R ∈ Pi , vi (R) = f (next(R)); i.e., the
valuation of a route depends only on its next hop.

If all nodes have next-hop valuation functions, we say
that “the instance uses next-hop policies.” Note that, while
appearing simple, next-hop policies are semantically rich
enough to permit global routing instability (see Sect. 3.3).

Another example of policy-consistent valuations are
metric-based valuations (defined in [12]):

Definition 7 Let δ : L → R>0 be a positive real-valued
function that specifies the “length” of each link (a “metric”
function). A valuation function v that is based on δ is one in
which v(Q) > v(R) iff

∑
l∈Q δ(l) <

∑
l∈R δ(l).

It is easy to see that, if all nodes’ valuations are based on
the same underlying metric function δ, then the network is
policy-consistent. In particular, if δ(l) = 1 for every link l,
then this is precisely the well known shortest-path-routing
problem.

3.2 Consistent filtering

In traditional formulations of interdomain routing, nodes are
allowed to filter routes arbitrarily when exporting updates to
or importing updates from neighbors, i.e., nodes can arbi-
trarily remove paths from consideration (restricting Pi).

Arbitrary filtering is rarely considered in the welfare-
maximizing formulation of interdomain routing. Like the
lack of policy consistency, arbitrary filtering can make the
price of anarchy unbounded, because a node may value a
route that is filtered by a neighbor much more than any other
route available. This is the case in Fig. 3, an instance with
next-hop policies (which are policy-consistent) and only one
stable route allocation. (Again, assume α > 0.) Although
node 5 generally prefers routing through node 4, the path
543d is filtered. If node 4 chooses to route through node 2,
node 5 can route through node 4, and this leads to the
optimal route allocation, {1d, 2d, 3d, 42d, 542d}. However,
this allocation is not stable, because node 4 prefers routing
through node 3. This prevents node 5 from routing through
node 4, causing node 5 to choose the only available route

d

1

2 3

4

5

f5 4 2 α
f5 1 1

543d P5

f4 3 2

f4 2 1

f4 5 0
f1 d 1

f1 5 0

f2 d 1

f2 4 0

f3 d 1

f3 4 0

Fig. 3 Next-hop policies without consistent filtering. (Because all
nodes have next-hop valuation functions, the valuations here are simply
written as mappings from neighbors to values, consistent with Defini-
tion 6)

remaining, which goes through node 1. Thus the unique sta-
ble route allocation is {1d, 2d, 3d, 43d, 51d}. The price of
anarchy in this example is 1+ 1

6α, which can grow arbitrarily
large as α → ∞.

In order to achieve our objective of welfare maximization,
we require that nodes not filter routes arbitrarily. If a node
filters a route, it must value that route less than any route that
is not filtered—this is called consistent filtering.

Definition 8 Node i filters consistently with respect to
(adjacent) node j iff any route R that is filtered from i to
j (R is permitted at i but its extension to j is simple but not
permitted at j , i.e., R ∈ Pi , (j, i)R ∈ L j , and (j, i)R /∈ P j)
is valued less highly at i than any route not filtered from
i to j , i.e., vi (R) < vi (Q) for all routes Q ∈ Pi such that
(j, i)Q ∈ P j .

We say that an instance “filters consistently” if every node
filters consistently with respect to every other adjacent node.

Remark 1 The isotonicity property studied by Sobrinho in
[23] for its relationship to optimal routing essentially com-
bines policy consistency and consistent filtering.

3.3 Robustness and dispute wheels

Although BGP attempts to find a stable route allocation,
it may not always do so; the hope is that the distributed,
independent route choices over time approach a confluent
routing tree that does not keep changing. Unfortunately, it has
been shown that anomalous interaction of local policies can
induce protocol oscillation, causing routes to change indef-
initely [24]. Therefore, an important desideratum for path-
vector protocols like BGP is convergence:

Definition 9 We say that a path-vector protocol converges
on an instance of the interdomain-routing problem if, for

123

Author's personal copy

308 J. Feigenbaum et al.

every initial route allocation and for every sequence of nodes
taking turns updating, there exists some time after which a
stable route allocation (see Definition 1) is reached, i.e., the
route chosen by each node never changes.

Even though BGP may converge when all nodes and links
are functioning, it may diverge after failures introduce topol-
ogy changes. We call the desirable property of guaranteed
convergence even in the presence of failures robustness,
which is formally defined as follows:

Definition 10 An instance of the interdomain-routing prob-
lem is robust iff, for every sub-instance obtained by removing
any set of nodes and links from the original graph, there exists
a unique stable route allocation to which a path-vector pro-
tocol converges from any initial route allocation.

Previous work has studied the effects of routing policies
on robustness, and there is an inherent trade-off in achieving
the desired autonomy and policy expressiveness at a local
level and robustness at a global level [11]. Early work con-
jectured that only shortest-paths routing might be provably
robust [24]. However, Griffin, Shepherd, and Wilfong [13]
presented a sufficient condition on policies that guarantees
robust convergence while allowing policies broader than
shortest-path routing.

This condition is called no dispute wheel. A dispute wheel
is essentially a representation of a set of nodes and their rout-
ing policies (i.e., ordinal preferences on paths) that induce
a routing anomaly. Any instance on which BGP diverges
or nondeterministically converges contains a dispute wheel;
without a dispute wheel, BGP converges to a unique, stable
route allocation on the instance and every sub-instance.

Definition 11 An instance contains a dispute wheel
(see Fig. 4) iff there exists a sequence of pivot nodes w0, . . . ,

wm−1 such that for all 0 ≤ i ≤ m (interpret subscripts mod-
ulo m):

i−1

c

Q

Q

M

i

i

i+1

a b

w

w

d

i

i+1

M

wi−1

i−1

Q

Fig. 4 A dispute wheel. Dashed lines represent routes while solid lines
represent edges; the black nodes are pivots

1 2

d

v2 2d 0

v2 21d 1 αv1 12d 1

v1 1d 0

Fig. 5 A routing instance with a dispute wheel

1. there exists a spoke route Qi ∈ Pwi ;
2. there exists a rim route Mi from wi to wi+1 such that

Mi Qi+1 ∈ Pwi ; and
3. vwi (Qi) < vwi (Mi Qi+1).

Figure 5 shows a routing instance (disagree, from [13])
with policies that induce a dispute wheel. This instance
has two stable route allocations: {1d, 21d} and {12d, 2d}.
Because the network is asynchronous, the timing of update
messages may cause BGP to converge to either of these solu-
tions or oscillate between them [13]. This anomaly is char-
acterized by the dispute wheel with pivot nodes 1 and 2, each
having the direct route to d as a spoke route and the edge to
the other pivot as a rim route. The price of anarchy in this
example is (1 + α), which can be arbitrarily bad.

The absence of a dispute wheel is, in fact, the broadest-
known sufficient condition for stability and robustness. In the
design of an incentive-compatible routing mechanism, we
want to ensure that our BGP-based routing algorithm does
reach a stable tree in some equilibrium. We now show that,
in the presence of policy consistency and consistent filtering,
having no dispute wheel in the valuations is equivalent to
robustness. We note that this is the first known necessary and
sufficient condition for robustness.

Theorem 1 A policy-consistent instance that filters consis-
tently is robust iff it contains no dispute wheel.

Proof The sufficient condition (the “if” direction) is a spe-
cific case of the main theorem in [13], which states that an
instance containing no dispute wheel is robust.

To prove the necessary condition (the “only if” direction),
we show that any policy-consistent instance that filters con-
sistently containing a dispute wheel must also contain a dis-
pute ring, which is a dispute wheel containing no repeated
nodes on its rim. Feamster, Johari, and Balakrishnan [2]
showed that an instance containing a dispute ring is not
robust.

