Multilayer Compute Resource Management with Robust Control Theory

Raghavendra Pradyumna Pothukuchi, Sweta Yamini Pothukuchi, Petros Voulgaris, Josep Torrellas **University of Illinois at Urbana-Champaign**

MODULAR MULTILAYER SSV CONTROLLER DESIGN

OS heuristic OS heuristic Normalized energy

150 200

Time (s)

Single SSV

250

Normalized execution time

(BIPS)

100

150 200

Time (s)

Multilayer SSV

Decision conflicts

(BIPS)

A SOLUTION WITH ROBUST CONTROL THEORY

Properties of controllers from robust control theory

Decision making for Guarantee meeting systems with uncertainty the targets precisely for controller interaction

Systematic design Have formal channels and tuning

We use a robust controller called the Structured Singular Value (SSV) controller

First work to use robust control theory for compute resource management

Contributions

- A practical methodology to design modular multilayer SSV controllers for computers
- A multilayer control system for a heterogeneous multicore using our methodology
 - Coordinating controllers meet design goals simultaneously and dynamically
 - Controllers are robust to uncertainty and program variations

CONCLUSIONS

Time (s)

Coordinated heuristics

• Multilayer computers require modular and coordinated resource management

Time (s) Decoupled heuristics

- We propose a multilayer control design methodology using robust control theory • Novel systematic approach for modular design and coordinated decisions
- Multilayer controllers designed with our approach are effective on real systems
 - On average, applications run 37% faster and consume 20% lower energy over state-of-the-art designs using coordinated heuristics

This work was supported in part by NSF under grants CCF-1012759 and CCF-1536795