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Abstract. We study the Combinatorial Public Project Problem (CPPP)
in which n agents are assigned a subset of m resources of size k so as
to maximize the social welfare. Combinatorial public projects are an
abstraction of many resource-assignment problems (Internet-related net-
work design, elections, etc.). It is known that if all agents have submodu-
lar valuations then a constant approximation is achievable in polynomial
time. However, submodularity is a strong assumption that does not al-
ways hold in practice. We show that (unlike similar problems such as
combinatorial auctions) even slight relaxations of the submodularity as-
sumption result in non-constant lower bounds for approximation.

1 Introduction

There are various real-world settings in which a set of resources is chosen to
collectively serve an entire community: In elections, for instance, candidates are
chosen to serve a community of voters. States choose which roads to build for
the benefit of their residents. Another interesting example is that of choosing
overlay networks in the Internet [3, 2] (for instance, in the context of inter-
domain routing): A node in the network chooses the optimal subset of nodes to
route traffic through, in a manner which is most beneficial to its clients3. Such an
overlay - the subset of chosen nodes through which traffic is routed - is beneficial
to different clients in different degrees. This creates the difficulty of maximizing
the social welfare in this setting (as in the settings above).

The Combinatorial Public Project Problem (CPPP), recently presented and
studied in [18], is an abstraction of such settings. In CPPP there are m resources
and n agents, each with a valuation function defined over all subsets of resources,
and the objective is to choose the k resources which maximize the social welfare
of the agents. It is easy to see that CPPP is NP hard. However, in the case
where each valuation function is submodular CPPP allows for good approxima-
tions [15, 18] (within 1− 1

e ).4 A valuation function v is said to be submodular if
for every two subsets of resources S, T we have v(S∪T )+v(S∩T ) ≤ v(S)+v(T ).

3 A formal description of the overlay networks setting is presented in Section 2.
4 This bound is tight, see [8].
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In this paper we study CPPP, focusing on computational and communica-
tion complexity lower bounds which result from relaxations of the above submod-
ularity property. Indeed, out of the myriads of problems which can be depicted as
combinatorial public projects, in many instances the submodularity constraint
does not apply. We illustrate this point in Section 2, where we show how the
difference between submodular and general valuations separates between two
seemingly close Internet-related network design problems (overlay networks).

Our main result is showing that even small relaxations of the submodular-
ity property in combinatorial public projects result in strong inapproximability
bounds:

Theorem: Obtaining an approximation ratio of m
1
4−ε for CPPP with subad-

ditive valuation functions requires exponential communication in m (for every
constant ε > 0).

A valuation function v is subadditive if for every two subsets of resources
S, T we have that v(S ∪ T ) ≤ v(S) + v(T ). In fact, we prove our lower bound
for a more restricted class of valuations called fractionally-subadditive [8] (in-
troduced in [17] and termed “XOS” there). This lower bound establishes that
in terms of approximability there is a huge gap between the submodular and
subadditive case. This is in stark contrast to what is known about the related
combinatorial auctions problem, for which a 2-approximation is achievable for
subadditive valuations [8]. We show that our lower bound is nearly tight by
presenting a simple O(m

1
2 ) approximation algorithm for subadditive valuations.

We leave the question of closing the gap between m
1
4 and m

1
2 open. Also, a

big open question is showing that a similar lower bound is achievable in the
computational-complexity model.

In [18] it is shown, for the case of CPPP with submodular valuations, that
while a constant approximation ratio is possible, no such ratio is achievable via
truthful algorithms. The O(m

1
2 ) approximation algorithm for subadditive val-

uations presented in this paper is truthful. Hence, our results show that the
hardness of CPPP with subadditive valuations is due to computational rea-
sons and not to the truthfulness requirement. That is, truthful approximation
algorithms perform just, or nearly, as well as unrestricted algorithms.

Finally, we study the approximability of CPPP with general valuations. We
prove two complementary lower bounds, one in the computational-complexity
model and one in the communication-complexity model:

Theorem: Obtaining an approximation of O(n
1
2−ε) in CPPP with general

valuations, for any ε > 0, is impossible unless P = NP . Obtaining an approxi-
mation of O(n1−ε) is impossible unless P = ZPP .