Assume we have an instance containing a dispute wheel.
If the dispute wheel is a dispute ring, we are done; there-
fore, assume that node x appears at least twice on the rim,
and let Mi and M j be two of the rim routes containing x .
If x appears as a pivot node, then let x = i +1 or x = j +1 as
appropriate, so the rim route leads to x ; we note that x = i +1
implies that Mi [x,i+1] is empty (likewise for x = j + 1 and

123

Author's personal copy

Incentive-compatible interdomain routing 309

M j [x, j+1]). If x is not a pivot, assume the next hops of
x on Mi and M j are not the same; if they are the same,
take the next hop as the repeated node x being consid-
ered. Without loss of generality, let vx (Mi [x,i+1]Qi+1) <

vx (M j [x, j+1]Q j+1). Then, for each node y ∈ Ri [i,x] (start-
ing with the node closest to x), consistent filtering implies
that Mi [y,x]M j [x, j+1]Q j+1 ∈ P y , and policy consistency
then implies that vy(Mi [y,x]M j [x, j+1]Q j+1) > vy(Mi [y,i+1]
Qi+1). Therefore, we can contract the dispute wheel at x by
replacing the rim routes Mi , Mi+1, . . . , M j with the single
rim route Mi [i,x]M j [x, j+1]; this removes one appearance of
any nodes appearing in both Mi and M j , in particular, the
second appearance of x . Repeatedly applying this procedure
generates a dispute ring. �

3.4 Local and global optimality

The above subsections presented negative results for welfare-
maximizing routing when any one of three properties—pol-
icy consistency, consistent filtering, or robustness—is absent.
We now turn to a positive result derived from the interesting
relationship among these three properties. Recall that, if an
instance is robust, then it has a unique stable route allocation.
The following theorem states that, if all three properties hold,
then this unique route allocation is globally optimal (i.e., it
maximizes the total social welfare).

Theorem 2 In any robust, policy-consistent instance that fil-
ters consistently, there exists a unique stable route allocation
Td that is optimal (welfare maximizing), i.e.,

Td = argmaxT ={R1,...,Rn}
n∑

i=1

vi (Ri).

Proof We will use the following lemma in the proof of the
theorem. �

Lemma 1 If T = {R1, . . . , Rn} is a globally optimal allo-
cation for an instance with policy consistency and consistent
filtering, then T is stable.

Proof of Lemma 1 Assume by contradiction that T is not sta-
ble; then, by Definition 1, there are two adjacent nodes i and
j such that

vi (Ri) < vi ((i, j)R j). (1)

Let k be a node such that next(Rk) = i . Because k is policy
consistent with i , and because i and k filter consistently, (1)
implies that

vk(Rk) < vk((k, i)(i, j)R j);
by induction, this is also true for every node k′ with next hop
k in T , etc., so that every node u routing through i in T prefers
the route Ru [u,i](i, j)R j to Ru . Note that we have identified

a route allocation in which i and all nodes routing through
i are strictly better off, and all nodes not routing through i
are unaffected. This new allocation has higher total social
welfare than T ; however, this contradicts the optimality of
T . Thus, our assumption must be incorrect, and T must there-
fore be stable. �

We are now ready to prove Theorem 2. Let T be some opti-
mal route allocation. By Lemma 1, because of policy consis-
tency and consistent filtering, T is stable. However, because
of robustness, there is only one stable allocation Td [13].
Therefore, T = Td , and the unique stable allocation is also
optimal.

A locally optimal route allocation is one in which nodes
are assigned their most valued routes. Such a route alloca-
tion would best satisfy selfish nodes interested in maximizing
their own— as opposed to the total—welfare.

Definition 12 A route allocation Td = {R1, . . . , Rn} is
locally optimal iff, for every node i, Ri = argmaxR∈Pi vi (R),
i.e., every node i is allocated its highest-valued route.

The following theorem shows that the combination of
robustness, policy consistency, and consistent filtering
ensures not only global optimality but local optimality as
well.

Theorem 3 In a robust, policy-consistent instance that fil-
ters consistently, any globally optimal, stable route alloca-
tion is also locally optimal.

Proof We follow a proof technique of [23]. Consider a node
m ∈ N . Let R = ukuk−1 . . . ui . . . u0 be some simple route
in Puk , such that uk = m and u0 = d. By induction, we show
for each ui ∈ R that Si , the route for node ui in the glob-
ally optimal allocation Td , is at least as good as Ri = R[ui ,d].
When i = m we get that Sm is at least as good as R; because
R and m were chosen arbitrarily, we prove local optimality
of Td .

Base case. i = 0. The induction hypothesis is trivially true,
because the only route is the empty one.
Induction step. Assume that the induction hypothesis is true
for ui−1, i.e.,

vui−1(Si−1) > vui−1(Ri−1 = ui−1ui−2 . . . d). (2)

Note that ui does not lie on Ri−1, or R would not be simple.

Case I. Assume ui /∈ Si−1. Then extend Si−1 and Ri−1

along the edge (ui , ui−1). Consistent filtering
ensures that (ui , ui−1)Si−1 ∈ Pui ; thus, from (2)

123

Author's personal copy

310 J. Feigenbaum et al.

and policy consistency, we have

vui ((ui , ui−1)Si−1)

> vui (Ri = ui ui−1ui−2 . . . d). (3)

Td is stable; so, Si is at least as good as any other
route at ui ; in particular,

vui (Si) > vui ((ui , ui−1)Si−1). (4)

Combining (3) and (4) gives

vui (Si) > vui (Ri),

which is the induction statement for ui .
Case II. Assume ui ∈ Si−1. In this case we cannot use the

policy consistency argument as in case I, because
extending Si−1 to ui creates a loop.

Suppose the induction statement for ui is not true:
vui (Ri) > vui (Si). We can then create a dispute wheel of
size m = 2, following Definition 11, in which the pivot
nodes are w0 = ui−1 and w1 = ui . Let the spoke route from
w0 be Q0 = Ri−1 and let the spoke route from w1 be Q1 =
Si−1[ui ,d] (recall the case-II assumption that ui ∈ Si−1). Let
the rim route M0 from w0 to w1 be Si−1[ui−1,ui], and let the
rim route M1 from w1 to w0 be the edge (ui , ui−1).

The first condition in Definition 11 is satisfied because
Q0 and Q1 are permitted routes by assumption. The sec-
ond condition is satisfied because M0 Q1 = Si−1, which is
permitted because it is the globally allocated route for ui−1,
and M1 Q0 = Ri , which is permitted by assumption. The
third condition is satisfied for w0 because vw0(M0 Q1) =
vui−1(Si−1) > vui−1(Ri−1) = vw0(Q0) by the induction
hypothesis for ui−1. Finally, note that Si = Si−1[ui ,d] = Q1,
because the globally optimal route allocation is consistent
(and ui ∈ Si−1); therefore, our assumption that the induction
statement is not true exactly translates to the third dispute-
wheel condition for w1: vw1(M1 Q0) = vui (Ri) > vui (Si) =
vw1(Q1).

The presence of a dispute wheel contradicts our assump-
tion of robustness because of Theorem 1; this must mean the
induction statement is indeed true for ui . (Recall there are no
ties in valuations.) �

Remark 2 Global and local optimality also hold for sub-
instances. If any of the three properties (robustness, policy
consistency, consistent filtering) hold in an instance, they
also hold in all sub-instances. Thus, all sub-instances of an
instance satisfying the requirements of Theorems 2 and 3
also satisfy the requirements of these theorems.

