
227

ProvingQuery Equivalence Using Linear Integer Arithmetic

HAORAN DING, Shanghai Jiao Tong University, China
ZHAOGUOWANG

∗
, Shanghai Jiao Tong University, China

YICUN YANG, Shanghai Jiao Tong University, China
DEXIN ZHANG, Shanghai Jiao Tong University, China
ZHENGLIN XU, Shanghai Jiao Tong University, China
HAIBO CHEN, Shanghai Jiao Tong University, China
RUZICA PISKAC, Yale University, USA
JINYANG LI, New York University, USA

Proving the equivalence between SQL queries is a fundamental problem in database research. Existing solvers
model queries using algebraic representations and convert such representations into first-order logic formulas
so that query equivalence can be verified by solving a satisfiability problem. The main challenge lies in
“unbounded summations”, which appear commonly in a query’s algebraic representation in order to model
common SQL features, such as Projection and aggregate functions. Unfortunately, existing solvers handle
unbounded summations in an ad-hoc manner based on heuristics or syntax comparison, which severely limits
the set of queries that can be supported.

This paper develops a new SQL equivalence prover called SQLSolver, which can handle unbounded
summations in a principled way. Our key insight is to use the theory of LIA∗, which extends linear integer
arithmetic formulas with unbounded sums and provides algorithms to translate a LIA∗ formula to a LIA
formula that can be decided using existing SMT solvers. We augment the basic LIA∗ theory to handle several
complex scenarios (such as nested unbounded summations) that arise from modeling real-world queries. We
evaluate SQLSolver with 359 equivalent query pairs derived from the SQL rewrite rules in Calcite and Spark
SQL. SQLSolver successfully proves 346 pairs of them, which significantly outperforms existing provers.

CCS Concepts: • Information systems→ Query optimization; • Theory of computation→ Automated

reasoning; Program verification; Logic and databases.

Additional Key Words and Phrases: SQL query equivalence; SQL solver; linear integer arithmetic; LIA; linear
integer arithmetic with stars; LIA∗

ACM Reference Format:

Haoran Ding, Zhaoguo Wang, Yicun Yang, Dexin Zhang, Zhenglin Xu, Haibo Chen, Ruzica Piskac, and Jinyang
Li. 2023. Proving Query Equivalence Using Linear Integer Arithmetic. Proc. ACM Manag. Data 1, 4 (SIGMOD),
Article 227 (December 2023), 26 pages. https://doi.org/10.1145/3626768

∗Corresponding author (zhaoguowang@sjtu.edu.cn)

Authors’ addresses: Haoran Ding, nhaorand@sjtu.edu.cn, Shanghai Jiao Tong University, Shanghai, China, 200240;
Zhaoguo Wang, zhaoguowang@sjtu.edu.cn, Shanghai Jiao Tong University, Shanghai, China, 200240; Yicun Yang,
yangyicun@sjtu.edu.cn, Shanghai Jiao Tong University, Shanghai, China, 200240; Dexin Zhang, zhangdexin@sjtu.edu.
cn, Shanghai Jiao Tong University, Shanghai, China, 200240; Zhenglin Xu, kevinsouth@sjtu.edu.cn, Shanghai Jiao Tong
University, Shanghai, China, 200240; Haibo Chen, haibochen@sjtu.edu.cn, Shanghai Jiao Tong University, Shanghai,
China, 200240; Ruzica Piskac, ruzica.piskac@yale.edu, Yale University, New Haven, Connecticut, USA, 06511; Jinyang Li,
jinyang@cs.nyu.edu, New York University, New York, New York, USA, 10003.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2836-6573/2023/12-ART227 $15.00
https://doi.org/10.1145/3626768

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 227. Publication date: December 2023.

HTTPS://ORCID.ORG/0009-0008-8138-8639
HTTPS://ORCID.ORG/0000-0002-0220-5726
HTTPS://ORCID.ORG/0009-0004-5303-2599
HTTPS://ORCID.ORG/0009-0005-9009-9503
HTTPS://ORCID.ORG/0009-0002-7868-6615
HTTPS://ORCID.ORG/0000-0002-9720-0361
HTTPS://ORCID.ORG/0000-0002-3267-0776
HTTPS://ORCID.ORG/0000-0002-9574-1746
https://doi.org/10.1145/3626768
zhaoguowang@sjtu.edu.cn
https://orcid.org/0009-0008-8138-8639
https://orcid.org/0000-0002-0220-5726
https://orcid.org/0009-0004-5303-2599
https://orcid.org/0009-0005-9009-9503
https://orcid.org/0009-0002-7868-6615
https://orcid.org/0000-0002-9720-0361
https://orcid.org/0000-0002-3267-0776
https://orcid.org/0000-0002-9574-1746
https://doi.org/10.1145/3626768

227:2 Haoran Ding et al.

𝑄1: select a, count(b) from R group by a

𝑄2: select S.a, sum(S.cnt) from

(select a, count(b) as cnt from R group by a) as S

group by S.a

Fig. 1. A pair of equivalent queries that cannot be proven by existing solvers.

1 INTRODUCTION

In recent years, we have witnessed the increasing importance of developing automatic tools to
prove the equivalence of two SQL queries. Such a SQL equivalence solver can be used in many
important scenarios, e.g., proving or refuting certain existing query rewrite rules [2, 9, 11, 18, 41],
discovering novel rewrite rules [43], identifying any overlap in computation in a data processing
pipeline [46].
The objective of a SQL solver, which is to determine whether two queries are semantically

equivalent, is unfortunately undecidable for general SQL queries [1]. Despite this theoretical
limitation, recent works have developed several solvers [9, 11, 46, 47] that aim for practical use
by handling an increasing set of SQL queries. These solvers all model a given SQL query as an
algebraic representation. Syntax-based checkers, such as UDP [9] and SPES [47], normalize the
algebraic representations of a pair of queries and check for equivalence by determining whether the
normalized representations are isomorphic. Such syntax-based checking has trouble proving queries
that differ significantly in their syntax structures. Semantics-based checkers, such as WeTune [43],
are introduced recently to address this limitation. These solvers translate a query’s algebraic
representation into a first-order logic formula and thus reduce the problem of proving equivalence
to deciding the satisfiability of a first-order logic formula.
Unfortunately, existing semantics-based solvers, such as WeTune, are still very limited in

the kind of queries that can be handled. WeTune uses U-expressions to model queries under
bag semantics. Specifically, the U-expression of a query is an algebraic expression 𝑓 (𝑡), which
returns the multiplicity of the tuple 𝑡 in the query result. Two queries are equivalent if their
U-expressions always return the same result. In order to model certain essential SQL features,
such as Projection and aggregate functions, a query’s algebraic expression ends up containing
summations (∑) over the infinite domain of all possible tuples. We refer to these terms as unbounded
summations. For example, the projection query “select X from R” has this corresponding U-
expression: 𝑓 (𝑡) = ∑

𝑡 ′ ([𝑡 = 𝑋 (𝑡 ′)] × 𝑅(𝑡 ′)), where the unbounded summation (∑′
𝑡) adds up the

multiplicity of each tuple in relation R (represented by 𝑅(𝑡 ′)) if its X attribute value is 𝑡 (represented
by [𝑡 = 𝑋 (𝑡 ′)]).
However, WeTune lacks a principled way to translate U-expressions with unbounded sum-

mations to first-order logic formulas. Using heuristics, WeTune can only handle a few simple
cases involving unbounded summations. As a result, WeTune can only prove about a third of the
equivalent queries (78 out of 232) derived from Calcite test suites [5] and about a quarter of those
(31 out of 127) derived from Spark SQL. For example, the pair of queries in Figure 1 are equivalent.
However, they cannot be proven by WeTune because the corresponding algebraic expressions
involve unbounded summations in complex forms. Neither can the pair be proven by syntax-based
provers like UDP and SPES. This is because the numbers of aggregate functions in the two queries
are different, leading to different syntax structures that cannot be aligned even after normalization.