Theorem: Obtaining an approximation of (1 − ε)n for CPPP with general
valuations requires exponential communication in m (for any ε > 0 and for any
n << 2m).
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2 Model and Motivation

In this section we formally present CPPP and our model. We motivate CPPP
by presenting an Internet-related network design setting which is naturally for-
mulated as a combinatorial public project. We use this example to illustrate the
importance of considering relaxations of submodularity.

2.1 The Model

In CPPP there is a set of n agents N = {1, . . . , n}, a set of m resources
M = {1, . . . ,m}, and a parameter 1 ≤ k ≤ m. Each agent has a valua-
tion function (sometimes simply referred to as a valuation) vi : 2[m] → R≥0.
We make two standard assumptions regarding each valuation function vi: That
vi(∅) = 0 (normalized) and that for all S ⊆ T ⊆ [m] it holds that vi(S) ≤ vi(T )
(non-decreasing). The objective in CPPP is to find a subset of resources S∗

of size k which maximizes the social-welfare. That is, we wish to find S∗ ∈
argmaxS⊆[m],|S|=k

∑
i vi(S).

We require algorithms for CPPP to run in time that is polynomial in the
natural parameters of the problem – n and m. In some cases agents’ valuations
can be concisely represented (encoded in space polynomial in m and n). In these
cases we wish to explore the computational complexity of the problem.

However, in general, the size of the “input” (the valuations) can be exponen-
tial in m, and so we must specify how it can be accessed. We take a “black box”
(concrete complexity) approach (see [5]): Every valuation function is assumed
to be represented by an oracle which can answer a certain type of queries, and
we restrict our algorithms to ask polynomially (in both m and n) many such
queries. We consider two standard types of queries:

– Value queries: A value query to a valuation vi is in the form of a subset
of resources S ⊆ [m]. The answer is simply vi(S). This is a natural type of
query to use when designing algorithms for CPPP.

– General queries: A general query allows any type of questions (even com-
putationally intractable ones), as long as each question is addressed to a
single vi. We only require that the “size” of the query not be too “large”.
This is equivalent to Yao’s communication model [20] in which the differ-
ent parties are computationally omnipotent and we measure the number of
bits they must exchange to compute a given function (see an introduction to
communication complexity in [12]). The immense strength of general queries
is useful for showing impossibility results.

2.2 Overlay Networks

Consider the following Internet-inspired setting [3, 2] we call the overlay network
problem: We are given a network graph G = (V,E), where V = S ∪ M ∪ D
(S,M,D are disjoint). We shall refer to the nodes in S as source-nodes, to the
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nodes in M as potential overlay nodes, and to the nodes in D as destination-
nodes. Assume that there is some metric function m that assigns a non-negative
real value me to every e ∈ E (assume that m’s value for a non-existent edge is
∞).

Each node i ∈ S has a valuation function vi that assigns a non-negative
real value to every subset of potential overlays M ′ ⊆ M . Intuitively, for every
M ′ ⊆M , vi(M ′) specifies i’s desire to route through M ′ to the nodes in D. Each
vi is consistent with the metric m in the following sense: For every M ′,M ′′ ⊆M ,
vi(M ′) ≥ vi(M ′′) iff the sum of the lengths of the shortest routes from i to all
nodes in D that only go through nodes in M ′ is at most that obtained from
routing only through nodes in M ′′.5

The goal is to choose an overlay network from the potential overlay nodes.
For a given parameter 1 ≤ k ≤ |M |, we want to find a subset of M of size
k that maximizes the social welfare of the source nodes. That is, we wish to
find a set M∗ = argmaxM ′⊆M, |M ′|=k Σi∈Svi(M ′). It is easy to see that the
overlay network problem is a special case of CPPP in which the agents are the
source nodes, the resources are the potential overlays and the agents’ valuations
are induced by the network graph and the metric function 6. We distinguish
between two versions of this problem, which illustrate the big differences between
instances for which submodularity does, and does not, apply:

– The submodular case: Observe that if no two nodes in M are directly
connected via an edge in E then the valuation functions of the source nodes
in the overlay network problem are submodular. This is due to the fact that
they exhibit the decreasing marginal values property that is known to be
equivalent to submodularity: For every node i ∈ S, for every M ′ ⊆M ′′ ⊆M ,
and for every a ∈M , it holds that vi(M ′ ∪ {a})− vi(M ′) ≥ vi(M ′′ ∪ {a})−
vi(M ′′).