The above result shows that BGP, with no modifications
or payments, converges to the unique welfare-maximizing
routing tree when nodes consistently filter and valuations
are policy-consistent and do not induce a dispute wheel.
In other words, nodes cannot do any better than executing
BGP, except in the case when nodes would prefer not to par-
ticipate in the routing tree (i.e., some node has a negative
valuation for the route it is allocated in the tree). Feigen-
baum, Schapira, and Shenker [7] used this result (from a a
preliminary version of this paper [5]) to prove that, for a sub-
class of dispute-wheel-free, policy-consistent, nonnegative
valuations, BGP is incentive-compatible in collusion-proof
ex-post Nash equilibrium. We deal with the case of negative
valuations in the next section by presenting a modification to
BGP that computes payments required to incentivize nodes
to behave truthfully.

4 A BGP-compatible, incentive-compatible algorithm
for negative valuations

Payments may be required to incentive participation if nodes
have negative valuations on routes. We now present an in-
centive-compatible, BGP-compatible algorithm to compute
routes and payments in the case of valuation functions that
may assume negative values. As explained in Sect. 1, we use
the term BGP-compatible to mean that the algorithm has the
same basic structure as BGP and that it is “space-efficient,” in
that it requires only a modest increase to the storage require-
ment of the original BGP. (This is consistent with use of the
term in [4].)

Previously, a positive result in the presence of negative
valuations was known only for (LCP) LCP policies [4]. Here
we expand the class of policies that admits a positive result:
next-hop routing that obeys the Gao-Rexford conditions for
global stability.

4.1 Policies for the commercial internet

Next-hop policies (Definition 6) are those in which AS route
preferences are based only on the neighbor to which packets
are forwarded. It has been studied in the interdomain-rout-
ing literature, because it captures the property that, in today’s
standard IP forwarding, an AS does not control a packet once
it has been delivered to a neighboring AS. Although it is a
conceptually simple class of policies, it is sematically rich
enough to permit global routing instability [24], and it does
not permit incentive-compatible, BGP-compatible, welfare-
maximizing routing [6]. Thus, in this paper, we start with
next-hop routing and add additional restrictions to obtain a
positive result. The additional restrictions that we add have
been studied previously; none is introduced here for the first
time.

123

Author's personal copy

Incentive-compatible interdomain routing 311

One well studied set of constraints assumes that a business
hierarchy underlies the AS graph and that policies are based
on the economic nature of this hierarchy. Huston’s study of
the commercial Internet [16] suggests two types of business
relationships that characterize AS inter-connections: Pairs
of neighboring nodes have either a customer-provider or a
peering relationship. Customers pay their provider nodes
for connectivity—access to Internet destinations through the
provider’s links and announcement of customer destinations
to the rest of the Internet. Peers are nodes that find it mutu-
ally advantageous to exchange traffic for free, e.g., to shortcut
routes through providers. A node can be in many different
relationships simultaneously: It can be a customer of one or
more nodes, a provider to others, and a peer to yet other nodes.
These agreements are assumed to be longer-term contracts
that are formed because of various external factors, e.g., the
traffic pattern between two nodes.

Intuitively, these business relationships naturally induce
routing policies. Gao and Rexford [9] formally modeled
these relationships and policies with the following three
conditions.

No customer-provider cycles: Let GCP be the digraph with
the same set of nodes as the AS graph G and with a directed
edge from every customer to its provider. We demand that
there be no directed cycles in this graph. If this requirement
is met, we say that “the AS graph contains no customer-
provider cycles”. This demand is a natural economic assump-
tion, because, if there is a cycle in GCP, then a node is indi-
rectly its own provider.
Prefer customers to peers and providers: A customer route
is a route in which the next-hop AS is a customer. Provider
and peer routes are defined similarly. We require that nodes
always prefer (i.e., assign a higher value to) customer routes
over peer and provider routes. This has an economic justifica-
tion given the financial agreements underlying the business
relationships: Providers want to maintain traffic flow along
links for which they are paid, and customers want traffic along
routes they announce (otherwise, they would not announce
them).
Provide transit services only to customers: Nodes do not
always carry transit traffic—traffic that originates and ter-
minates at hosts outside the node. An AS is obligated (by
financial agreements) to carry transit traffic to and from its
customers, but it does not carry transit traffic among only pro-
viders and peers, because it receives no payment for doing
so. Therefore, we require that nodes announce only customer
routes to their providers and peers but announce all of their
routes to their customers.

Using the terminology and notation of Sect. 2, we formally
define the Gao–Rexford conditions as follows:

Definition 13 The Gao–Rexford conditions hold iff the AS
graph contains no customer-provider cycles, and, for all
nodes i ∈ [n], the following hold for all pairs of nodes
{ j, k} ⊂ neighbors(i) and for all pairs of routes {R j , Rk} ⊂
Pi such that next(R j) = j and next(Rk) = k:

1. If j is a customer and k is not, then vi (R j) > vi (Rk).
2. If neither j nor k is a customer, then (j, i)Rk /∈ P j and

(k, i)R j /∈ Pk , because i does not export Rk to j or R j

to k. If j is a customer, then, whatever i’s relationship
to k, R j is exported to k, and Rk is exported to j . Thus,
if j is a customer, (k, i)R j ∈ Pk if permitted by k, and
(j, i)Rk ∈ P j if permitted by j .

The Gao–Rexford conditions limit the types of routes
available to ASes. Specifically, if a node i receives a route
announcement from one of its customers, then every AS on
that route is a provider of its next hop on that route.4 This is
because ASes export only customer routes to their providers.
If R is a customer route at i with next hop j , then j must
have announced the route to i , its provider; thus, R must
be a customer route at j . This argument can then be applied
inductively along R, implying that R consists entirely of pro-
vider-customer links.

It was proven in [9] that, if all nodes obey the Gao–Rexford
conditions, enforced naturally by Internet economics, BGP
predictably converges to a stable routing tree, even after node
and link failures. Later work [8] showed that the Gao-Rexford
conditions imply the no-dispute-wheel property introduced
by [13] and reviewed earlier in Sect. 3.3. In addition, the Gao–
Rexford conditions enforce consistent filtering: All routes
are announced to customers, and only non-customer routes
(which are valued less than customer routes) are filtered to
peers and providers. These remarks—along with the property
that next-hop policies are policy-consistent (see Sect. 3.1)—
prove the following proposition, which states that the policies
outlined in this subsection satisfy the requirements of Theo-
rems 1–3.

Proposition 1 An instance with next-hop policies that obey
the Gao–Rexford conditions is policy-consistent, filters con-
sistently, and has no dispute wheel.

4.2 The algorithm

The following algorithm is an extension to BGP that com-
putes routes and payments for incentive-compatible, welfare-
maximizing routing when policies are next-hop based and
obey the Gao–Rexford conditions.

4 This property is similar to the valley-free property described in [8].

123

Author's personal copy

312 J. Feigenbaum et al.

4.2.1 High-level overview

The mechanism implemented by the algorithm belongs to the
Vickrey-Clarke-Groves (VCG) family of mechanisms, just
as previous routing mechanisms have (e.g., the algorithms
in [20] and [4]). The payments issued by this mechanism
essentially compensate each node for its contribution to the
routing tree; intuitively, this can be determined by consid-
ering the best routing tree available when that node is not
present in the AS graph (i.e., when it refuses to carry any
transit traffic). Although this can trivially be done by run-
ning BGP n additional times—on the n AS graphs obtained
by removing each of n nodes from the original—our algo-
rithm accomplishes this by modifying a single run of BGP.
The payments and their analysis are discussed more fully in
Sect. 4.3 below.