This paper presents a new semantics-based prover called SQLSolver that can handle unbounded
summations in U-expressions in a principled way. We take inspiration from existing literature on
decision procedures and use the theory of linear integer arithmetic with stars (LIA∗), which extends

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 227. Publication date: December 2023.

ProvingQuery Equivalence Using Linear Integer Arithmetic 227:3

linear integer arithmetic formulas with unbounded summations [36, 37]. Existing works on LIA∗

have shown how to convert a LIA∗ formula to a LIA formula [30]. Thus, the basic approach of
SQLSolver is to first translate U-expressions into a LIA∗ formula and then further convert the LIA∗

formula into a LIA formula before solving them using a SMT solver. While this basic approach is
promising, applying LIA∗ in our setting encounters additional challenges not considered by the
existing theory of LIA∗. In particular, the U-expressions of real-world SQL queries can often contain
nested unbounded summations, parameterized summations, or summations involving non-linear
operations. We augment the original LIA∗ theory to support each of these cases. As a result of our
principled way of handling unbounded summations, SQLSolver is able to support many more
complex SQL queries and common features, such as the example in Figure 1.

As U-expressions model SQL queries under bag semantics, it cannot handle ORDER BY clauses,
which sort tuples in the query result. To solve this issue, we develop a “divide and conquer” strategy,
which enables SQLSolver to prove the equivalence between two queries with ORDER BY clauses
by proving the equivalence between queries without ORDER BY clauses.

We evaluate SQLSolver using equivalent query pairs derived from Calcite [5], Spark SQL [17],
TPC-C, and TPC-H. They contain 232, 127, 19, and 22 pairs of equivalent queries, respectively.
SQLSolver can prove all 232 query pairs derived from Calcite test suites, 114 (out of 127) pairs of
queries derived from Spark SQL, all 19 query pairs derived from TPC-C, and 19 (out of 22) query
pairs derived from TPC-H. By contrast, existing solvers can only prove 121 pairs in Calcite test
suites, 71 pairs derived from Spark SQL, 15 pairs derived from TPC-C, and 0 pairs derived from
TPC-H.

In summary, our work makes the following contributions:

• We propose a principled way to translate U-expressions with unbounded summations into first-
order logic formulas by applying the theory of LIA∗. Unbounded summations are essential for
modeling common SQL queries involving Projection and aggregate functions.

• We augment the original LIA∗ theory to handle nested unbounded summations, parameterized
summations, or summations involving non-linear operations, all of which occur in common SQL
queries.

• We additionally handle ORDER BY clauses, which cannot be modeled by U-expressions under
bag semantics. Our method based on “divide-and-conquer” can be used in conjunction with our
main LIA∗-based solver algorithm.

• Based on our design, we implement a new SQL equivalence solver, which can prove many more
queries than existing solvers. On the Calcite test suite, existing solvers can prove approximately
half of the 232 queries, while our solver SQLSolver can prove all of them.When using SQLSolver
to discover SQL rewrite rules, we find 42 new rewrite rules beyond the 35 rules found by using
the existing solver in WeTune.

2 BACKGROUND ANDMOTIVATION

In this section, we discuss the evolution of existing SQL query equivalence solvers and describe the
challenges that state-of-the-art solvers face today.

2.1 Syntax vs. Semantics-based Checking

To prove equivalence, we must first model the semantics of SQL queries. Existing solvers model
queries under bag semantics (i.e., the query result may contain duplicate tuples [12]) and transform
queries into algebraic representations. Next, we need to check the equivalence of a pair of algebraic
representations. Existing solvers differ in how they perform such checks. There are two main
approaches: syntax-based and semantics-based checking.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 227. Publication date: December 2023.

227:4 Haoran Ding et al.

Table 1. The comparison of automated provers. Methodology indicates their method of modeling SQL queries

and checking query equivalence. Capability shows the number of equivalent query pairs that can be proved

by each prover, which are derived from Calcite and Spark SQL.

UDP SPES WeTune SQLSolver

Methodology

Query
Modeling U-expression Tree-based Algebraic

Representation (AR) U-expression Extended
U-expression

Equivalence
Checking

Syntax
Structure

Syntax Structure
+ SMT Solver

Trans. Rule
+ SMT Solver LIA∗ Solver

Capability

Calcite
(232 pairs) 33 99 78 232

Spark SQL
(127 pairs) 20 56 31 114

With syntax-based approaches, solvers attempt to normalize the algebraic representations
using pre-defined rules and then compare their syntax structures [8, 9, 11, 47]. Two representative
syntax-based solvers are UDP [9] and SPES [47]. UDP transforms each SQL query into an algebraic
representation called a U-expression, which is a function that takes any tuple 𝑡 as its input and
returns the corresponding multiplicity of 𝑡 in the query result. UDP applies a set of manually crafted
rules to normalize and simplify U-expressions. Finally, UDP determines the equivalence of two SQL
queries by checking whether the normal forms of their U-expressions are isomorphic in terms of
their syntax structures. SPESworks in a way similar to UDP but differs in some aspects. In particular,
SPES converts SQL queries into a tree-structured algebraic representation instead of U-expressions.
Similar to UDP, before checking the isomorphism between two queries in terms of syntax structures,
SPES applies manually crafted rules to normalize and simplify tree-based representations into
normal forms. Unlike UDP, SPES leverages SMT solvers to check the equivalence of predicates
in different queries so that it is capable of verifying concrete predicates, such as the equivalence
between 𝑡 > 10 and 𝑡 + 10 > 20. Due to its integration with SMT solvers, SPES can support certain
features that UDP cannot, such as arithmetic operators.
Limitation of syntax-based equivalence checking. Syntax-based solvers determine the

equivalence of two SQL queries by verifying the isomorphism of their normalized algebraic rep-
resentations. Thus, it is difficult for them to prove the equivalence of two SQL queries that differ
significantly in their syntax structures despite introducing many normalization rules. For example,
it is difficult for SPES to prove the equivalence of SQL queries with differing numbers of input
relations, UNION ALL operators, or aggregate functions. Additionally, although UDP and SPES can
handle UNION and EXISTS operators, they cannot reason the following equivalent queries. Each of
the queries returns all unique tuples in relation 𝑅.

𝑄1: (select ∗ from R) union (select ∗ from R)
𝑄2: select distinct ∗ from R

where exists (select ∗ from R)

Neither UDP nor SPES can verify the isomorphism of the above queries’ algebraic representations
in normal forms because the first query lacks EXISTS operators and the second query lacks UNION
operators. As a result, for 232 equivalent query pairs collected from the Calcite test suite [5], UDP
can only prove 33 pairs and SPES can prove 99 pairs. Meanwhile, for 127 equivalent query pairs
derived from the Spark SQL rewrite rules [17], UDP can prove 20 pairs and SPES can prove 56 pairs.
Additionally, there are 117 pairs of queries among both test suites that neither UDP nor SPES can
prove due to the limitation mentioned above.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 227. Publication date: December 2023.

ProvingQuery Equivalence Using Linear Integer Arithmetic 227:5

With semantics-based approaches, solvers determine the equivalence of two algebraic expres-
sions by transforming the equivalence problem into the satisfiability problem of a first-order logic
formula [43, 46]. A recent semantics-based solver isWeTune [43].WeTune models SQL queries
using U-expressions, like UDP. However, instead of comparing normalized U-expressions based on
syntax structures,WeTune transforms queries’ U-expressions into a first-order logic formula. Thus,
proving the equivalence of SQL queries is reduced to reasoning about a first-order logic formula,
which can be processed by SMT solvers. As a result, WeTune is capable of proving equivalent
queries even when they vary significantly in terms of syntax structures.