– The non-submodular case: In the more general case, in which nodes in
M can be connected to one another, the valuation functions are no longer
guaranteed to be submodular. For example, think of a network graph G =
(V,E) with four nodes: a single source node i, a single destination node d,
and two potential overlay nodes a, b. Assume that E = {(i, a), (a, b), (b, d)}
and that m assigns a value of 0 to every edge in E. Let vi({a}) = vi({b}) = 0
and vi({a, b}) = 1. Observe that vi is indeed consistent with m, but is neither
submodular nor subadditive.

In this model the difference between general and submodular valuations orig-
inates from whether or not the nodes in M are connected to each other. These
5 Formally, for every node i ∈ S, and for every subset M ′ ⊆ M we define ci(M

′) to
be the sum of the lengths of the shortest paths from i to all nodes in D that only
go through nodes in M ′. That is, if we define (∀i ∈ S, d ∈ D) cid(M ′) to be the
length of the shortest route (given m) that has i as its first node, d as its last node,
and all intermediate nodes in M ′, then ci(M

′) = Σd∈DcidM
′. vi(M

′) ≥ vi(M
′′) iff

ci(M
′) ≤ ci(M ′′).

6 The artificial division of V into S, M , and D is only required for ease of exposition.
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seemingly subtle and insignificant differences lead to violations of submodularity
which motivate our study of CPPP with valuations which are not submodular.

3 Subadditive Valuations

In this section we study CPPP with subadditive valuations. We prove our main
result, which is showing a lower bound of m

1
4 for a class strictly contained

in subadditive valuations. This result shows that relaxations of submodularity
that may seem small at first glance, and are not too costly for other problems
(e.g., combinatorial auctions [7, 8]), lead to unreasonable approximation ratios
for CPPP.

We show that this lower bound is nearly tight by presenting a simple
√
m

approximation algorithm. This algorithm also has the advantage of being truth-
ful. Hence, we show that for CPPP with subadditive valuations the gap between
truthful and unrestricted algorithms in terms of approximation ratio is insignif-
icant (this is in contrast to the submodular case in which the gap is huge [18]).

3.1 Lower Bound for Subadditive Valuations

We prove our result for fractionally-subadditive valuations [8] (defined in [17] and
termed “XOS” there). This result is achieved in the communication complexity
(general queries) model. Thus, we show that even if agents are computationally
unlimited the number of bits they must exchange to obtain a good approximation
is unreasonable. The proof uses a probabilistic construction of a collection of
subsets of resources, which has useful combinatorial properties. These properties
are then exploited in a reduction from a well known problem in communication
complexity.

Definition 1. A valuation function v is said to be additive (linear) if for every
S ⊆M v(S) = Σj∈S v({j}).

Informally, a valuation function is fractionally-subadditive if it is the point-
wise maximum over a set of additive (linear) valuations.

Definition 2. A valuation function v is said to be fractionally subadditive if
there is a set of additive (linear) valuations {a1, ..., al} such that for every S ⊆M
v(S) = maxr∈[l] ar(S).

The class of fractionally-subadditive valuation functions is known to be strictly
contained in the class of subadditive valuations and to strictly contain all sub-
modular valuations [17, 13].

Theorem 31 Obtaining an approximation ratio of m
1
4−ε for fractionally-subadditive

valuation functions requires exponential communication in m (for every ε > 0).
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Proof. Fix a small ε > 0. We prove the theorem for the case n = k =
√
m.

The proof is by reduction from the Set Disjointness problem. In the Set
Disjointness problem, we have n parties. Each party i = 1, 2, ..., n holds a
t-bit string which specifies a subset Ai ⊆ {1, . . . , t}. The parties are required to
distinguish between the two following extreme cases:

1. ∩ni=1Ai 6= ∅
2. for every i 6= j it holds that Ai ∩Aj = ∅

The Set Disjointness problem was studied in [1] where it was shown to
require Ω( t

n4 ) communication complexity. In [16] Nisan shows a lower bound
due to Radhakrishnan and Srinivasan of Ω( tn ).

