
soid: A Tool for Legal Accountability
for Automated Decision Making

Samuel Judson1(B), Matthew Elacqua1, Filip Cano2, Timos Antonopoulos1,
Bettina Könighofer2, Scott J. Shapiro3, and Ruzica Piskac1

1 Yale University, New Haven, USA
{samuel.judson,matt.elacqua,

timos.antonopoulos,ruzica.piskac}@yale.edu
2 Graz University of Technology, Graz, Austria

{filip.cano,bettina.koenighofer}@iaik.tugraz.at
3 Yale Law School and Yale University, New Haven, USA

scott.shapiro@yale.edu

Abstract. We present soid, a tool for interrogating the decision mak-
ing of autonomous agents using SMT-based automated reasoning. Rely-
ing on the Z3 SMT solver and KLEE symbolic execution engine, soid
allows investigators to receive rigorously proven answers to factual and
counterfactual queries about agent behavior, enabling effective legal and
engineering accountability for harmful or otherwise incorrect decisions.
We evaluate soid qualitatively and quantitatively on a pair of examples,
i) a buggy implementation of a classic decision tree inference benchmark
from the explainable AI (XAI) literature; and ii) a car crash in a simu-
lated physics environment. For the latter, we also contribute the soid-gui,
a domain-specific, web-based example interface for legal and other prac-
titioners to specify factual and counterfactual queries without requiring
sophisticated programming or formal methods expertise.

1 Introduction

Recent advances in (often ML-based) artificial intelligence have led to a pro-
liferation of algorithmic decision making (ADM) agents. The risk that these
agents may cause harm – and the many demonstrated examples of them already
doing so, ranging across numerous domains [3,8,19,30] – has led to a significant
demand for technologies to enable their responsible use. In this work, we present
soid, a tool based on Judson et al.’s method [16] to account for software systems
using computational tools from the fields of formal methods and automated rea-
soning. The soid tool is primarily oriented towards supporting legal reasoning
and analysis, in order to better understand the ultimate purpose of an agent’s
decision making – as is often relied upon by various bodies of law.

In particular, rather than traditional verification methods which aim towards
proving a specific program property, soid instead aims to ‘put the agent on the
stand’. The design of soid enables factual and counterfactual querying – under-
lying a finding of fact – in support of human-centered assessment of the ‘why’ of
the agent’s decision making. Such an assessment can then in turn justify hold-
ing responsible an answerable owner or operator, like a person or company. We
c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14682, pp. 233–246, 2024.
https://doi.org/10.1007/978-3-031-65630-9_12

https://doi.org/10.5281/zenodo.10943849
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65630-9_12&domain=pdf
https://doi.org/10.1007/978-3-031-65630-9_12

234 S. Judson et al.

Fig. 1. Architecture of the soid tool.

describe the functioning of the soid tool itself as well as a pair of examples of its
use on simulated harms. We also describe the soid-gui, a domain-specific interface
for soid applied to autonomous vehicles, allowing for adaptive and interpretable
analysis of driving decisions without requiring extensive programming skills or
familiarity with formal logical reasoning.

The basic flow of soid, depicted in Fig. 1, is adaptive and requires a human
in the loop. The human investigator – likely a practitioner such as a lawyer or
regulator supported as necessary by engineers – uses soid to better understand
the decision making of an agent program A. They do so by finding critical deci-
sion moments in the logs of A that transpired in the lead up to a harm, and then
relaxing or perturbing the program inputs to specify a (family of) counterfactual
scenario(s). The investigator then formulates a query asking what the behavior
of A ‘might’ or ‘would’ have been [20] under that (family of) counterfactual(s).
As we show in the design of our soid-gui, such questions can even be formu-
lated in user-friendly interfaces that abstract away all of the formal logic and
reasoning of soid for non-technical practitioners. Once a query is posed, a ver-
ification oracle using SMT-based automated reasoning – including constrained
symbolic execution – gets the investigator a prompt answer. They can then con-
tinue to ‘interrogate the witness’ until they are satisfied they have a sufficient
understanding of the purpose of A’s decisions, and terminate the loop.