Limitation of semantics-based equivalence checking. Existing semantics-based solvers such
as WeTune [43] are heavily reliant on their abilities to translate queries’ algebraic representations
into a first-order logic formula. In particular, WeTune can only translate simple U-expressions
with limited expressiveness. As a result, queries that entail U-expressions with complicated syntax
structures or specific aggregate functions fall beyond WeTune’s capabilities. We will elaborate on
the challenges in converting U-expressions to a first-order logic formula in the next subsection
(§ 2.2). For the 232 pairs of equivalent queries in the Calcite test suites,WeTune successfully proves
78 of them. For the 127 equivalent queries derived from Spark SQL rewrite rules [17], WeTune
can prove 31 pairs. Despite the limitation, semantics-based solvers are quite promising as they can
prove queries beyond what can be proven by syntax-based solvers. For example, 20 pairs of queries
derived from Calcite and 14 pairs derived from Spark SQL that can be proven by WeTune cannot
be proven by UDP or SPES.
Table 1 compares the methodologies and capabilities of existing solvers. Our goal is to address

the limitations of semantics-based equivalence checking to expand the capabilities of these solvers.

2.2 Challenge of Semantics-based Checking

Let us now examine the challenges a semantics-based solver like WeTune faces. WeTune models
queries using U-expressions and then translates queries’ U-expressions into a first-order logic
formula. We first give a brief overview of U-expression-based query modeling. Then, we will
investigate the key difficulties in translating U-expressions to a first-order logic formula.

U-expression. U-expression is a common way to model queries with algebraic expressions [9, 43].
Given a query 𝑄 , its U-expression is a function 𝑓 (𝑡), which returns the multiplicity of the tuple 𝑡 in
the query result of 𝑄 . SQLSolver translates each SQL query into a U-expression by composing
a number of pre-defined terms summarized in Table 2. Each term returns a non-negative integer
value and is connected by “×” or “+” in the U-expression. Specifically, for each relation name 𝑅,
there is a pre-defined function ⟦𝑅⟧(𝑡) that returns the multiplicity of tuple 𝑡 in the relation 𝑅. For
each SQL predicate 𝑏, the U-expression [𝑏] is either 1 (𝑏 is true) or 0 (𝑏 is false). Table 2 also defines
the operators of squash (∥·∥) and negation (𝑛𝑜𝑡 (·)) to model the semantics of DISTINCT and NOT

accordingly. For brevity, we omit ⟦⟧ in U-expressions if there is no ambiguity. For example, given
a query of “select ∗ from R where R.x > 0”, its U-expression is 𝑓 (𝑡) B 𝑅(𝑡) × [𝑥(𝑡) > 0], where
𝑥 (𝑡) returns the attribute 𝑥 of tuple 𝑡 .

To model the semantics of Projection, a U-expression introduces summations ∑ over the infinite
domain of all possible tuples. We refer to such summation as an unbounded summation. Unbounded
summation is commonly used for calculating the total number of tuples that meet certain conditions.
Take an example query with Projection, “select R.x from R where R.x > 0”, its U-expression is
𝑓 (𝑡) B ∑

𝑡1 (𝑅(𝑡1) × [𝑥(𝑡1) > 0] × [𝑡 = 𝑥(𝑡1)]). The unbounded summation enumerates all possible
tuples 𝑡1 over unspecified relation 𝑅 whose attribute 𝑥 is more than 0 and equal to 𝑡 . Unbounded
summation is crucial not only for modeling Projection but also for other common SQL features,
such as aggregate functions. We will discuss it deeply in Section 4.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 227. Publication date: December 2023.

227:6 Haoran Ding et al.

Table 2. The definition of terms / operators in U-expressions.

SQL Feature

Term /
Operator

Concept Example Query

Example

U-expression 𝑓 (𝑡)

Relation ⟦R⟧(𝑡)

⟦R⟧(𝑡) is a function
that returns the
multiplicity of the
tuple 𝑡 in the
relation 𝑅.

select ∗ from R ⟦R⟧(𝑡)

DISTINCT ∥𝑒 ∥

∥𝑒 ∥ returns 0 if the
U-expression 𝑒 is 0.
Otherwise, it
returns 1.

select distinct ∗
from R

∥⟦R⟧(𝑡)∥

Predicate [b]

[b] returns 1 if the
predicate 𝑏 is true.
Otherwise, [b]
returns 0.

select ∗ from R
where R.x < 500

⟦R⟧(𝑡) × [⟦𝑥⟧(𝑡) < 500]

NOT not(𝑒)

not(𝑒) returns 1 if
the U-expression
𝑒 is 0. Otherwise,
not(𝑒) returns 0.

select ∗ from R
where not R.x = 0

⟦R⟧(𝑡) × 𝑛𝑜𝑡 ([⟦𝑥⟧(𝑡) = 0])

Projection

∑
𝑡 𝑓 (𝑡)

∑
𝑡 𝑓 (𝑡) returns the

sum of 𝑓 (𝑡𝑖) for
each possible tuple
𝑡𝑖 , where 𝑓 is a
function in the type
of tuple → N.
Since there may be
infinite 𝑡𝑖 ,

∑
𝑡 𝑓 (𝑡) is

called an unbounded
summation.

select R.x from R
where R.x > 0

∑
𝑡1 ([𝑡 = ⟦𝑥⟧(𝑡1)]×

⟦R⟧(𝑡1)×
[⟦𝑥⟧(𝑡1) > 0])

OUTER JOIN

/ UNION ALL

/ UNION
𝑒1 + 𝑒2

𝑒1 + 𝑒2 returns the
sum of the two
U-expressions 𝑒1
and 𝑒2.

select ∗ from R
union all
select ∗ from S

⟦R⟧(𝑡) + ⟦S⟧(𝑡)

Trouble with unbounded summations.With U-expressions, the equivalence between 𝑄1 and
𝑄2 can be reduced to the unsatisfiability of the formula ∃𝑡 .𝑓1(𝑡) ̸= 𝑓2(𝑡), where 𝑓1(𝑡) and 𝑓2(𝑡) are the
U-expressions of𝑄1 and𝑄2. However, the primary obstacle to reasoning the formula ∃𝑡 .𝑓1(𝑡) ̸= 𝑓2(𝑡)
lies in the presence of unbounded summations, which renders the problem undecidable [9].
Through heuristics, existing semantics-based solvers like WeTune can only handle certain

simple forms of U-expressions involving unbounded summations and translate them into a first-
order logic formula. For instance, WeTune can handle the simple case when the U-expressions
of two queries both contain only a single unbounded summation. For this case,WeTune would
determine the equivalence of the U-expressions by determining whether the inner expressions
of the two summations are equivalent for all tuples. Beyond U-expressions with only a single
unbounded summation, there are only a few other limited forms of U-expressions that can be
handled by WeTune. Syntax-based solvers that use U-expressions for query modeling face this
difficulty and require the U-expressions of equivalent queries to contain unbounded summations
with syntactically identical structures [9].

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 227. Publication date: December 2023.

ProvingQuery Equivalence Using Linear Integer Arithmetic 227:7

𝑄1: select x from R where y <=1000

union all

select x from R where y >1000 and z<500

𝑄2: select x from R where y <=1000 or z<500

Their corresponding U-expressions are

𝑓1(𝑡) B
∑︁
𝑡1

𝐸1 +
∑︁
𝑡1

𝐸2 and 𝑓2(𝑡) B
∑︁
𝑡1

𝐸3

where

𝐸1 B [𝑡 = 𝑥 (𝑡1)] × 𝑅(𝑡1) × [𝑦(𝑡1) <= 1000]
𝐸2 B [𝑡 = 𝑥 (𝑡1)] × 𝑅(𝑡1) × [𝑦(𝑡1) > 1000] × [𝑧(𝑡1) < 500]
𝐸3 B [𝑡 = 𝑥 (𝑡1)] × 𝑅(𝑡1) × [𝑦(𝑡1) <= 1000 ∨ 𝑧(𝑡1) < 500]

(1)

Fig. 2. The example of a pair of equivalent queries and their U-expressions.