For our reduction, we wish to first show the existence of a exponentially large
family of sets of items with a useful combinatorial property:

Definition 3. A collection F of subsets of [m] is said to have the r-intersection
property if, for every S, T ∈ F , |S ∩ T | ≤ r.

Lemma 32 There exists collection F of subsets of [m] such that:

– F has the 2mε-intersection property.
– For each S ∈ F it holds that |S| ≥

√
m.

– |F | ≥ eαmε for some constant α > 0.

Proof. We prove the lemma via a probabilistic construction. Each set S ∈ F is
constructed by choosing uniformly at random each element l ∈ [m] to be in S

with probability m
ε−1
2 . Let S and T be two such sets in F . We wish to show

that each such set is “large” and that the intersection between them is “small”,
with very high probability. We will use the Chernoff bound.

Claim. (Chernoff Bound) Let X1, . . . , Xm be a set of m independent random
variables that take values in {0, 1} such that for every l, Pr[Xl = 1] = p. Then,
for any δ is in the range [0, 2e− 1] we have that:

Pr[
m∑
l=1

Xl > (1 + δ)pm] ≤ e
−δ2pm

3 (1)

Pr[
m∑
l=1

Xl < (1− δ)pm] ≤ e
−δ2pm

3 (2)

For every resource l ∈ [m] we define a random variable Xl that is a assigned
a value of 1 if l ∈ S ∩ T and of 0 otherwise. Observe, that the probability that
Xl = 1 is mε−1, and by 1:

Pr[|S ∩ T | > 2mε] = Pr[ΣlXl > 2mε] < e
−mε

3

Similarly, for every S ∈ F , define a random variable Xl that is assigned a
value of 1 if l ∈ S and 0 otherwise, by 2 we have that for any δ ∈ (0, 1):
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Pr[|S| < (1− δ)m
1+ε
2 ] = Pr[ΣlXl < (1− δ)m

1+ε
2 ] < e

−δ2m
1+ε
2

3

We thus have that there is some constant α > 0 such that:

Pr[|S ∩ T | > 2mε or |S| < m
1
2 or |T | < m

1
2 ] < e−2αmε

Since these bounds must hold for any S, T we get that as long as |F |2 ≤
e2αm

ε

there is such a collection F . Thus, we know there exists a family of sets
F = {S1, . . . , St} where t = eαm

ε

for some constant α > 0, with the property
that every set is at least of size

√
m and |Si ∩ Sj | ≤ 2mε ∀i 6= j ∈ t.

Now, we show the reduction from the Set Disjointness problem. Let
1, 2, ...,

√
m be the parties, and set t = eαm

ε

. Let Ai be the subset of [t] held by
party i. We construct an instance of CPPP with m resources, n =

√
m agents

(corresponding to the
√
m parties in the Set Disjointness problem), and set

the number of resources to be chosen to k =
√
m. We identify each element

r ∈ [t] with a set Sr in the family F of subsets of [m] described above. Each
agent i constructs a valuation function vi in the following manner: Let aS denote
the additive valuation that assigns a value of 1 to every resource in S and a value
of 0 to every resource j /∈ S. Let vi = max{aSr |r ∈ Ai}.

Observe that if
⋂
iAi 6= ∅ then there is a set Sr that has a corresponding

additive valuation in all of the vi’s. Hence, assigning a subset of Sr of size
√
m

to the agents (simulated by the Set Disjointness parties) results in a social
welfare value of m. What happens if for every two i 6= j ∈ [t] Si ∩ Sj = ∅? We
shall now show that in this case the optimal social welfare is O(m

3
4+ε). This

would mean that an approximation of O(m
1
4−ε) to the CPPP with fractionally-

subadditive valuations enables the distinction between the two extreme cases in
the Set Disjointness problem. Therefore, we will then be able to conclude
that Ω( tn ) bits are required to do so (a number exponential in both n and m).