Contribution. In summary, we developed a command line tool and Python
library soid, which uses symbolic execution (through Z3) and SMT solving
(through KLEE) to enable rigorous interpretation of the decision-making logic
of an autonomous agent. We demonstrate soid on a pair on instructive involving
machine-learned agents. In both cases, we find soid able to resolve counterfac-
tual queries with reasonable efficiency, even when adaptively posed through the
interpretable soid-gui aimed at non-technical practitioners.

A Motivating Example. Consider a program A which computes a decision tree
in order to classify the diabetes health risk status of an individual, a classic
example in automated counterfactuals with legal implications due to [31]. The
decision tree and code of A are shown in Fig. 2. However, the software system
surrounding A creates an implicit unit conversion bug: A computes the body-
mass-index (BMI) input to the decision tree, using height and weight parameters
from its input. But, A expects metric inputs in kg and m and so computes the
BMI without a necessary unit conversion, while the program inputs are instead

soid: A Tool for Legal Accountability for Automated Decision Making 235

Fig. 2. An incorrect decision tree classification. At left the decision subtree with the
incorrect path in bolded red and the missed ‘correct’ branch in dashed blue. At right,
the decision tree inference logic as implemented in C. (Color figure online)

provided in the imperial in and lb. Notably, A is ‘correct’ with respect to natural
specifications – as is the decision tree in isolation. The flaw occurs due to a
mistake in the composition of the software system as a whole. Nonetheless, the
system misclassifies many inputs, as (kg/m2) � (lb/in2) for the same quantities.

The goal of soid is to enable a legal practitioner to understand the pres-
ence of and conditions underlying a potential misclassification. Unlike statistical
methods for counterfactual analysis which only analyze the (correct) decision
model [31], the minimal assumptions underlying soid – namely, the lack of an
assumption that the broader software system correctly uses the decision model –
make it a more capable framework for analyzing this type of ‘implicit conversion’
failure. In §2.1 we run a small empirical analysis on A, showing how soid enables
a user to specify concrete factual and counterfactual queries to understand the
conditions under which the failure can occur and their implications.

1.1 Related Work

The explainable AI (XAI) and fairness, accountability, and transparency
(FAccT) communities have developed numerous methods and tools for enabling
accountability of ADMs, machine-learned or otherwise, for which [1,10,13] are
recent surveys. The closest tool to soid of which we are aware is the VerifAI
project [9,11]. Many of these tools and techniques focus on counterfactual rea-
soning in particular [7,14,15,24,31]. In comparison to the prevailing lines of this
research, soid emphasizes i) after-the-fact (or ex post) analysis for algorithmic
accountability in the style of with legal reasoning; ii) the use of SMT-based ver-
ification technologies capable of resolving counterfactual questions about whole
families of scenarios; and iii) emphasis on the ‘code as run’, rather than eval-
uating a specific component like a particular decision model, or requiring an
abstracted program representation or a formal model of the (often complex social
and/or physical) environment the agent operates within.

2 soid Tool Architecture and Usage

Figure 1 illustrates the architecture of soid. The tool is implemented in Python,
and invokes the Z3 SMT solver [26] for resolving queries.

236 S. Judson et al.

Fig. 3. A counterfactual specified using soidlib for a simplified grid-based car crash
implementation (also available within our codebase alongside our soid-gui). This query
leaves the turn signal of the ‘other’ car at (2, 1) unconstrained, defining a counterfactual
family. The objects E , S , and D are user-specified in an omitted declare function,
including datatype.

Before working with soid, the investigator must use their domain expertise
to find and extract the critical moment they care about from the factual trace
within the logging infrastructure of A. We assume some mechanism guarantees
the authenticity of the trace, such as an accountable logging protocol, as has
been previously proposed for cyberphysical systems [33]. After extracting the
trace the investigator must specify the i) (counter)factual query defining the
factual, counterfactual, or family of counterfactual scenarios the query concerns;
as well as ii) some possible agent behavior. In the remainder of this section, we
explain how the user does so using soid and a Python library interface it exposes
called soidlib. Constraints are specified through an API similar to Z3Py, see
Fig. 3, while queries can be written as independent Python scripts or generated
dynamically within a Python codebase.