The lack of a principled way to handle unbounded summations is the main reason why many
practical SQL queries cannot be proven equivalent. For example, for the Calcite test suites, there
are 180 query pairs whose U-expressions have unbounded summations. UDP can reason about 33
of them, whileWeTune can reason about 71. Spark SQL’s rewrite suite contains 69 query pairs
whose U-expressions contain unbounded summations. UDP and WeTune can only reason about 6
and 16 pairs of them, respectively. The queries that cannot be proven contain complex unbounded
summations or features. For example, the equivalent queries in Figure 2 cannot be handled by UDP
or WeTune. For UDP, the U-expressions of two queries have different numbers of unbounded
summations. ForWeTune, UNION ALL in the first query poses the addition of two unbounded
summations. The rules in WeTune cannot address this syntax structure.

3 OVERVIEW

Wehave developed a new prover called SQLSolver to overcome the limitations of existing solvers by
handling unbounded summations in a principled manner. Compared to existing solvers, SQLSolver
can handlemore complex SQL queries and ubiquitous features such as aggregate functions. LikeUDP
and WeTune, SQLSolver models each SQL feature using U-expressions [9] under bag semantics.
Instead of relying on heuristics to handle unbounded summations in the resulting U-expressions,
SQLSolver translates U-expressions into LIA∗ logic [30, 38, 39]. It has been shown that every LIA∗

formula can be converted into an equisatisfiable linear integer arithmetic (LIA) formula [38], which
can be solved by SMT solvers. Once U-expressions are converted into a LIA∗ formula, SQLSolver
translates the LIA∗ formula further into a LIA formula and solves it via SMT solvers. For Calcite
test suites [5], SQLSolver can prove all 232 equivalent query pairs, while the combined efforts of
UDP, SPES, and WeTune could only prove 121. For Spark SQL test suites with 127 equivalent SQL
pairs [17], SQLSolver could successfully prove 114, while the other three solvers could prove 71 in
total.

Initial inspiration: LIA
∗
. The theory of linear integer arithmetic with stars (LIA∗) provides a

methodology to reason a formula having unbounded summations [30, 39]. In general, the LIA∗

formula is an extension of the linear integer arithmetic formula with unbounded summations, and
each LIA∗ formula has an equisatisfiable LIA formula [39]. Thus, reasoning a LIA∗ formula can be
reduced to reasoning a LIA formula that does not contain unbounded summations.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 227. Publication date: December 2023.

227:8 Haoran Ding et al.

Before formally defining a LIA∗ formula, we need to introduce the additive closure operator ∗. It
is an operator defined over a set of integer vectors 𝑆 as follows: 1

𝑆∗ =

{
®𝑣
����� ®𝑣 =

𝑛∑︁
𝑖=1

𝜆𝑖 ®𝑣𝑖 ∧ ∀𝑖 .(®𝑣𝑖 ∈ 𝑆 ∧ 𝜆𝑖 ≥ 0)

}
In other words, 𝑆∗ is the set of all possible summations of the elements in 𝑆 .

A LIA∗ formula has the following form, where ®𝑢, ®𝑣 and ®𝑥 are integer vectors. 𝐹1 and 𝐹2 are linear
integer arithmetic (LIA) formulas.

∃®𝑢, ®𝑣 .𝐹1(®𝑢, ®𝑣) ∧ ®𝑣 ∈ {®𝑥 | 𝐹2(®𝑥)}∗ (2)

In the above formula, {®𝑥 | 𝐹2(®𝑥)} represents the set of integer vectors that satisfy 𝐹2, and the
additive closure operator ∗ generates its additive closure. Thus, each vector ®𝑣 is a sum of vectors in
{®𝑥 | 𝐹2(®𝑥)}. Namely, ®𝑣 = ∑𝑛

𝑖=1 ®𝑥𝑖 , where ®𝑥𝑖 satisfies 𝐹2 and n is an arbitrary integer. The fact that n
can be an arbitrary integer allows LIA∗ to model a summation with an infinite domain.
We use a simple example to illustrate how to leverage the LIA∗ theory to solve a formula with

unbounded summations. The formal details can be found in Section 4.1. The example is reasoning
the distributive law on unbounded summations as below, where 𝑦 is an integer. 𝑓1 and 𝑓2 are
functions. Each function’s parameter and return value are both integers.(∑︁

𝑦

𝑓1(𝑦) +
∑︁
𝑦

𝑓2(𝑦)

)
=

∑︁
𝑦

(𝑓1(𝑦) + 𝑓2(𝑦)) (3)

The basic idea is to convert the above formula into a LIA∗ formula and then invoke an SMT solver
to check the satisfiability of the derived LIA formula.

First, we introduce integer variables 𝑣1, 𝑣2 and 𝑣3 to represent
∑

𝑓1(𝑦), ∑ 𝑓2(𝑦) and ∑(𝑓1(𝑦) + 𝑓2(𝑦))
in Equation (3) respectively. This way, checking the validity of Equation (3) is equivalent to checking
if the following formula is unsatisfiable.

∃𝑣1, 𝑣2, 𝑣3 .(𝑣1 + 𝑣2 ̸= 𝑣3) ∧
(
(𝑣1, 𝑣2, 𝑣3) =

∑︁
𝑦

(𝑓1(𝑦), 𝑓2(𝑦), 𝑓1(𝑦) + 𝑓2(𝑦))

)
Next, we translate the derived formula into an equisatisfiable LIA∗ formula, where “_” denotes

an omitted integer variable.
∃𝑣1, 𝑣2, 𝑣3 .(𝑣1 + 𝑣2 ̸= 𝑣3) ∧ (𝑣1, 𝑣2, 𝑣3, _) ∈ {(𝑥1, 𝑥2, 𝑥3, 𝑦) |

(𝑥1 = 𝑓1(𝑦)) ∧ (𝑥2 = 𝑓2(𝑦)) ∧ (𝑥3 = 𝑓1(𝑦) + 𝑓2(𝑦))}∗ .

Two formulas are equisatisfiable iff one formula is satisfiable whenever the other one is also
satisfiable, and vice versa.

Finally, we apply the procedure described in [30] to generate an equisatisfiable LIA formula:
∃𝑣1, 𝑣2, 𝑣3, 𝜆1, 𝜆2 .(𝑣1 + 𝑣2 ̸= 𝑣3) ∧ ((𝑣1, 𝑣2, 𝑣3) = 𝜆1(1, 0, 1) + 𝜆2(0, 1, 1))

The LIA formula is unsatisfiable, which can be solved by SMT solvers. This unsatisfiability implies
the correctness of the distributive law (i.e., the originally given formula is valid).

Basic approach. The above example illustrates how SQLSolver uses LIA∗ to check the equivalence
of two SQL queries. Its basic algorithm can be described through the following steps. Our running
example will be the example given in Figure 2.

Step 1. Given two SQL queries, 𝑄1 and 𝑄2, we generate their corresponding U-expressions 𝑓1(𝑡)
and 𝑓2(𝑡). Proving the equivalence between 𝑄1 and 𝑄2 becomes proving that ∃𝑡 .𝑓1(𝑡) ̸= 𝑓2(𝑡) is
unsatisfiable. In our running example, 𝑓1(𝑡) = Σ𝐸1 + Σ𝐸2, while 𝑓2(𝑡) = Σ𝐸3, as shown in Equation (1).
1The variables 𝑛, 𝜆𝑖 , and ®𝑣𝑖 are bounded by existential quantifiers, which are omitted.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 227. Publication date: December 2023.