So, we are left with showing that if for every two i 6= j ∈ [t] Si ∩Sj = ∅ then
the optimal social welfare is O(m

3
4+ε). Assume, for the purpose of contradiction,

that there is some set T of size
√
m such that the social welfare derived from T ,

SW (T ), is greater than 2m
3
4+ε. Let ai be an additive valuation function of i for

which vi is maximized (for T ). Observe that SW (T ) = Σi∈[n] ai(T ). Assume,
w.l.o.g., that T = {1, ...,

√
m}. For every resource l ∈ T , let xl be the number

of the ai’s that assign a value of 1 to l. Observe that SW (T ) = Σi∈[n] ai(T ) =
Σl∈T xl. Also observe that Σl∈T xl(xl − 1) = Σi 6=j |Si ∩ Sj ∩ T |. Since we know
that the cardinality of the intersection of every two sets cannot exceed 2mε we
now have that:

2m1+ε = 2n2mε ≥
∑
i 6=j

|Si ∩ Sj ∩ T | =
∑
l∈T

xl(xl − 1)

Using elementary calculus, it is easy to show that
∑
l∈T x2

l ≥ m
1
4
∑
l∈T xl.

(This is due to the fact that the worst case ratio is achieved when all xl’s are
equal.)
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Combining the last two equations gives us that

SW (T ) =
∑
l∈T

xl ≤ 2m
3
4+ε.

A contradiction.

3.2 A Truthful
√

m Approximation Algorithm

We show that the result stated in the above theorem is nearly tight by presenting
a simple truthful algorithm which obtains a min{k,

√
m} approximation ratio

(for any value of k and n) and requires at most n ·m value queries.

The Algorithm:

– Arbitrarily partition [m] into r = max{mk ,
√
m} disjoint subsets of equal size

S1, ..., Sr.
– Ask each agent to specify her value for each of the different subsets St.
– Choose the subset St that maximizes the social welfare

∑
i vi(St).

This algorithm, similar to that presented in [5], is a simple maximal-in-range
algorithm [5, 6], and so it can be made truthful via VCG payments [19, 4, 11].
Observe that the algorithm indeed requires at most m value queries to be ad-
dressed to each of the n agents. Therefore, all that is left to show is that the
algorithm provides the required approximation-ratio. We show this for subaddi-
tive valuations.

Proposition 33 If v1, . . . , vn are subadditive then the algorithm provides an
approximation ratio of min{k,

√
m}.

Proof. Let k ≤
√
m. Let O be a set of size k that maximizes the social welfare.

Then, by (iterative use of) subadditivity, for every i ∈ [n], vi(O) ≤
∑
j∈O vi({j}).

Hence,
∑
i∈[n] vi(O) ≤

∑
i∈[n]

∑
j∈O vi({j}) =

∑
j∈[O]

∑
i∈[n] vi({j}). This im-

plies that there is an element j ∈ [m] such that the social welfare derived from j
is at least 1

|O| = 1
k of the optimal social welfare. This item j appears in one of the

St’s, and so, because the valuations are non-decreasing, the social welfare derived
from that St is also at least 1

k of the optimal social welfare. Since the algorithm
optimizes over all the St’s it is bound to achieve the desired approximation ratio.

Let k >
√
m. Let O be the set of size k that maximizes the social welfare. Be-

cause the valuations are non-decreasing, Σivi(O) ≤ Σivi([m]). Let S1, . . . , S√m
be some arbitrary partition of [m] into

√
m disjoint subsets of size

√
m. Exploit-

ing subadditivity in a way similar to that shown above implies that for one of
these sets the social welfare is at least a 1√

m
fraction of the social welfare for the

entire set [m]. This concludes the proof of the proposition.



Inapproximability of CPPP 9

4 Inapproximability of CPPP with General Valuations

In this section we study CPPP with general valuations (but still normalized
and non-decreasing). As the overlay networks example (Section 2), and others
(elections etc.), illustrate, in many cases submodularity, and even subadditivity,
do not apply. We prove strong inapproximability results for CPPP with general
valuations in both the computational- and the communication-complexity mod-
els. In the communication-complexity model our lower bound is tight (a trivial
matching upper bound exists).