Upon invocation, soid symbolically executes A to generate a set of feasible
program paths as constrained by the (counter)factual query. The constraints
in that query must be provided directly to the symbolic execution engine – an
integration API exposes the query to the symbolic execution in order to enable
this communication, or the user can do so directly outside soid itself. After the
symbolic execution completes, soid formulates the query formula and invokes Z3
to resolve it. It then outputs to the user the finding, as well as any model –
which exists in the event of a failed ‘would’ or successful ‘might’ query.

Query API. The query API of soid is exposed as a Python library called soidlib.
A query specified using soidlib is composed of a name and query type, as well as
a set of functions. These functions return either soidlib variable declarations or
constraints, which are in either case automatically encoded into a set of corre-
sponding Z3Py constraints for use during SMT solving to establish the satisfi-
ability or validity of the query. An example query is shown in Fig. 3. The main
API function interfaces the user must define in order to encode their query are:

soid: A Tool for Legal Accountability for Automated Decision Making 237

– declare() : A function that must return three dictionaries of soidlib variable
declarations, enumerating the set of environmental inputs (E) and internal
state inputs (S) over which the factual or (family of) counterfactual sce-
nario(s) are defined, as well as the set of decision (D) variables over which
the behavior is defined. In order to do this soidlib exposes a variety of variable
types, which it then converts into Z3 statements with the appropriate logical
sorts as required by the underlying SMT logic (e.g., encoding an object of
integer type as an object of the 32-bit bitvector sort).

– environmental(E) : A function that must return a soidlib constraint over
E describing the environmental program inputs.

– state(S) : A function that must return a soidlib constraint over S describing
the internal state program inputs.

– falsified(E, S) : An optional function, returns a soidlib constraint encod-
ing a concrete factual to be negated from the query formula, and therefore
excluded from the set of possible output models.

– behavior(D) : A function that must return a soidlib constraint over D
describing the behavior being queried.

Language Support. Through a modular API soid extensively supports any sym-
bolic execution engine that produces output in the SMT-LIB format [4]. An
integrator needs only to write a Python class implementing an interface between
soid and the engine. As such, soid supports agents written in any program-
ming language for which a suitable symbolic execution engine is available. We
use the KLEE family of symbolic execution engines throughout our bench-
marks. At present, support is integrated into soid for C language programs with
floating-point instructions using KLEE-Float [21], working over the SMT logic
of QF FPBV, the quantifier-free theory of floating-point and bitvectors. Support
is also integrated for C and C++ language programs without floating-point
using mainline KLEE [5], producing representations in QF ABV, the quantifier-
free theory of arrays and bitvectors.1 KLEE can be further extended to ana-
lyze other LLVM-compilable languages such as Rust [22], while other engines
exist for compiled binaries [29] and many other languages including Java [2] and
Javascript [23].

Symbolic Execution API. Adding support for a new symbolic execution engine to
soid requires specifying between two and five functions: preprocess , execute ,

parse , clean , and postprocess , which are all hooked into the main soid

execution path. Only execute and parse are necessary – they must respec-
tively invoke the symbolic execution and then process the output into a list
of Z3Py statements capturing the possible path conditions. Optionally, clean
provides a hook for cleaning up temporary or output files generated by the
symbolic execution engine, while preprocess and postprocess are designed

1 Adding support for floating-point instructions into mainline KLEE remains at
present an open enhancement for the project, see: https://klee.github.io/projects/.

https://klee.github.io/projects/

238 S. Judson et al.

to automate additional steps that may be desirable for the symbolic execu-
tion – the former is given access to the query, the latter additionally to the
set of variables declared along the path conditions. For example, KLEE-Float
automatically converts arrays into bitvectors using a technique called Acker-
mannization [25], and renames any such variables in the process. The KLEE-
Float preprocess function packaged with soid i) casts objects as necessary;
and ii) constrains them to equal the corresponding input declarations in the
declare function so that they alias those inputs, e.g., adding the constraint
(= (fp.to ieee bv data) data ackermann!0) where data ackermann!0 is

KLEE-Float’s synthesized, Ackermannized representation of data .