The algorithm computes best routes in essentially the same
manner as BGP, but it adds extra information to update mes-
sages so that nodes can compute the mechanism’s payments
once the routes have been determined. This information is
also stored in nodes’ routing tables, requiring one extra bit
of storage for every transit AS on an imported route. These
bits are used to determine the next hop of the best k-avoid-
ing route—the best route in I −k , i.e., for the instance in
which node k does not participate—for every transit node k
on the best route for each node in I . These next hops are used
directly in computing payments and can be stored using one
extra row in the routing table, denoted Li below. The extra
bit per transit node in each row of the routing table and the
extra row used to store the next hops require a constant-fac-
tor increase in the space complexity of the original BGP; a
similar amount of extra storage was used by the algorithm
described in [4] for lowest-cost-path routing and satisfies the
condition of “BGP compatibility” put forth in that paper.

The dynamics of the algorithm can be summarized as fol-
lows. Computation of best routes and k-avoiding next hops
is triggered when nodes receive update messages, just as in
BGP (see Sect. 2.3). Update-message processing is divided
into two cases: (I) the message is from the most valued neigh-
bor that has yet sent a message, in which case the route con-
tained in the message is chosen as the best route; and (II) the
message is not from the most valued neighbor that has yet
sent a message, in which case the extra bits in the message
are used to update the choices of the best k-avoiding next
hops. Unlike BGP, if node x chooses node y as its next hop,
an update message is still sent from x back to y; this extra
message is used to convey availability to y of k-avoiding
routes through x and is processed using case (II).

4.2.2 Input and output

Input: An instance of the interdomain-routing problem
with next-hop policies obeying the Gao-Rexford conditions.

As in Definition 6, we assume that each node i ∈ [n] has
a function fi : neighbors(i) → R≥0, such that vi (R) =
fi (next(R)).
Output: A route allocation Td = {R1, . . . , Rn} that forms
a confluent tree to d, such that the tree maximizes the total
social welfare, i.e.,

Td = argmaxT ={R′
1,...,R′

n}
n∑

i=1

vi (R′
i),

and a payment si to each node i .

4.2.3 Communication and storage

Structure of Update Messages: An update message m sent
by node i contains a route Rm ∈ Pi and, for every transit
node k ∈ Rm (k /∈ {i, d}), a bit Bm(k). Bm(k) = 1 if i has,
in its routing table, a k-avoiding route to d, i.e., some per-
mitted route R ∈ Pi such that k /∈ R. These bits are used to
populate the list Li , defined below, that is used to compute
the mechanism’s payments.
Storage at Each Node: Each node i has a routing table Yi

indexed by neighbors of i . If j ∈ neighbors(i), then let Yi (j)
be the most recent update message sent by node j , so that at
most one announced route is stored per neighbor. Initially,
Yi (j) = ∅ for all j . Each node i also has a list Li , defined as
follows: Assume the current best route at i is Ri ; if k ∈ Ri

is a transit node (k /∈ {i, d}), then Li (k) = next(R′), the
next hop on the best k-avoiding route R′ in i’s routing table.
Li (k) will be used, at the end of the algorithm, to compute
the component of the payment to node k that is attributable to
node i , denoted si

k . Table 1 shows an example of the storage
at each node.

4.2.4 Execution of the algorithm

Start: AS d sends update message m = (d,∅) to all neigh-
bors.
Update-Message Processing: Let m = (Rm, Bm) be the
update message received at node i from j ∈ neighbors(i).
If (i, j)Rm /∈ Pi and next(Rm) �= i (the route is not permit-
ted), then discard the message. Otherwise, (i, j)Rm ∈ Pi or
next(Rm) = i , and the update message should be stored in
the routing table so that Yi (j) = (Rm, Bm).

(Case I) Suppose that the update message is received from
the most valued neighbor so far, i.e., next(Rm) �= i
and

fi (j) = max
{ j ′∈neighbors(i)|Yi (j) �=∅}

fi (j ′).

123

Author's personal copy

Incentive-compatible interdomain routing 313

Table 1 An example routing table for node 5 in Fig. 2 using the algorithm from Sect. 4.2

Dest. Valuation L5(4) = 1 L5(3) = 4 → Lz : best k-avoiding next-hop ASes for transit k on the best route

d v5(43d) = 2 + α AS 4 AS 3 → R4, the route chosen by neighbor AS 4; the current best route

B4(3) = 1 → B4, the bit vector sent with update from neighbor 4

d v5(1d) = 1 AS 1 → R1, the route chosen by neighbor AS 1

→ B1, the bit vector sent with update from neighbor 1, is empty

Assume in Fig. 2 that no routes are filtered and that all links are customer-provider links, where the AS with the greater number is the provider

Then, either Rm is a new best route to d (i.e., Rm is the new
Ri) or the neighbor exporting Rm has an updated bit vec-
tor Bm . Reset Li to empty and, for each k ∈ Rm such that
k �= d, do the following to repopulate Li : If Bm(k) = 1,
then set Li (k) = j (if node j has a k-avoiding route, then it
is recorded as the best next hop when k cannot be used for
transit); if Bm(k) = 0 or k = j , then:

1. Let A = neighbors(i) − { j} and let

a = argmax{a′∈A|Yi (a′) �=∅} fi (a
′)

be the most valued node in A. Let (Ra, Ba) = Yi (a) be
the routing-table entry for a.

2. If k /∈ Ra , then set Li (k) = a.
3. If not, k ∈ Ra . If Ba(k) = 1, then set Li (k) = a.
4. If Li (k) has still not been set, then repeat at (1) with

A = A − {a}. Discontinue repeat if A = {a}, i.e., if
there would be no nodes left in A.

Finally, set Ri = (i, j)Rm . (Because j is the most valued
neighbor to send an update so far, its route is the best route
so far.)

(Case II) Suppose that the update message’s source j is not
the most valued neighbor that has communicated
so far, i.e., next(Rm) = i or

fi (j) �= max
{ j ′∈neighbors(i)|Yi (j) �=∅}

fi (j ′).

For each current transit node k ∈ Ri (k /∈ {i, d}), set Li (k) =
j if j has a k-avoiding route and j is more valued than Li (k),
the current best k-avoiding next hop; i.e.:

1. fi (j) > fi (Li (k)); and either
2a. k ∈ Rm and Bm(k) = 1; or
2b. k /∈ Rm .

If any changes were made to Li in either of the cases
above (including any time case I was triggered), then send
update messages m′ = (Ri , B ′

m) to all neighbors of i , where
B ′

m(k) = 1 if Li (k) �= ∅ (there is a k-avoiding route known)

and B ′
m(k) = 0 if Li (k) = ∅ (there is no k-avoiding route

known). (If Ri is a non-customer route and neighbor n is
also a non-customer, then the update message (∅,∅) should
be sent to comply with the Gao-Rexford conditions, implying
a withdrawal of the previous route. Note that, in Lemma 2
below, we prove that a withdrawal will never happen.)

Payment Computation: Once the algorithm converges,
each node i can compute the payment component
si

k = fi (next(Ri))− fi (Li (k)) for every transit node k ∈ Ri

(k /∈ {i, d}), which is the component of the total payment
to k that is attributable to i . The total payment to each
node k is then the sum of all the payment components to
k: sk = ∑

i �=k si
k .

In the following subsection we analyze the algorithm pre-
sented above and discuss its properties.

4.3 Convergence, optimality, and BGP compatibility

We now show that, on instances that obey the Gao-Rexford
conditions, and where all source nodes have next-hop pol-
icies, the following properties hold for the algorithm in
Sect. 4.2:

1. It converges, i.e., there exists a time after which route
choices have settled on a unique, stable route allocation
(in the sense of Definition 1).