ProvingQuery Equivalence Using Linear Integer Arithmetic 227:9

Step 2. For each unbounded summation ∑
𝐸𝑖 , we introduce a new integer variable 𝑣𝑖 with the

meaning that 𝑣𝑖 = ∑
𝑡 𝐸𝑖 . This way, we can rewrite the formula from Step 1 into the conjunction of

two formulas: one is a LIA formula, while the other is the definition of all the 𝑣𝑖 variables in the
vector form. The resulting formula for our example looks as follows:

∃𝑡, 𝑣1, 𝑣2, 𝑣3 .𝑣1 + 𝑣2 ̸= 𝑣3 ∧ (𝑣1, 𝑣2, 𝑣3) =
∑︁
𝑡1

(𝐸1, 𝐸2, 𝐸3)

Step 3. We eliminate unbounded summations by translating the formula into an equisatisfiable
LIA∗ formula. This translation further introduces new integer variables that denote the multiplicities
of tuples. In our example, by introducing 𝑥1, 𝑥2 and 𝑥3 to represent 𝐸1, 𝐸2, and 𝐸3 accordingly, the
formula becomes:

∃𝑡, 𝑣1, 𝑣2, 𝑣3 .𝑣1 + 𝑣2 ̸= 𝑣3

∧ (𝑣1, 𝑣2, 𝑣3) ∈ {(𝑥1, 𝑥2, 𝑥3) | 𝑥1 = 𝐸1 ∧ 𝑥2 = 𝐸2 ∧ 𝑥3 = 𝐸3}∗
(4)

Step 4. We replace U-expression terms with LIA terms to construct a standard LIA∗ formula. In
our example, this step replaces [𝑏] with 𝑖𝑡𝑒(𝑏, 1, 0). Besides, the step replaces each tuple variable 𝑡
and each function 𝑅(𝑡) with an integer variable 𝑥 𝑗 . Finally, it generates the following LIA∗ formula,
where “_” represents omitted variables:

∃𝑣1,𝑣2, 𝑣3 .𝑣1 + 𝑣2 ̸= 𝑣3 ∧ (𝑣1, 𝑣2, 𝑣3, _) ∈ {(𝑥1, 𝑥2, 𝑥3, _) |
𝑥1 = 𝑖𝑡𝑒(𝑥4 = 𝑥5 ∧ 𝑥7 <= 1000, 𝑥6, 0)∧
𝑥2 = 𝑖𝑡𝑒(𝑥4 = 𝑥5 ∧ 𝑥7 > 1000 ∧ 𝑥8 < 500, 𝑥6, 0)∧
𝑥3 = 𝑖𝑡𝑒(𝑥4 = 𝑥5 ∧ (𝑥7 <= 1000 ∨ 𝑥8 < 500), 𝑥6, 0)}∗ .
where 𝑥4 B 𝑡, 𝑥5 B 𝑥 (𝑡1), 𝑥6 B 𝑅(𝑡1), 𝑥7 B 𝑦(𝑡1), 𝑥8 B 𝑧(𝑡1)

Step 5. By applying the algorithm described in [30], we can find an equisatisfiable LIA formula,
which can be directly solved by SMT solvers (Section 4.1). For our example, the algorithm could
infer that 𝑥1 + 𝑥2 = 𝑥3 according to the conditions on these variables and reduce the LIA∗ formula
to the following LIA formula:

∃𝑣1,𝑣2, 𝑣3, 𝜆1, 𝜆2 .𝑣1 + 𝑣2 ̸= 𝑣3 ∧ (𝑣1, 𝑣2, 𝑣3) = 𝜆1(1, 0, 1) + 𝜆2(0, 1, 1)

(𝑣1, 𝑣2, 𝑣3) = 𝜆1(1, 0, 1) + 𝜆2(0, 1, 1) can be simplified to (𝑣1, 𝑣2, 𝑣3) = (𝜆1, 𝜆2, 𝜆1 + 𝜆2), which requires
that 𝑣3 equals 𝑣1 + 𝑣2. However, this conclusion conflicts with the first condition that 𝑣1 + 𝑣2 ̸= 𝑣3.
Thus, the whole formula is unsatisfiable, which indicates that 𝑄1 is equivalent to 𝑄2.

Challenge in using the original LIA
∗
theory. The complicated semantics of SQL queries makes

applying LIA∗ theory non-trivial. In the following three cases, U-expressions cannot be translated
into LIA∗ formulas by applying only the basic approach. First, the formula contains a nested
summation, which is usually used to model SQL features in subqueries. Second, the formula
contains terms not supported by the LIA∗ theory, such as strings or real numbers. This case is
typically caused by non-integer attributes or constants in queries. Third, the formula may contain
the multiplication between variables, which is not allowed in a standard LIA∗ formula. This case
is usually caused by joined tables and INTERSECT table operators in queries. Note that none
of existing works [30, 39] has considered the above cases. Thus, we devise and implement new
decision procedures and extensions for LIA∗ to address these challenges.

4 DECISION PROCEDUREWITH LIA
∗

This section provides detailed procedures for proving query equivalence based on the LIA∗ theory
by addressing the challenges noted previously. First, we introduce the fundamental concepts
of LIA∗ theory (Section 4.1). Second, SQLSolver reasons the equivalence problem between U-
expressions based on the theory of LIA∗ (Section 4.2). Recognizing the semantic disparities between

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 227. Publication date: December 2023.

227:10 Haoran Ding et al.

U-expressions and LIA∗ formulas, SQLSolver proposes a novel decision procedure that reduces
the equivalence problem of any two U-expressions to solving a LIA∗ formula. Third, compared to
existing works using U-expressions [9, 43], SQLSolver is able to encode more SQL features under
bag semantics, such as concrete aggregate functions (Section 4.3). Last, SQLSolver makes a further
extension to support ordered bag semantics, which enables it to handle SQL queries with ORDER

BY clauses (Section 4.4).

4.1 Basic Concept of LIA
∗

In a standard LIA∗ formula (Equation (2)), 𝐹1 and 𝐹2 are required to be linear integer arithmetic
(LIA) formulas. Specifically, a LIA formula 𝐹 is a first-order logic formula defined as follows:

𝐹 B 𝐴 | 𝐹1 ∧ 𝐹2 | 𝐹1 ∨ 𝐹2 | ¬𝐹1 | ∃𝑥 .𝐹 | ∀𝑥 .𝐹
𝐴 B 𝑇1 ≤ 𝑇2 | 𝑇1 = 𝑇2

𝑇 B 𝑥 | 𝑐 | 𝑇1 +𝑇2 | 𝑐 ×𝑇1 | 𝑖𝑡𝑒(𝐹,𝑇1,𝑇2)

𝑇 denotes a linear integer expression that yields an integer result, while 𝑥 represents an integer
variable, and 𝑐 is an integer constant. As 𝑇 is linear, 𝑇 can only be multiplied by a constant 𝑐 . It
also allows the expression of 𝑖𝑡𝑒(𝐹,𝑇1,𝑇2), which returns 𝑇1 if 𝐹 is true, otherwise returns 𝑇2. 𝐴
is a first-order logic formula with the predicates of “≤” and “=”. The LIA formula 𝐹 is either an
atomic first-order logic formula (𝐴) or multiple LIA formulas connected with logic connectors and
quantifiers.

Previous work [39] has demonstrated that for every LIA∗ formula, there exists an equisatisfiable
LIA formula (Theorem 4.1).