Query to Symbolic Execution. One of the major benefits of the ex post method
of soid is that the (counter)factual query specified by the user can be used to
constrain what parts of the program A are relevant to the scenarios in question
and therefore must be included in the formula being checked. However, in order
to do so the query must also be exposed to the symbolic execution engine in
order to limit the symbolic execution to just the (ideally small) set of program
paths feasible under the (counter)factual scenario conditions. This can either
be done independent of soid, e.g. by the code invoking soid when it is used as a
library, or by using the preprocess hook in the symbolic execution framework.
At present, our codebase exclusively uses the external method.

Invocation. There are two ways to use soid: through a command line script (the
soidcli) or directly as a Python library. If the latter, the user calling the code
must declare a soid.Oracle object and configure it with i) a soid.Query ; ii)
the path to the A; and iii) the identity of the symbolic execution engine. If using
the soidcli, the CLI script declares the oracle object for the user, who must
specify the path to where (a collection of) soid.Query objects can be found
declared in independent Python scripts (as well as the same path to A and sym-
bolic execution engine identity). In case multiple variants of A are required in
order to specify different symbolic execution preconditions for different counter-
factual families, soid passes an identifier corresponding to a priority index
that the user can specify through the CLI interface. In the examples present in
the soid codebase this identifier is passed to a Makefile, which is then used to
invoke KLEE(-Float) on the correct variant.

2.1 Example #1: Decision Tree Inference

Using soid, we analyzed our decision tree misclassification motivating example.
The results are summarized in Table 1, and were gathered on an Intel Xeon
CPU E5-2650 v3 @ 2.30GHz workstation with 64 GB of RAM. We used scikit-
learn [27] to train a decision tree over the Pima Indians dataset as used in [31].
We then implemented A as a C program that preprocesses the data – triggering
the software system bug, as it does so without the necessary unit conversion –
and then infers a binary classification using the decision tree. In order to create

soid: A Tool for Legal Accountability for Automated Decision Making 239

Table 1. Benchmark results for our incorrect statistical inference example.

timings (avg. n = 10)

model output symbolic (s) solving (s) total (s) paths

→ ϕfact, low risk?

dt ✔ 0.746 4.896e-03 0.812 1

�→ ϕ∗ ≡ ϕfact[(weight = 249.973) �→ �], ever high risk?

dt ✔ 2.277 1.655 4.009 2

the factual basis for an investigation, we then invoked A on an example input
where the unit conversion bug leads to the misclassification of the input as low
risk instead of high risk.

We posed two queries:

1. Did the classification happen as described?
2. Does there exist a weight input parameter for which the instance is instead

classified as high risk instead?

The former query provides a baseline for how much the counterfactual possi-
bility of the latter query increases the cost of solving. It also fulfills the natural
goal of many accountability processes to formally confirm apparent events and
create a confirmed, end-to-end chain of analysis so that there is the highest pos-
sible societal confidence in any policy changes or punishments derived it. Both
of these queries were resolved by soid in the positive, requiring at most a few
seconds, even over a program structure in A that includes recursive invocations
of floating-point comparison operations. Together, they demonstrate the weight
input to A was causal for the classification, and establish its lack of unit conver-
sion as contributory to the (harmful) misclassification decision.

Working with A, soid provides an adaptive oracle allowing the investigator
to query its behavior and receive prompt and useful answers. The output of
the program is also simple and interpretable. Without an intermediating GUI or
developer tools, soid does require comfort with its API and the logical framework
of expressing (counter)factuals and program outputs, but we do not expect a
usable interface would be meaningfully difficult to integrate for this example.