2. It outputs a route allocation that optimizes the social wel-
fare.

3. It is BGP-compatible, in the sense that it entails only a
constant-factor increase in space complexity over BGP.
To show this we establish that our algorithm requires
only slight modification to BGP messages (with a limited
increase in message size).

4.3.1 Convergence

Theorem 4 The algorithm in Sect. 4.2 is robust on instances
with next-hop policies that obey the Gao–Rexford condi-
tions, i.e., it converges in finite time to a unique, stable route
allocation.

123

Author's personal copy

314 J. Feigenbaum et al.

Proof This theorem follows from more general results dis-
cussed in Sect. 3. In the algorithm, routes are chosen exactly
as they are in BGP; by Proposition 1 and Theorem 1, the
theorem statement is true for BGP on the instances being
considered. However, the update-message dynamics of the
algorithm differ from BGP in two ways, and we must recon-
cile these differences for the result to apply to the algorithm.

The first difference is the lack of withdrawal messages in
the algorithm. In both the algorithm and in BGP, an update
message is sent from i to j when a new best route is cho-
sen at i . In BGP, this message either (1) contains the new
route (if i can export its choice to j), or (2) contains a with-
drawal (if i cannot export its choice to j). In the algorithm, (1)
still occurs, but (2) does not. However, the following lemma
shows that this is irrelevant: For valuations obeying the Gao-
Rexford conditions, withdrawal messages are never sent.

Lemma 2 If, at some time, node a sends node i an update
message (Rm, Bm) such that Rm �= ∅, i.e., node a exports
a route to node i , and we assume there are no failures, then
at any future time, there will exist a route Ra in i’s routing
table, such that next(Ra) = a.

Informally, this lemma means that once a node exports a
usable route to a neighbor (where “usable” means allowed by
the Gao-Rexford conditions), any route chosen by the node
will be a usable route for that neighbor. Therefore, route with-
drawals are unnecessary; routes are only replaced with new
(usable) routes.

Proof of Lemma 2 Changes to the routing table are update-
driven. A change, due to a new update or withdrawal, will
only be sent if a switches from Rm to some other route Ra .
We must show that, in this case, an update message with Ra

is sent to i , and a withdrawal is not sent.
If a is a provider of i , then a will export Ra to i . There-

fore, we can assume, without loss of generality, that a is a
peer or customer of i ; then Rm must be a customer route of
a, or it would not have been sent to i . If a switches to Ra

because va(Ra) > va(Rm), then Ra must also be a customer
route, and it will be exported to i . If not, then Rm must have
been withdrawn. (If it was replaced, next-hop policies dictate
that va(Ra) = va(Rm), and that route will be exported to i .)
In this case, its customer c = next(Rm) switched to a route
that was filtered; but, this new route must be a non-customer
route at c. Because it is less valued than the customer route
Rm [c,d], that switch must have also happened because of a
withdrawal, and these same arguments apply. This could con-
tinue downstream to d, but the last link must be a customer
route that is always available; this leads to a contradiction.

�

Given Lemma 2, the convergence to a stable route

allocation implied by Theorem 1 for BGP also applies to

our algorithm instances that obey the policy restrictions in
Sect. 4.1, because the dynamics of route choices made by
our algorithm (for the original instance I) are the same as
BGP.

The second difference is that the algorithm sends addi-
tional messages to find next hops in sub-instances I −k , where
k ∈ [n]. In particular, update messages are sent whenever the
availability of k-avoiding routes changes (i.e., some change
in the list Li). These messages are not used in BGP; so, to
prove that the algorithm converges, we must show that they
eventually stop as well.

First, note that the Gao-Rexford conditions hold for sub-
instances if they hold for the original instance; therefore, a
unique, stable routing tree exists for each sub-instance, and
route withdrawals are unnecessary. Second, because valua-
tions are next-hop based, only the availability of a k-avoiding
route through a given neighbor needs to be known, not the
route itself. (This is why the algorithm only sends a bit vec-
tor of availability.) But, because routes are never withdrawn,
once a neighbor indicates that a k-avoiding route is avail-
able, a k-avoiding route through that neighbor will always
be available. Because there are a finite number of neighbors,
k-avoiding-route availability can improve only a finite num-
ber of times. Thus, at some point along every edge, update
messages will no longer be sent.

This means the algorithm will converge on the instances
considered, and, by Proposition 1 and Theorem 1, its output
is the unique, stable route allocation. �

4.3.2 Welfare maximization

Theorem 5 The routing tree Td output by the algorithm in
Sect. 4.2 maximizes the total social welfare on instances with
next-hop policies that obey the Gao-Rexford conditions.

Proof This result also follows from more general results pre-
sented in Sect. 3. By Proposition 1 and Theorem 2, the unique
stable route allocation is welfare-maximizing. By Theorem 4,
the algorithm is robust on instances with next-hop policies
that obey the Gao-Rexford conditions; thus, it converges and
outputs that unique stable route allocation. �

4.3.3 BGP compatibility

We are left with showing that the algorithm is BGP-compat-
ible. In addition to the routing-table storage required by the
original BGP, this algorithm requires, at node i , storage of:

1. the bit Bm(j) for every j ∈ Rm sent in an update message
m stored at i ; and

2. the next hops on the currently best known k-avoiding
routes for every k ∈ Ri , where Ri is the current best
route to d.

123

Author's personal copy

Incentive-compatible interdomain routing 315

This requires one additional bit per transit AS, per row (i.e.,
per update message) in the routing table and one additional
row to store the next hops. This amounts to a constant-factor
increase in space complexity and fulfills our requirements
for BGP compatibility.

4.4 Incentive compatibility

We now prove that our algorithm is incentive-compatible.
We first prove this result in a restricted, centralized model
and then use it to prove incentive compatibility in a more
general, distributed model.

4.4.1 Centralized model

To prove that our algorithm is incentive-compatible in ex-post
Nash equilibrium, we first consider the following central-
ized (and unrealistic) model. The nodes are communicating
directly with some trusted central entity (“the mechanism”).
Each node reports its valuation function to the mechanism,
which then runs the algorithm in Sect. 4.2, simulating the
nodes’ actions, to compute the route allocation and the nodes’
payments.

Classical results in microeconomic theory (see [14]) estab-
lish that Vickrey-Clarke-Groves (VCG) payments guarantee
the strongest possible result for this centralized model: truth-
ful reporting by all nodes leads to a dominant-strategy equi-
librium. That is, a rational node’s best strategy is to report
its true preferences regardless of the valuation functions
reported by the other nodes. Hence, a node need not make
any assumptions about the other nodes’ behavior or have any
a priori knowledge about their preferences. Intuitively, the
VCG payment to each node i is the increase in the social
welfare of the other nodes caused by i’s participation in the
algorithm.

In the language of microeconomic theory, a centralized
algorithm in which truth telling is a dominant-strategy equi-
librium is called strategyproof. We prove that our algorithm
is strategyproof by showing that it is a member of the VCG
class.

Theorem 6 The algorithm in Sect. 4.2 is strategyproof.

VCG payments are expressible as

pk =
∑

i �=k

vi (Ri) − hk

(
T −k

d

)
, (5)

in which hk(·) is an arbitrary function of T −k
d . Note that this

implies that every strategic agent’s payment must depend
solely on the other agents.