Theorem 4.1. Given a LIA
∗
formula ∃®𝑢, ®𝑣 .𝐹1(®𝑢, ®𝑣) ∧ ®𝑣 ∈ {®𝑥 | 𝐹2(®𝑥)}∗, there exists an integer 𝑘 such

that the LIA
∗
formula and the following formula are equisatisfiable:

∃®𝑢, ®𝑣, ®𝑥1, . . . , ®𝑥𝑘 , 𝜆1, . . . , 𝜆𝑘 .𝐹1(®𝑢, ®𝑣) ∧ ®𝑣 =
𝑘∑︁
𝑖=1

𝜆𝑖 ®𝑥𝑖 ∧ 𝐹2(®𝑥1) ∧ . . . ∧ 𝐹2(®𝑥𝑘)

Previous work [30] has also proved that ®𝑥1, . . . , ®𝑥𝑘 serve as the generators of the LIA formula
𝐹2. Given a LIA formula 𝐹2, its generators consist of integer vectors (®𝑦𝑖) that fulfill the following
two conditions: 1) 𝐹2(®𝑦1) ∧ . . . ∧ 𝐹2(®𝑦𝑖) ∧ . . .; 2) ∀®𝑥 .(𝐹2(®𝑥) → (∃®𝜆.(®𝑥 = ∑

𝜆𝑖 ®𝑦𝑖))). Specifically, each ®𝑦𝑖
satisfies 𝐹2. Each vector fulfilling 𝐹2 can be represented as a linear combination of ®𝑦𝑖 . According
to the definition of a LIA∗ formula and generators, each vector ®𝑣 in {®𝑥 | 𝐹2(®𝑥)}∗ is the linear
combination of vectors satisfying 𝐹2 and each vector satisfying 𝐹2 is the linear combination of the
generators of 𝐹2. Thus, each vector ®𝑣 in {®𝑥 | 𝐹2(®𝑥)}∗ can be represented as a linear combination of
the generators of 𝐹2. Notably, ®𝑥1, . . . , ®𝑥𝑘 in Theorem 4.1 correspond to the generators of 𝐹2.

According to this conclusion, SQLSolver adopts an approximation-based method [30], which is
a normal method of incrementally calculating the generators of a LIA formula. For example, to
reason about the LIA∗ formula ∃𝑣1, 𝑣2, 𝑣3 .𝑣1 + 𝑣2 = 𝑣3 ∧ (𝑣1, 𝑣2, 𝑣3) ∈ {(𝑥1, 𝑥2, 𝑥3) | 𝑥3 = 𝑥1 + 𝑥2}∗,
SQLSolver calculates the generators of its LIA formula 𝑥3 = 𝑥1 + 𝑥2 with the approximation-based
method. The resulting generators include (1, 0, 1) and (0, 1, 1). Apparently, each vector in the set
{(𝑥1, 𝑥2, 𝑥3) | 𝑥3 = 𝑥1 +𝑥2}∗ can be represented as the linear combination of (1, 0, 1) and (0, 1, 1). Then,
(𝑣1, 𝑣2, 𝑣3) ∈ {(𝑥1, 𝑥2, 𝑥3) | 𝑥3 = 𝑥1 + 𝑥2}∗ is equisatisfiable to ∃𝜆1, 𝜆2 .(𝑣1, 𝑣2, 𝑣3) = 𝜆1(1, 0, 1) + 𝜆2(0, 1, 1).
The LIA∗ formula is reduced to ∃𝑣1, 𝑣2, 𝑣3, 𝜆1, 𝜆2.𝑣1 + 𝑣2 = 𝑣3 ∧ (𝑣1, 𝑣2, 𝑣3) = 𝜆1(1, 0, 1) + 𝜆2(0, 1, 1).

4.2 Reasoning Equivalence of U-expressions

To prove the equivalence of 𝑄1 and 𝑄2, SQLSolver reasons the unsatisfiability of the formula
∃𝑡 .𝑓1(𝑡) ̸= 𝑓2(𝑡), where 𝑓1(𝑡) and 𝑓2(𝑡) are the U-expressions of 𝑄1 and 𝑄2 accordingly. The basic idea

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 227. Publication date: December 2023.

ProvingQuery Equivalence Using Linear Integer Arithmetic 227:11

is converting the formula into a LIA∗ formula, which can be further reduced to a LIA formula and
solved by SMT solvers.
First, SQLSolver uses new integer variables to replace unbounded summations in the formula

of ∃𝑡 .𝑓1(𝑡) ̸= 𝑓2(𝑡) and introduces an additive closure operator. Assume that the formula contains
𝑛 unbounded summations ∑

𝐸1, . . ., and
∑
𝐸𝑛 , SQLSolver first uses a new integer variable 𝑥𝑖 to

replace each expression 𝐸𝑖 (1 ≤ 𝑖 ≤ 𝑛). Then, it uses a variable 𝑣𝑖 to represent each summation ∑
𝑥𝑖 .

As a result, the formula of ∃𝑡 .𝑓1(𝑡) ̸= 𝑓2(𝑡) is rewritten into the following formula:

∃𝑡, 𝑣1, . . . , 𝑣𝑛 .𝑓
′

1 (𝑡) ̸= 𝑓 ′2 (𝑡)
∧ (𝑣1, . . . , 𝑣𝑛) ∈ {(𝑥1, . . . , 𝑥𝑛) | 𝑥1 = 𝐸1 . . . ∧ 𝑥𝑛 = 𝐸𝑛}∗ .

(5)

Second, to conform to the stipulations of a standard LIA∗ formula, SQLSolver needs to convert
each U-expression 𝐸𝑖 in Equation (5) into a LIA formula. A straightforward method is to replace
each U-expression term within 𝐸𝑖 with a corresponding LIA term. For example, in Equation (4),
SQLSolver achieves this transformation by replacing integer tuples and 𝑅(𝑡1) with integer variables
while replacing [𝑏] with 𝑖𝑡𝑒(𝑏, 1, 0), respectively. Unfortunately, such a method fails to handle three
categories of U-expressions:
(1) Nested summation. An unbounded summation is nested if some terms in the expression 𝐸𝑖 are

also unbounded summations. For example, the U-expression∑
𝑡1 ([𝑡 = 𝑥 (𝑡1)]×∑

𝑡2 (𝑅(𝑡2)× [𝑥 (𝑡2) =
1])) is a nested unbounded summation. Such summations are usually used to model SQL features
in subqueries, such as Projection, EXISTS, and aggregate functions.

(2) Parameterized summation. An unbounded summation is parameterized if its expression contains
free variables or non-integer variables. Given an unbounded summation, a variable is free if
it is defined and used outside the summation expression. In ∑

𝑡1 ([𝑎(𝑡1) > 3] × ∑
𝑡2 ([𝑎(𝑡1) =

𝑎(𝑡2)]×𝑅(𝑡2))), the U-expression of ∑𝑡2 ([𝑎(𝑡1) = 𝑎(𝑡2)]×𝑅(𝑡2)) is a parameterized summation as 𝑡1
is defined and used in the outer summation. A summation is also considered parameterized if it
has variables in other types, such as strings. Such variables are unsupported by LIA∗ formulas.

(3) Non-linear summation. An unbounded summation is non-linear if the expression contains
the multiplication between variables or functions. For example, ∑𝑡1,𝑡2 (𝑅(𝑡1) × 𝑆(𝑡2)) is a non-
linear summation. When translating into a LIA∗ formula, this summation will introduce the
multiplication between variables, which is non-linear. The U-expressions in the above example
will be translated into ∑(𝑥1 × 𝑥2), which is not allowed in LIA∗ formulas.
While the above cases are normal when utilizing U-expressions to model SQL queries, none of the

existing works on LIA∗ reasoning [30, 38, 39] have considered these cases. Therefore, SQLSolver
proposes new decision procedures by extending the basic approach in Section 3 to address these
scenarios.