Theorem 41 Obtaining an approximation of O(n
1
2−ε) to the social welfare in

CPPP with general valuations, for any ε > 0, is impossible unless P = NP .
Obtaining an approximation of O(n1−ε) to the social welfare is impossible unless
P = ZPP .

Proof. We reduce from the Maximal Welfare Tree (MWT) problem studied in
the context of distributed algorithmic mechanism design [10, 9, 14]. Our reduc-
tion preserves the hardness results for this problem as shown in [14]. In the
MWT problem we are given a graph G = (N,L) with a set of nodes N and
links L. A unique destination node d is given and each node a ∈ N \ {d} has a
valuation function va : Pa → R≥0, where Pa is used to denote the set of all sim-
ple paths from a to the destination d. The objective in MWT is to form a tree
rooted in d which maximizes the social welfare, i.e., choose the tree T ∗ such that
T ∗ ∈ argmaxT∈TdL

∑
a∈N\{d} va(T ), where T dL is the set of all possible trees in L

rooted in d. We consider the special case of MWT in which for all a ∈ N \{d} we
have va : Pa → {0, 1}. It is known that for any ε > 0 approximating MWT, even
for this special case, within a factor of O(n

1
2−ε) is impossible unless P = NP

and approximating within a factor of O(n1−ε) is impossible unless P = ZPP
[14].

The reduction from MWT is as follows: Given an instance of MWT such
that the range of all valuation functions is {0, 1}, for each link l ∈ L we associate
a resource l′ in CPPP and each node a ∈ N \ {d} in MWT will correspond to
an agent a′ in CPPP. It remains to define the valuation function of a′. Note
that since our interest is in showing a lower bound, we can adversarially set the
number of chosen items to be k = |N | − 1. Now, let P+

a be the set of paths for
which va = 1. For all E ⊆ L, the valuation function for the corresponding agent
a′ in CPPP is defined by:

va′(E) =
{

1 ∃P ∈ P+
a : P ⊆ E and E ∈ T dL

0 otherwise (3)

Observe that choosing a tree T in MWT with social welfare value SW (T ) = c
corresponds to choosing a set of resources that induces the same social wel-
fare value in CPPP. Conversely, choosing a set of resources T ′ in CPPP s.t.
SW (T ′) = c′ necessarily means that we can trim T ′ to a set of edges T which
forms a routing tree with d as its source, and that we have exactly c′ nodes
which have routes to d in T , and hence SW (T ) = c′ in MWT.
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Theorem 42 Obtaining an approximation ratio of (1 − ε)n for general valu-
ations requires exponential communication in m (for any ε > 0 and for any
n << 2m).

Proof. For CPPP with general valuation functions, n agents, m items and a
parameter 1 ≤ k ≤ m we show a lower bound of Ω(

(
m
k

)
·n−1) again by reducing

from the Set Disjointness problem.
We construct an instance of CPPP with n agents in which no restrictions

(except for being normalized and non-decreasing) apply to the agents’ valuation
functions. Let S1, . . . , St be the (ordered) sets in the range of all possible alloca-
tions of size k. For each party i in Set Disjointness with the setAi ⊆ {1, . . . , t},
we associate an agent i in CPPP with the following valuation function:

vi(Sr) =
{

1 r ∈ Ai
0 otherwise

Observe that these valuation functions are indeed normalized and non-decreasing.
Let Sl be the set which maximizes the social welfare, i.e., l ∈ argmaxl∈[d] |{Ai| l ∈
Ai}|. To approximate the social welfare within a factor of (1− ε)n for any ε > 0,
one must allocate some set S for which there are at least two agents i and j
such that vi(S) = vj(S) = 1. Due to the above construction of the agents’ valu-
ation functions this necessarily implies deciding between the two extreme cases
of the Set Disjointness problem. Thus, for d =

(
m
k

)
we get a lower bound of

Θ(
(
m
k

)
· n−1) for CPPP with general valuation functions.

In the communication model a trivial matching upper bound of n exists:
Query each agent i for her most valued set Si of size k, and assign the agents
a set T ∈ argmaxivi(Si). It is easy to see that this indeed guarantees an n-
approximation.
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