We define the payment to each node to be

sk =
∑

i �=k

vi (Ri) −
∑

i �=k

vi

(
R−k

i

)
, (6)

where Ri is the route allocated to i in Td , and R−k
i is the

route allocated to i in T −k
d . Note that, if

hk

(
T −k

d

)
=

∑

i �=k

vi

(
R−k

i

)

in (5), then pk = sk .
The key observation is that these payments can be “broken

down” into components computed by the different nodes (in
a distributed fashion). Loosely speaking, node i’s component
in the payment to node j corresponds to j’s contribution to
i’s welfare—the difference in the values i assigns to the paths
he gets with and without j . These components are computed
during the algorithm, and the final payment is the sum of pay-
ment components computed once the algorithm converges.

Definition 14 The payment component for j attributable to
i is

si
j = vi (Ri) − vi

(
R− j

i

)
,

and the payment to each node k is

sk =
∑

i �= j

si
k .

It is easy to verify that the payment sk in Definition 14 is
the same as that in (6).

Payment components must be computed for transit nodes
only; if j is not a transit node on i’s best route, i.e., j /∈ Ri ,
then Ri = R− j

i , and si
j = 0. We now show that, at the

end of the algorithm, each node i has enough information to
compute si

j for all transit nodes j . Because preferences are

next-hop based, si
j = vi (Ri) − fi (Li (j)), where fi is the

next-hop valuation as in Definition 6. Thus, Theorem 6 will
follow from the fact that Li (j) is the next hop of the best j-
avoiding route computed by the algorithm, which we prove
in Theorem 7.

Theorem 7 For every source node i , the node Li (k) in the
algorithm in Sect. 4.2 is the next hop of the optimal route for
i in G−k .

Proof We shall require the following four lemmas.

Lemma 3 If j is the optimal next hop for i , and, for some
k ∈ [n], j has a k-avoiding route, then the next hop of the
optimal k-avoiding route at i is also j .

This lemma justifies the step in the algorithm that immedi-
ately sets k-avoiding next hops whenever an update message
containing a new best route is received.

Proof of Lemma 3 By Theorem 3, if j is the optimal next
hop, then

j = argmaxa∈neighbors(a) fi (a).

123

Author's personal copy

316 J. Feigenbaum et al.

Therefore, if j has a k-avoiding route R for some k ∈ [n],
then vi (R) = fi (j) ≥ fi (next(R′)) for all other k-avoiding
routes R′. Thus j is also the next hop of the optimal k-avoid-
ing route at i . �

Lemma 4 If node i has not received an update message from
neighbor a, then either node a’s route in I −k (for any k ∈ [n])
cannot be exported to i , or node a has no route in I −k .

This lemma means that neighbors with k-avoiding routes
permitted at i will send update messages to i ; information
from neighbors that do not send update messages to i is irrel-
evant in computing payment components.

Proof of Lemma 4 If a is routing through i , then a will send
an update message if it has any k-avoiding routes available.
Thus, without loss of generality, we can assume that a is not
routing through i .

If a has not sent an update message to i because it has not
learned any paths to d, then a also has no k-avoiding routes
to d.

The remaining case is that a has not sent an update mes-
sage to i because it cannot announce its route Ra to i . In this
case, i must not be a customer of a, and next(Ra) is also not
a customer of a. If k /∈ Ra , then Ra is a k-avoiding route,
but a cannot export it to i because next(Ra) and i are both
non-customers.

If k ∈ Ra , then a may choose a different route R−k
a in

I −k . If R−k
a is a non-customer route, then it is still unusable

by i , which explains who no update was sent. If R−k
a is a

customer route, then it must not be available to a when k
is present; otherwise, a would choose it over the non-cus-
tomer route Ra . But this is not possible, because every link
(u, w) ∈ R−k

a is a customer link, including the last link to d.
This means that the route must be exported up the chain of
providers to node a at all times, which leads to a contradic-
tion; therefore, R−k

a cannot be a customer route at node a,
which makes it unusable by node i . �

Lemma 5 If k /∈ Ra (the route allocated to a by the algo-
rithm for the original instance I) and (i, a)Ra ∈ Pi , then
there exists a route R−k

a ∈ Pa such that (i, a)R−k
a ∈ Pi for

the sub-instance I −k .

This lemma addresses availability of k-avoiding routes.
Although a node may choose a k-avoiding route as its best
route for I , it may be that downstream changes prevent it
from choosing that route in the sub-instance I −k ; in fact, it
is possible that no k-avoiding route is available. This lemma
excludes this possibility. The algorithm uses this fact to pop-
ulate the lists Li .

Proof of Lemma 5 If no node j ∈ Ra chooses a different
path (other than R j) when k is not present, then Ra itself
is a k-avoiding path usable by i . If some downstream node

j switches to a different path R′
j when k is removed, then

the path Ra [a, j] R′
j should be usable at i , unless it is filtered

somewhere between j and i .
Assume this happens. The relationships among nodes

between j and i have not changed: Because these nodes orig-
inally propagated R j , they would also propagate R′

j ; there-
fore, j itself must filter R′

j . This means that R′
j must be a

non-customer route, and the node upstream of j towards a
must also be a non-customer. But because R j was not filtered,
it must be a customer route. Because v j (R j) > v j (R′

j) in
this case, j would never have switched to R′

j upon removal
of k unless R j was filtered downstream of j . However, this
same argument applies to all downstream nodes (which must
all be customers); because the last link adjacent to d must be
a customer link and the direct route is always exported, this
leads to a contradiction. �

Lemma 6 Given some fixed k, it is not possible to have
Li (k) = j and L j (k) = i at the same time.

In the algorithm, nodes send their k-avoiding-route avail-
ability to their neighbors. This lemma precludes the possi-
bility that two nodes choose each other as their k-avoiding
next hop.

Proof of Lemma 6 If i is a customer of j , then the only routes
exported to j are customer routes. Therefore, if i exports a
k-avoiding route R to j such that j considers (j, i)R its best
k-avoiding route, R is a customer route at i . This implies
fi (next(R)) > fi (j); so, Li (k) �= j . The same argument
works, by symmetry, if j is a customer of i .

If i and j are peers, then the only routes they export to each
other are customer routes. Assume that each node chooses
the other as a best k-avoiding next hop; then each must have
a customer route exported to the other. But those customers
would be better choices for k-avoiding next hops, contradict-
ing the assumption. �

We are now ready to prove Theorem 7. We have already
shown that the algorithm converges and that, when it does,
the route choice is optimal; thus, every node i receives a route
through its most highly valued neighbor j . From Lemma 2,
we know that, once i learns a route through j , it always has
a current update message from j ; update messages are sent
whenever a change to the best route or the best k-avoiding
next hop (for any k) occurs.

For each k, consider the entry Li (k) that is in the list when
the algorithm converges. These entries have been populated
in the following way. Li (k) = j if B j (k) = 1 or k /∈ (i, j)R j ;
i.e., Li (k) = j if j has a k-avoiding route. By Lemma 3, if
j has a k-avoiding route for some k, then this entry Li (k) is
optimal.

123

Author's personal copy

Incentive-compatible interdomain routing 317

If B j (k) = 0 and k ∈ (i, j)R j , then j does not have a
k-avoiding route. In this case, the algorithm sets Li (k) to be
the most valued neighbor m that has sent an update message
(Rm, Bm) in which either k /∈ Rm or Bm(k) = 1. First, we
show that the algorithm chooses the most valued neighbor;
then we show that the neighbor has a k-avoiding route.

By Lemma 4, we must only consider neighbors that send
update messages as candidates for the optimal k-avoiding
next hop; thus, the algorithm is not excluding viable choices
by examining update messages alone. The entry for Li (k) is
set in either case I or case II of the algorithm. If set in case
I, the entry is the most valued neighbor because the latest
update messages are scanned in decreasing order of valua-
tion; the scan is accurate because case I resets Li and then
examines the most recent update messages. If set in case II,
the entry is the most valued because Li (k) is only set when an
update message is received from a neighbor more valued than
the previous Li (k), which was either set by a case-I or case-II
message; thus, at convergence, the entry will represent the
most valued neighbor with a k-avoiding route.