Case-1. The formula has nested summations. When some U-expression 𝐸𝑖 in the formula
of Equation (5) is also an unbounded summation, SQLSolver adopts the following reasoning
procedure. For simplicity, we use 𝑃 (®𝑥) to represent (𝑥1 = 𝐸1 ∧ . . . 𝑥𝑛 = 𝐸𝑛) in Equation (5).

First, assume there are𝑚 unbounded summations in 𝑃 (®𝑥), which are ∑
𝑒1, . . . ,

∑
𝑒𝑚 . SQLSolver

replaces each unbounded summation expression∑
𝑒 𝑗 with a new variable𝑦 𝑗 and uses 𝑧 𝑗 to represent

𝑒 𝑗 , where 1 ≤ 𝑗 ≤ 𝑚. Then, it can apply the additive closure operator ∗, and Equation (5) is converted
to:

∃𝑡, ®𝑣, ®𝑟 .𝑓 ′1 (𝑡) ̸= 𝑓 ′2 (𝑡)

∧ (®𝑣, ®𝑟) ∈
{
(®𝑥, ®𝑦)

�� 𝑃 ′(®𝑥) ∧ ®𝑦 ∈ {®𝑧 | (𝑧1 = 𝑒1) ∧ . . . (𝑧𝑚 = 𝑒𝑚)}∗
}∗ (6)

Second, SQLSolver replaces each U-expression term with a LIA term. Specifically, it uses integer
variables to replace the tuple variables 𝑡 or 𝑎(𝑡). Each function 𝑅(𝑡) is also replaced with an integer

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 227. Publication date: December 2023.

227:12 Haoran Ding et al.

variable. Besides, it uses 𝑖𝑡𝑒(𝑏, 1, 0) to replace [𝑏], uses 𝑖𝑡𝑒(𝐸 = 0, 0, 1) to replace ∥𝐸∥, and uses
𝑖𝑡𝑒(𝐸 = 0, 1, 0) to replace 𝑛𝑜𝑡 (𝐸). Such replacement converts the 𝑃 ′(®𝑥) into a LIA formula.

SQLSolver recursively performs the above two steps until all summations are replaced by
formulas with additive closure operators (a.k.a., star formulas). Then, SQLSolver constructs a
nested LIA∗ formula ℓ , which can be defined inductively:

ℓ B∃®𝑢, ®𝑣 .𝐹 (®𝑢, ®𝑣) ∧ ®𝑣 ∈ {®𝑥 | ℓ′(®𝑥)}∗ (7)

Specifically, 𝐹 is a LIA formula. ℓ ′(®𝑥) can be either a LIA formula or a nested LIA∗ formula. Then,
we have the following theorem.

Theorem 4.2. For any nested LIA∗
formula ℓ B ∃®𝑢, ®𝑣 .𝐹1(®𝑢, ®𝑣)∧®𝑣 ∈ {®𝑥 | ℓ ′(®𝑥)}∗, if ℓ ′(®𝑥) is equivalent

to a LIA formula 𝐹2, then ℓ is equivalent to ∃®𝑢, ®𝑣 .𝐹1(®𝑢, ®𝑣) ∧ ®𝑣 ∈ {®𝑥 | 𝐹2(®𝑥)}∗.

Based on the theorem, SQLSolver reasons the nested LIA∗ formula by recursively replacing each
LIA∗ formula with another LIA formula.

For example, consider the following equivalent queries that other existing provers cannot prove:

𝑄1: select y from

(select count(x) as y from R where x = 1) as S

𝑄2: select y from

(select sum(x) as y from R where x + 1 = 2) as S

First, SQLSolver models them via U-expressions. However, existing methods [9, 43] cannot
model concrete aggregate functions. Thus, SQLSolver extends existing encoding methods to
support concrete aggregate functions, which can be found in Section 4.3. For this example, assume
that the attribute 𝑥 in 𝑅 is unique and notNULL. “select count(x) from R” is encoded into 𝑓1(𝑡) :=
[𝑡 = ∑

𝑡1 ∥𝑅(𝑡1)∥], while “select sum(x) from R” is encoded into 𝑓2(𝑡) := [𝑡 = ∑
𝑡1 (𝑥(𝑡1) × ∥𝑅(𝑡1)∥)].

Thus, the corresponding U-expressions of 𝑄1 and 𝑄2 are:

𝑓1(𝑡) B
∑︁
𝑡1

(
[𝑡 = 𝑦(𝑡1)] × [𝑦(𝑡1) =

∑︁
𝑡2

(∥𝑅(𝑡2)∥ × [𝑥 (𝑡2) = 1])]

)
𝑓2(𝑡) B

∑︁
𝑡1

(
[𝑡 = 𝑦(𝑡1)] × [𝑦(𝑡1) =

∑︁
𝑡2

(∥𝑅(𝑡2)∥ × [𝑥 (𝑡2) + 1 = 2] × 𝑥 (𝑡2))]

)
Second, SQLSolver constructs the following formula by applying the additive closure operator

∗:

∃®𝑣 .(𝑣1 ̸= 𝑣2) ∧ (𝑣1, 𝑣2, . . .) ∈
{

(𝑥1, 𝑥2, . . .)

�����
𝑥1 = 𝑖𝑡𝑒

(
(𝑥3 = 𝑥4) ∧ (𝑥3 =

∑︁
𝑡2

(∥𝑅(𝑡2)∥ × [𝑥 (𝑡2) = 1])), 1, 0

)
∧ 𝑥2 = 𝑖𝑡𝑒

(
(𝑥3 = 𝑥4) ∧ (𝑥3 =

∑︁
𝑡2

(∥𝑅(𝑡2)∥ × [𝑥 (𝑡2) + 1 = 2] × 𝑥 (𝑡2))), 1, 0

)}∗

where 𝑥3 B 𝑦(𝑡1), 𝑥4 B 𝑡

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 227. Publication date: December 2023.

ProvingQuery Equivalence Using Linear Integer Arithmetic 227:13

Then, SQLSolver recursively applies the additive closure operator by using integer variables 𝑥5
and 𝑥6 to replace the inner two unbounded summations, which generates the following formula:

∃®𝑣 .(𝑣1 ̸= 𝑣2) ∧ (𝑣1, 𝑣2, . . .) ∈ {(𝑥1, 𝑥2, . . .) |
(𝑥1 = 𝑖𝑡𝑒((𝑥3 = 𝑥4) ∧ (𝑥3 = 𝑥5), 1, 0))
∧ (𝑥2 = 𝑖𝑡𝑒((𝑥3 = 𝑥4) ∧ (𝑥3 = 𝑥6), 1, 0))
∧ (𝑥5, 𝑥6) ∈ {(𝑦1, 𝑦2) | 𝑦1 = ∥𝑅(𝑡2)∥×[𝑥 (𝑡2) = 1]

∧ 𝑦2 = ∥𝑅(𝑡2)∥ × [𝑥 (𝑡2) + 1 = 2] × 𝑥 (𝑡2)}∗}∗

where 𝑥3 B 𝑦(𝑡1), 𝑥4 B 𝑡

This formula can be further changed by replacing U-expression terms with LIA terms, which
results in a nested LIA∗ formula:

∃®𝑣 .((𝑣1 ̸= 𝑣2) ∧ (𝑣1, 𝑣2, . . .) ∈ {(𝑥1, 𝑥2, . . .) |
(𝑥1 = 𝑖𝑡𝑒((𝑥3 = 𝑥4) ∧ (𝑥3 = 𝑥5), 1, 0))
∧ (𝑥2 = 𝑖𝑡𝑒((𝑥3 = 𝑥4) ∧ (𝑥3 = 𝑥6), 1, 0))
∧ (𝑥5, 𝑥6) ∈ {(𝑦1, 𝑦2) | (𝑦1 = 𝑖𝑡𝑒(𝑦3 ̸= 0 ∧ 𝑦4 = 1, 1, 0))

∧ (𝑦2 = 𝑖𝑡𝑒(𝑦3 ̸= 0 ∧ 𝑦4 + 1 = 2, 𝑦4, 0))}∗}∗)
where 𝑥3 B 𝑦(𝑡1), 𝑥4 B 𝑡, 𝑦3 = 𝑅(𝑡2), 𝑦4 = 𝑥 (𝑡2)

To reason the formula, SQLSolver first converts the star formula (𝑥5, 𝑥6) ∈ {(𝑦1, 𝑦2) | (𝑦1 =
𝑖𝑡𝑒(𝑦3 ̸= 0∧𝑦4 = 1, 1, 0))∧ (𝑦2 = 𝑖𝑡𝑒(𝑦3 ̸= 0∧𝑦4 +1 = 2, 𝑦4, 0))}∗ into a LIA formula with the algorithm
in Section 4.1.