3 soid-gui Architecture and Usage

The soid-gui is a web-based interactive interface for soid applied to the domain of
autonomous vehicle accountability. It demonstrates that the use of soid can be
managed by a high-level abstraction that exposes to non-technical practitioners
the expressiveness and capacity of the tool, but none of its logical or technical
complexity. We demonstrate the design and use of the soid-gui in Fig. 4.2

2 The repositories for soid and soid-gui are available at https://github.com/sjudson/
soid and https://github.com/mattelacqua/duckietown-soid, respectively.

https://github.com/sjudson/soid
https://github.com/sjudson/soid
https://github.com/mattelacqua/duckietown-soid

240 S. Judson et al.

Architecturally, the soid-gui is composed of three main components: i) a fron-
tend written in React; ii) a backend server written in Python that operates a
vehicle simulation using the Duckietown simulator for the OpenAI Gym (hence-
force Gym-Duckietown [6]) and also interfaces with soid; and iii) a proxy server
that manages communication between the browser frontend and the server back-
end. The Duckietown simulation is used as a stand-in for the real vehicle logs and
instrumentation on which soid would be deployed in practice. We designed the
crossroads intersection simulation interface to mimic the real-time driving con-
text interface generated by contemporary autonomous vehicles, like those pro-
duced by Tesla. We stress that Gym-Duckietown is not exposed to soid, which
operates exclusively over the program (and decision model) A. Gym-Duckietown
is used only to simulate crashes and generate logfiles as the basis for soid queries.

Outside of the soid investigatory loop, the user can first use the soid-gui
to design a car crash scenario by manipulating the location, destination, and
other properties of the simulated car through menus and a drag and drop inter-
face (see Fig. 4). The soid-gui also allows the user to select from among five
different decision logics for the ego car: a directly programmed ‘ideal’ car, and
four reinforcement-learned (specifically, Q-learned [32]) agents, colloquially the
‘defensive’, ‘standard’, ‘reckless’ and ‘pathological’ decision models. They are so
named on the basis of the reward profiles used to train them.

After an iteration of the simulation (usually, after a crash occurs), the soid-gui
allows the user to operate the soid investigatory loop. Using a slider the user can
pick out a moment from the logs of the agent, and supported by detailed logging
information about the inputs to A at each timestep can select the critical moment
(see Step 1 in Fig. 4). They can then use car-specific dropdown menus to specify
counterfactuals about any of the agents in the system in a user-friendly manner,
which fully abstracts away the underlying logical formalism (Step 2 in Fig. 4).
Finally, they can invoke soid on the query they have specified by asking whether
the ego car ‘might’ or ‘would’ move or stop under the (family) of counterfactual
scenario(s) they have defined (Step 3 in Fig. 4). After solving the soid-gui then
presents an interpretable answer, including a valuation for any variables the
counterfactual was stated over when one is available (Step 4 in Fig. 4). The user
can then clear or adjust their counterfactual statement and ask further queries,
until satisfied they have reached an understanding of the car’s decision making
under the selected decision model.

To use soid, the soid-gui first writes out a C language file with the neces-
sary constraints for the KLEE-Float symbolic execution. It then creates the
soid.Query and soid.Oracle objects, allowing it to invoke soid through the
Python library interface. Once soid has invoked KLEE-Float and Z3 to deter-
mine the answer to the query the output is then processed. When applicable, this
includes model parsing. The result is then passed back to the browser frontend
to be shown to the user.

soid: A Tool for Legal Accountability for Automated Decision Making 241

Fig. 4. After the (simulated) execution, the investigator (1) selects a critical moment;
(2) poses a counterfactual query; (3) invokes the SMT solver; and (4) is presented with
the response from the oracle.

3.1 Example #2: Three Cars on the Stand

We use the soid-gui to investigate a crash in Fig. 4. It is a simple intersection
scenario, where the blue ‘ego’ car under investigation strikes the broadside of the
red ‘other’ car which has indicated a right turn but proceeded straight nonethe-
less. As the red car possesses the right of way the fault lies with the blue car. We
investigate ‘to what purpose’ the blue car entered in the intersection, in order
to grade the severity of its misconduct in conjunction with legal norms that fre-
quently apply the greatest possible penalties to purposeful action [16]. Notably,

242 S. Judson et al.

this crash occurs for all three of the ‘standard’, ‘reckless’, and ‘pathological’
decision models (but not the ‘defensive’ model).