By Lemma 5, if k /∈ Rm , then m must have a k-avoiding
route usable by i , and the algorithm does not need to scan
Bm . If Bm(k) = 1, the update message from m itself states
that m has a k-avoiding route. Therefore, the neighbor chosen
for Li (k) certainly has a k-avoiding route.

Finally, Lemma 6 and the Gao-Rexford conditions assure
us that the next hops chosen at different nodes do not create
routing loops; thus they are consistent with a tree. �

4.4.2 Distributed model

We have thus far considered a centralized model in which
nodes report valuations to a trusted mechanism that then com-
putes the route allocation and payments. We now turn our
attention to the distributed model, in which the computation
is executed by the strategic agents themselves (in our case,
the ASes). The distributed model is strictly less restrictive
than the centralized model above. As in the centralized case,
a node can pretend to have another valuation function, sim-
ply by following the specification of the algorithm as if its
valuation function were different. However, in the distributed
model, a node also has other forms of “manipulation” avail-
able to it: making bogus route announcements to other nodes,
announcing inconsistent information to different neighbors,
inconsistently filtering, and more. Thus, incentive compati-
bility in the distributed model requires stronger assumptions
than in the centralized model.

The techniques and assumptions we use to prove incen-
tive compatibility in the distributed model follow closely the
work of Shneidman and Parkes [22]. We show that a node
cannot benefit by deviating from the information-revelation,
communication, and computational actions it is instructed

to perform by the protocol.5 We assume an environment in
which there exists a unique trusted node called “the bank”
that functions as a non-strategic accounting and charging
infrastructure, communicates with the strategic source nodes
across the network, and can enforce penalties when it detects
a problem. The only modification needed to the algorithm is
requiring that all communication between the bank and the
nodes be signed and receive signed acknowledgments. With
this minor modification, we are able to prove that our dis-
tributed algorithm is incentive-compatible in ex-post Nash
equilibrium.

An ex-post Nash equilibrium is a robust solution concept:
In such an equilibrium, no single node would deviate from
the algorithm even if it knew the other nodes’ private valua-
tions.6 In the context of interdomain routing, this means that
no AS would deviate from the algorithm even if it knew the
other ASes’ routing policies.

We now define ex-post Nash equilibrium in the context
of interdomain routing; see [22] for a general game-theoretic
definition. Let A be an algorithm and let v = (v1, . . . , vn) be
an n-tuple of nodes’ valuation functions. Let v−i denote the
tuple of all valuations except that of node i . Let oA

i (v) denote
i’s outcome (route and payment) when all nodes (including
i) execute A and their valuations are as in v. Finally, let
O A

i (v−i) denote the set of outcomes (routes and payments)
that i can achieve if all other nodes execute A and their valu-
ations are as in v−i (i.e., all outcomes that node i can obtain
via “manipulations”).

Definition 15 An algorithm A is incentive-compatible in
ex-post Nash equilibrium if, for all v,

∀o ∈ O A
i (v−i), ui (o

A
i (v)) ≥ ui (o).

Thus, if A is incentive-compatible in ex-post Nash equi-
librium, then each AS is best off (i.e., its utility is weakly
highest) by following A whenever all other ASes follow A,
regardless of the routing policies of the other ASes. Shneid-
man and Parkes [22] view the need to settle for an ex-post
Nash equilibrium in the distributed model (instead of a dom-
inant-strategy equilibrium, as in the centralized model) as
“the cost of distributing mechanism computation across a
network.”

Theorem 8 The modified algorithm (with signed communi-
cation) is incentive-compatible in ex-post Nash equilibrium.

5 These three properties are called IC-, CC-, and AC-compatibility
in [22].
6 The ex-post Nash equilibrium concept is strictly stronger than the
well known Nash-equilibrium concept. A Nash-equilibrium-oriented
implementation of our algorithm would have to assume that every node
is familiar with the preferences of all other nodes. This assumption is
unrealistic in interdomain routing.

123

Author's personal copy

318 J. Feigenbaum et al.

Proof Consider the following three components of nodes’
actions as prescribed by a distributed algorithm:

1. Information-revelation actions: These are the subset of
the algorithm’s prescribed actions from which the devi-
ation of a node is equivalent to that node’s executing the
algorithm with a different valuation function.

2. Message-passing actions: These are the subset of the
algorithm’s prescribed actions that instruct the node to
pass a message from one neighbor to another (e.g., pass-
ing messages from other nodes to the bank).

3. Computational actions: These are the subset of the algo-
rithm’s prescribed actions that instruct the node to par-
ticipate in the algorithm’s calculations (e.g., computing
the payment components).

We will use the following proposition in our proof.

Proposition 2 [22] An algorithm A is incentive-compatible
in ex-post Nash (in the distributed model) if the following
three conditions hold:

1. A is strategyproof in the centralized model;
2. Each node is always best off when it executes the

message-passing actions prescribed by A (regardless
of that node’s information-revelation and computational
actions);

3. Each node is always best off when it executes the
computational actions prescribed by A (regardless of
that node’s information-revelation and message-passing
actions).

We now show that our algorithm in Sect. 4.2, modified
with signed communication, meets the requirements of Pro-
position 2. Theorem 6 establishes that our algorithm is strat-
egyproof in the centralized model. Thus, we are left with
showing that a node is never incentivized to deviate from
the prescribed message-passing and computational actions
(regardless of its other actions).

We first consider message-passing actions. Observe that
the only message-passing actions in our algorithm are those
in which a node forwards messages from another node to
the bank. Because these messages are signed, the node can-
not change the messages’ contents; thus, the only form of
deviation available to it is dropping the messages. However,
recall that all communication between the bank and the nodes
must be paired with signed acknowledgments, and that the
bank is capable of penalizing nodes when detecting devia-
tions. Thus, a node is never incentivized not to follow the
suggested message-passing actions.

We next consider the computational actions, which, in our
algorithm, are the computation of the payment components.
Because each node a only computes payment components for

other nodes, and because these payment components have
no bearing on a’s route allocation and payment, node a is
never incentivized not to follow the suggested computational
actions.

Hence, the three conditions of Proposition 2 hold for our
modified algorithm, and Theorem 8 follows. �

5 Conclusions and open questions

In this paper, we addressed the problem of incentive-compat-
ible, welfare-maximizing interdomain routing. We presented
welfare-maximizing, incentive-compatible and BGP-com-
patible mechanisms for a class of routing policies that is more
general than LCP routing, thus answering an open question
from [4,20]. Additionally, we derived general conditions that
are sufficient for designing incentive-compatible, welfare-
maximizing protocols for more general classes of routing
policies. It would be interesting to find other natural classes
of valuations for which BGP-compatible mechanisms exist,
especially in the case of negative valuations.

There are many other issues that remain unresolved and
call for further research. One such issue is that of design-
ing distributed BGP-compatible mechanisms that obtain
good approximations of the total social welfare. A first step
towards the design of BGP-compatible approximation mech-
anisms would be a nontrivial characterization of routing pol-
icies for which the price of anarchy is low.

Introducing incentive compatibility into the inter-domain-
routing problem involves paying ASes for their participation
in the algorithm when valuations may be negative. The way
these payments are computed leads to many interesting ques-
tions: How can we make sure that the ASes are not overpaid
for the transit services they provide? (VCG mechanisms are
often criticized in the literature for overpaying the strategic
agents.) In our formulation, the ASes do not pay each other
but are paid by the bank (as in [22]). Is it possible to get rid
of the bank and have ASes pay other ASes directly for transit
services rendered?

A distributed model such as ours poses an inherently dif-
ferent challenge for the design of incentive-compatible mech-
anisms that involve payments than a centralized one (see [4,
22]). This is because the computation is performed by the
strategic agents themselves and not by a reliable third party.
We reconcile the strategic model and the distributed compu-
tational model by using techniques similar to those in [22].
In particular, we use cryptographic signing. Is it possible to
reconcile the two models without having to resort to this
technique?

Finally, the question of optimal communication complex-
ity for the computation of routes and payments remains
open. We have stressed space complexity in this paper, but
there may be an increase over BGP in the number of update

123

Author's personal copy

Incentive-compatible interdomain routing 319

messages sent by our algorithms. This is because our algo-
rithms have an additional condition that triggers sending
an update message, namely, any change to the best known
k-avoiding route (or next hop), for any transit node k on the
current best path. Update messages are not sent for this rea-
son in the original BGP. Although the message complexity
of our algorithms is not unreasonable with respect to BGP’s
worst-case performance, the optimal number of messages
needed to compute payments in addition to routes is cur-
rently unknown.

Acknowledgments The authors thank Tim Griffin, Aaron Jaggard,
Jennifer Rexford, Rahul Sami, and Scott Shenker for many helpful dis-
cussions about interdomain routing.

References

1. Caesar, M., Rexford, J.: BGP policies in ISP Networks. IEEE Net-
work Mag. 19(6), 5–11 (2005)

2. Feamster, N., Johari, R., Balakrishnan, H.: The implica-
tions of autonomy for the expressiveness of path-vector rout-
ing. IEEE/ACM Trans. Network. 15(6), 1266–1279 (2007)

3. Feigenbaum, J., Karger, D., Mirrokni, V., Sami, R.: Subjective-cost
policy routing. Theor. Comput. Sci. 378(2), 175–189 (2007)

4. Feigenbaum, J., Papadimitriou, C.H., Sami, R., Shenker, S.: A
BGP-based mechanism for lowest-cost routing. Distribut. Com-
put. 18(1), 61–72 (2005)

5. Feigenbaum, J., Ramachandran, V., Schapira, M.: Incentive-
compatible interdomain routing (extended abstract). In: Proceed-
ings of 7th ACM Conference on Electronic Commerce (EC’06),
pp. 130–139. ACM Press, New York (2006)

6. Feigenbaum, J., Sami, R., Shenker, S.: Mechanism design for pol-
icy routing. Distribut. Comput. 18(4), 293–305 (2006)

7. Feigenbaum, J., Schapira, M., Shenker, S. : Distributed algorith-
mic mechanism design. In: Nisan, N., Roughgarden, T., Tardos,
É., Vazirani, V. (eds.) Algorithmic Game Theory, pp. 363–384.
Cambridge University Press, Cambridge (2007)

8. Gao, L., Griffin, T.G., Rexford, J.: Inherently Safe Backup Routing
with BGP. In: Proceedings of 20th IEEE International Conference
on Computer Communications (INFOCOM’01), pp. 547–556.
IEEE Computer Society (2001)

9. Gao, L., Rexford, J.: Stable internet routing without global coordi-
nation. IEEE/ACM Trans. Network. 9(6), 681–692 (2001)

10. Goldberg, S., Halevi, S., Jaggard, A.D., Ramachandran, V., Wright,
R.N.: Rationality and Traffic Attraction: Incentives for Honest Path
Announcements in BGP. In: Proceedings of 14th ACM Conference
on Applications, Technologies, Architectures, and Protocols for
Computer Communication (SIGCOMM’08), pp. 267–278. ACM
Press, New York (2008)

11. Griffin, T.G., Jaggard, A.D., Ramachandran, V.: Design Princi-
ples of Policy Languages for Path Vector Protocols. In: Pro-
ceedings of 9th ACM Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication (SIG-
COMM’03), pp. 61–72. ACM Press, New York (2003)

12. Griffin, T.G., Shepherd, F.B., Wilfong, G.: Policy Disputes in Path
Vector Protocols. In: Proceedings of 7th International Conference
on Network Protocols (ICNP’99), pp. 21–30. IEEE Computer Soci-
ety (1999)

13. Griffin, T.G., Shepherd, F.B., Wilfong, G.: The stable paths prob-
lem and interdomain routing. IEEE/ACM Trans. Network. 10(2),
232–243 (2002)

14. Green, J., Laffont, J.: Incentives in Public Decision Making.
In: Studies in Public Economics, vol. 1, pp. 65–78. North Holland,
Amsterdam (1979)

15. Hershberger, J., Suri, S.: Vickrey Prices and Shortest Paths: What
is an edge worth?. In: Proceedings of 42nd IEEE Symposium on
Foundations of Computer Science (FOCS’01), pp. 129–140. IEEE
Computer Society (2001)

16. Huston, G.: Interconnection, Peering, and Settlements. In: Proceed-
ings of 9th Internet Global Summit (INET’99). The Internet Society
(1999)

17. Koutsoupias, E., Papadimitriou, C.H.: Worst-Case Equilib-
ria. Comp. Sci. Rev. 3(2), 65–69 (2009)

18. Levin, H., Schapira, M., Zohar, A.: Interdomain Routing and
Games. In: Proceedings of 40th ACM Symposium on Theory of
Computing (STOC’08), pp. 57–66. ACM Press, New York (2008)

19. Moy, J.: Open Shortest Pouting First (OSPF) version 2. RFC 2328.
Internet Engineering Task Force (1998)

20. Nisan, N., Ronen, A.: Algorithmic mechanism design. Games
Econ. Behav. 35(1–2), 166–196 (2001)

21. Rekhter, Y., Li, T.: A Border Gateway Protocol (BGP-4). RFC
4271. Internet Engineering Task Force (2006)

22. Shneidman, J., Parkes, D.C.: Specification Faithfulness in Net-
works with Rational Nodes. In: Proceedings of 23rd ACM Sym-
posium on Principles of Distributed Computing (PODC’04),
pp. 88–97. ACM Press, New York (2004)

23. Sobrinho, J.L.: An algebraic theory of dynamic network rout-
ing. IEEE/ACM Trans. Network. 13(5), 1160–1173 (2005)

24. Varadhan, K., Govindan, R., Estrin, D.: Persistent route oscillations
in interdomain routing. Comput. Networks 32(1), 1–16 (2000)

123

Author's personal copy

	Incentive-compatible interdomain routing
	Abstract
	1 Introduction
	1.1 Interdomain routing
	1.2 Routes and policies
	1.3 Our results
	1.4 Related work

	2 Technical preliminaries
	2.1 Welfare-maximizing route allocation
	2.2 Routing notation
	2.3 Overview of BGP

	3 A sufficient condition for incentive compatibility
	3.1 Policy consistency
	3.2 Consistent filtering
	3.3 Robustness and dispute wheels
	3.4 Local and global optimality

	4 A BGP-compatible, incentive-compatible algorithm for negative valuations
	4.1 Policies for the commercial internet
	4.2 The algorithm
	4.2.1 High-level overview
	4.2.2 Input and output
	4.2.3 Communication and storage
	4.2.4 Execution of the algorithm

	4.3 Convergence, optimality, and BGP compatibility
	4.3.1 Convergence
	4.3.2 Welfare maximization
	4.3.3 BGP compatibility

	4.4 Incentive compatibility
	4.4.1 Centralized model
	4.4.2 Distributed model

	5 Conclusions and open questions
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