Table 2. Benchmark results for our car crash example. For the final query, we phrased
it as both a ‘would’ and a ‘might’ counterfactual for comparison.

timings (avg. n = 10)

model output symbolic (s) solving (s) total (s) paths

→ ϕfact, moved?

standard ✔ 3.575 4.290e-03 4.162 1

impatient ✔ 3.607 4.317e-03 4.193 1

pathological ✔ 3.626 4.249e-03 4.212 1

�→ ϕ∗ ≡ ϕfact[(agent1 signal choice = 2) �→ (agent1 signal choice ∈ {0, 1, 2})], always move?

standard ✘ 3.979 2.371 7.754 3

impatient ✔ 4.001 2.307 7.703 3

pathological ✔ 3.958 2.326 7.681 3

�→ ϕ∗[(agent1 pos x = 1.376) �→ (1.0 ≤ agent1 pos x ≤ 1.5)], always move?

standard ✘ 154.7 17.14 179.7 19

impatient ✔ 207.6 4.622 220.1 19

pathological ✘ 141.1 17.34 166.1 19

�→ ϕ∗ ∧ (agent2 pos x = 1.316) ∧ (agent2 pos z = 0.378) ∧ · · · , always move?

standard ✘ 8.995 4.111 16.74 3

impatient ✔ 9.107 3.951 16.71 3

pathological ✔ 9.037 3.913 16.54 3

�→ ϕ∗ ∧ (agent2 pos x = 1.316) ∧ (agent2 pos z = 0.378) ∧ · · · , ever not move?

standard ✔ 8.483 4.029 16.33 3

impatient ✘ 8.979 3.848 16.46 3

pathological ✘ 9.087 3.941 16.70 3

We pose three queries about the blue car’s decision making at the moment
when it releases the brakes and enters the intersection (Step 1 in Fig. 4):

1. Did the blue car actually decide to move, as it appeared to?
2. Could a different turn signal have led the blue car to remain stationary?
3. If the blue car had arrived before the red car and the red car was not signaling

a turn, might the blue car have waited to ‘bait’ the red car into entering the
intersection and creating the opportunity for a crash?

Intuitively, the second question should distinguish the ‘standard’ car from the
‘reckless’ and ‘pathological’, which should continue to move into the intersection
no matter what. The third question should then distinguish between the ‘reckless’
and ‘pathological’ cars, with the former taking the opportunity for a clean path
through the intersection, while the latter lies in wait.

There are natural explanations for the behavior of the other decision models:
the ‘standard’ car is undertaking common human driving behavior given the

soid: A Tool for Legal Accountability for Automated Decision Making 243

perception of an unobstructed path through the intersection, the ‘reckless’ car
demonstrates a prioritization of individual speed over collective safe driving,
while the ‘pathological’ car might be attempting to trigger a crash for insurance
fraud. Notably, in the case of the ‘reckless’ car, we do not want to inherently
describe that behavior as incorrect as verification methods might, such as any
implementing [28]. It could be that exigent circumstances necessitate reckless
behavior, and that the blue car not entering the intersection as fast as possible
would trigger a greater harm than a minor crash.

The results of our benchmarks are summarized in Table 2. As before, all
of the statistics were gathered on an Intel Xeon CPU E5-2650 v3 @ 2.30GHz
workstation with 64 GB of RAM. Each heading in Table 2 describes a family
of (counter)factual scenarios and behavior, as well as whether the query is a
verification (‘would...?’) or counterfactual generation (‘might...?’) one. The rows
list the decision model invoked within A, the answer as determined by the veri-
fication oracle, timings, and the total number of feasible paths.

We find that soid provides an interpretable and adaptive oracle allowing the
investigator to query a sequence of counterfactuals without directly interacting
with A or the machine learned-model underlying it. Most of our queries resolved
within < 20s, providing effective usability. The results of the queries demonstrate
the distinctive behaviors expected of the three conflicting purposes, allowing a
capable investigator to distinguish them as desired.

4 Conclusion

We briefly conclude by considering some future directions for extensions to soid.

Supporting DNNs. Many modern machine-learned agents rely on models built
out of deep neural network (DNN) architectures. Extending soid to support
such agents – most likely by relying on recent innovations in symbolic execution
for neural networks [12] and SMT-based neural network verifiers [17,18] – is a
possible direction for increasing the utility of soid.

Programming Counterfactuals. Although soid is adaptive, that does not neces-
sarily mean it needs to be interactive. A further possible direction would be
to design a counterfactual calculus as the basis for a programming language
that would invoke soid as part of its semantics. Such a language could poten-
tially be the basis for formalizing legal regimes for which counterfactual analysis
forms a critical component. A related direction would be to integrate with a sce-
nario specification language like SCENIC from the VerifAI project [9,11] to add
another layer of capability onto the specification of families of counterfactuals.

244 S. Judson et al.

Acknowledgements. The authors thank Gideon Yaffe, Man-Ki Yoon, Cristian
Cadar, and Daniel Liew. This work was supported by the Office of Naval Research
(ONR) of the United States Department of Defense through a National Defense Science
and Engineering Graduate (NDSEG) Fellowship, by the State Government of Styria,
Austria - Department Zukunftsfonds Steiermark, by EPSRC grant no EP/R014604/1,
and by NSF awards CCF-2131476, CCF-2106845, CCF-2219995, CCF-2318974, and
CNS-2245344. The authors would also like to thank the Isaac Newton Institute for
Mathematical Sciences, Cambridge, for support and hospitality during the programme
Verified Software where work on this paper was undertaken.

References

1. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on Explainable
Artificial Intelligence (XAI). IEEE Access 6, 52138–52160 (2018)

2. Anand, S., Păsăreanu, C.S., Visser, W.: JPF–SE: a symbolic execution extension to
Java PathFinder. In: Grumberg, O., Huth, M. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems, pp. 134–138. Springer Berlin Heidelberg,
Berlin, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71209-1 12

3. Angwin, J., Larson, J., Mattu, S., Kirchner, L.: Machine Bias. ProPublica (May
23rd, 2016). https://www.propublica.org/article/machine-bias-risk-assessments-
in-criminal-sentencing

4. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2, 6 (2021)
5. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: Unassisted and automatic generation

of high-coverage tests for complex systems programs. In: USENIX Symposium on
Operating Systems Design and Implementation (OSDI ’08), pp. 209–224 (2008)

6. Chevalier-Boisvert, M., Golemo, F., Cao, Y., Mehta, B., Paull, L.: Duckietown
Environments for OpenAI Gym. https://github.com/duckietown/gym-duckietown
(2018)

7. Chockler, H., Halpern, J.Y.: Responsibility and blame: a structural-model app-
roach. J. Artif. Intell. Res. 22, 93–115 (2004)

8. Dastin, J.: Amazon scraps secret AI recruiting tool that showed bias against
women. Reuters (2018). https://www.reuters.com/article/us-amazon-com-jobs-
automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-
against-women-idUSKCN1MK08G

9. Dreossi, T., et al.: VerifAI: a toolkit for the formal design and analysis of arti-
ficial intelligence-based systems. In: Intentional Conference on Computer Aided
Verification (CAV ’19), pp. 432–442. Springer (2019)

10. Feigenbaum, J., Jaggard, A.D., Wright, R.N.: Accountability in computing: Con-
cepts and Mechanisms. Found. Trends® Privacy Security 2(4), 247–399 (2020)

11. Fremont, D.J., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli, A.L.,
Seshia, S.A.: Scenic: a language for scenario specification and scene generation.
In: ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI ’19), pp. 63–78 (2019)

12. Gopinath, D., Wang, K., Zhang, M., Pasareanu, C.S., Khurshid, S.: Symbolic Exe-
cution for Deep Neural Networks. arXiv preprint arXiv:1807.10439 (2018)

13. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A
survey of methods for explaining black box models. ACM Comput. Surv. (CSUR)
51(5), 1–42 (2018)

14. Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach.
part i: causes. British J. Philos. Sci. 56(4), 843–887 (2005)

https://doi.org/10.1007/978-3-540-71209-1_12
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://github.com/duckietown/gym-duckietown
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
http://arxiv.org/abs/1807.10439

soid: A Tool for Legal Accountability for Automated Decision Making 245

15. Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach.
part II: explanations. British J. Philos. Sci. 56(4), 889–911 (2005)

16. Judson, S., Elacqua, M., Córdoba, F.C., Antonopoulos, T., Könighofer, B., Shapiro,
S.J., Piskac, R.: ‘Put the Car on the Stand’: SMT-based Oracles for Investigat-
ing Decisions. In: ACM Symposium on Computer Science and Law (CSLAW ’24)
(2024). https://arxiv.org/abs/2305.05731 for an extended technical report

17. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an effi-
cient SMT solver for verifying deep neural networks. In: International Conference
on Computer Aided Verification (CAV ’17), pp. 97–117 (2017)

18. Katz, G.: The marabou framework for verification and analysis of deep neural
networks. In: International Conference on Computer Aided Verification (CAV ’19),
pp. 443–452 (2019)

19. Kroll, J.A., et al.: Accountable algorithms. Univ. Pa. Law Rev. 165(3), 633–705
(2017)

20. Lewis, D.: Counterfactuals. John Wiley & Sons (2013). originally published in 1973
21. Liew, D., Schemmel, D., Cadar, C., Donaldson, A.F., Zahl, R., Wehrle, K.:

Floating-point symbolic execution: a case study in N-version programming. In:
IEEE/ACM International Conference on Automated Software Engineering (ASE
’17), pp. 601–612 (2017)

22. Lindner, M., Aparicius, J., Lindgren, P.: No panic! verification of rust programs
by symbolic execution. In: 2018 IEEE 16th International Conference on Industrial
Informatics (INDIN), pp. 108–114. IEEE (2018)

23. Loring, B., Mitchell, D., Kinder, J.: ExpoSE: practical symbolic execution of stan-
dalone JavaScript. In: International SPIN Symposium on Model Checking of Soft-
ware (SPIN ’17), pp. 196–199 (2017)

24. Mothilal, R.K., Sharma, A., Tan, C.: Explaining machine learning classifiers
through diverse counterfactual explanations. In: ACM Conference on Fairness,
Accountability, and Transparency (FAT∗ ’20), pp. 607–617 (2020)

25. de Moura, L., Bjørner, N.: Model-based theory combination. Electron. Notes Theor.
Comput. Sci. 198(2), 37–49 (2008)

26. Moura, L.d., Bjørner, N.: Z3: An efficient SMT Solver. In: International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS
’08), pp. 337–340 (2008)

27. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

28. Shalev-Shwartz, S., Shammah, S., Shashua, A.: On a Formal Model of Safe and
Scalable Self-Driving Cars. arXiv preprint arXiv:1708.06374 (2017)

29. Shoshitaishvili, Y., et al.: SoK: (State of) The art of war: offensive techniques in
binary analysis. In: IEEE Symposium on Security and Privacy (S&P ’16) (2016)

30. Smiley, L.: ‘I’m the Operator’: The Aftermath of a Self-Driving Tragedy.
Wired Magazine (2022). https://www.wired.com/story/uber-self-driving-car-
fatal-crash/

31. Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without
opening the black box: automated decisions and the GDPR. Harvard J. Law Tech-
nolo. 31, 841 (2017)

32. Watkins, C.J.C.H., Dayan, P.: Q-learning. Mach. Learn. 8, 279–292 (1992)
33. Yoon, M.K., Shao, Z.: ADLP: accountable data logging protocol for publish-

subscribe communication systems. In: International Conference on Distributed
Computing Systems (ICDCS ’19), pp. 1149–1160. IEEE (2019)

https://arxiv.org/abs/2305.05731
http://arxiv.org/abs/1708.06374
https://www.wired.com/story/uber-self-driving-car-fatal-crash/
https://www.wired.com/story/uber-self-driving-car-fatal-crash/

246 S. Judson et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	soid: A Tool for Legal Accountability for Automated Decision Making
	1 Introduction
	1.1 Related Work

	2 soid Tool Architecture and Usage
	2.1 Example #1: Decision Tree Inference

	3 soid-gui Architecture and Usage
	3.1 Example #2: Three Cars on the Stand

	4 Conclusion
	References