∃®𝑣 .(𝑣1 ̸= 𝑣2) ∧ (𝑣1, 𝑣2, . . .) ∈ {(𝑥1, 𝑥2, . . . , 𝜆) |
(𝑥1 = 𝑖𝑡𝑒((𝑥3 = 𝑥4) ∧ (𝑥3 = 𝑥5), 1, 0))
∧ (𝑥2 = 𝑖𝑡𝑒((𝑥3 = 𝑥4) ∧ (𝑥3 = 𝑥6), 1, 0))
∧ ((𝑥5, 𝑥6) = 𝜆(1, 1))}∗

After that, it converts the above LIA∗ formula to the following LIA formula, which is apparently
unsatisfiable:

∃𝑣1, 𝑣2, 𝜆.(𝑣1 ̸= 𝑣2) ∧ (𝑣1, 𝑣2) = 𝜆(1, 1).

Case-2. The formula has parameterized summations. A LIA∗ formula with a free or non-
integer variable is considered to have an external parameter. A variable is free if it is defined and
used outside of the formula. Before going into the details, we first consider the following two SQL
queries that involve string tuples.

𝑄1: select x from R where y = 'string '

𝑄2: select x from R where y like 'string '

As the non-integer variable y only exists in the predicate, one intuition is to separate the predicate
reasoning from the SQL reasoning. Based on this intuition, SQLSolver addresses parameterized
summations by decoupling the formula ∃𝑡 . 𝑓1(𝑡) ̸= 𝑓2(𝑡) into two parts: a standard LIA∗ formula
and a first-order logic formula including the parameter. Then, it can leverage different decision
procedures for reasoning. Specifically, it performs the following steps to decouple the formula:
First, for the formula with an additive closure operator ®𝑣 ∈ {®𝑥 | 𝑃}∗ (a.k.a., star formula) in

Equation (5) or Equation (6), SQLSolver converts 𝑃 into an equivalent formula in disjunctive
normal form (DNF) as below. Each 𝑃𝑖 𝑗 is an atomic logic formula or its negation.

®𝑣 ∈ {®𝑥 | (𝑃11 ∧ 𝑃12 ∧ . . .) ∨ . . . ∨ (𝑃𝑛1 ∧ 𝑃𝑛2 ∧ . . .)}∗ (8)

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 227. Publication date: December 2023.

227:14 Haoran Ding et al.

Given a first-order logic formula, SQLSolver converts it into the DNF by repeatedly applying
distributive laws, De Morgan laws, etc. [4]. Furthermore, SQLSolver has to expand each 𝑣 =
𝑖𝑡𝑒(𝑐, 𝑡, 𝑒) in the formula with (𝑐 ∧ (𝑣 = 𝑡)) ∨ (¬𝑐 ∧ (𝑣 = 𝑒)), as the DNF does not accept if-then-else
(𝑖𝑡𝑒) expressions.

Second, SQLSolver converts Equation (8) into a conjunction of multiple star formulas. Existing
work [36] has shown that the formula ®𝑣 ∈ {®𝑥 | 𝑃1 ∨ 𝑃2}∗ is equivalent to ∃𝑣1, 𝑣2.(®𝑣 = ®𝑣1 + ®𝑣2) ∧ ®𝑣1 ∈
{®𝑥 | 𝑃1}∗ ∧ ®𝑣2 ∈ {®𝑥 | 𝑃2}∗ . Thus, Equation (8) can be converted to the following formula:

∃®𝑣1, . . . , ®𝑣𝑛 .(®𝑣 = ®𝑣1 + . . . + ®𝑣𝑛) ∧ ®𝑣1 ∈ {®𝑥 | 𝑃11 ∧ 𝑃12 ∧ . . .}∗

∧ . . . ∧ ®𝑣𝑛 ∈ {®𝑥 | 𝑃𝑛1 ∧ 𝑃𝑛2 ∧ . . .}∗
(9)

Third, SQLSolver identifies each predicate 𝑃𝑖 𝑗 involving external parameters and decouples
these predicates from Equation (9) with the following theorem:

Theorem 4.3. Assume that ®𝑣 and ®𝑥 are integer vectors with the same size, while ®𝑦 is a vector that is

independent of ®𝑣 and ®𝑥 . A vector ®𝑎 B (𝑎1, . . . 𝑎𝑛) is independent of ®𝑏 B (𝑏1, . . . 𝑏𝑚) if and only if for
any 𝑎𝑖 and 𝑏 𝑗 , 𝑎𝑖 ̸= 𝑏 𝑗 . Then, for any first-order logic formula 𝑃 , 𝑃1, and 𝑃2, the following formula

∃®𝑢, ®𝑣 .𝑃 (®𝑢, ®𝑣) ∧ (®𝑣, _) ∈ {(®𝑥, ®𝑦) | 𝑃1(®𝑥) ∧ 𝑃2(®𝑦)}∗ (10)

is equisatisfiable with

∃®𝑢, ®𝑣 .𝑃 (®𝑢, ®𝑣) ∧
((
®𝑣 ∈ {®𝑥 | 𝑃1(®𝑥)}∗ ∧ ∃®𝑦.𝑃2(®𝑦)

)
∨ (®𝑣 = ®0)

)
. (11)

Note that since ®𝑦 is independent of ®𝑥 and ®𝑣 , its variables could be of any type, and the formula
of 𝑃2 is allowed to contain free variables. To apply the theorem, SQLSolver needs to check the
LIA∗ formulas in Equation (9) and identify those predicates 𝑃𝑖 𝑗 that may contain parameters. Then,
each LIA∗ formula can be converted into Equation (10), where 𝑃1 is the conjunction of predicates
only including integer variables, and 𝑃2 is the conjunction of predicates having parameters. SQL-
Solver needs to further check whether ®𝑦 is independent of ®𝑥 and ®𝑣 . If this criterion is satisfied,
it can decouple the predicate 𝑃2 with parameters from star formulas by altering Equation (10) to
Equation (11).

Last, in Equation (11), ∃®𝑢, ®𝑣 .𝑃 (®𝑢, ®𝑣)∧ ®𝑣 ∈ {®𝑥 | 𝑃1(®𝑥)}∗ is a standard LIA∗ formula that typical LIA∗

solvers [30, 39] can solve. ∃®𝑦.𝑃2(®𝑦) is a first-order logic formula that SMT solvers can solve.
For example, consider the following equivalent queries:

𝑄1: select x2

from R0 join (select distinct x0 from R1) as S on R0.x1 = S.x0

𝑄2: select x2

from R0

where R0.x1 in (select x0 from R1)

Their corresponding U-expressions are

𝑓1(𝑡) B
∑︁
𝑡0

(
[𝑡 = 𝑥2(𝑡0)] × 𝑅0(𝑡0) × 𝑛𝑜𝑡 ([𝐼𝑠𝑁𝑢𝑙𝑙 (𝑥1(𝑡0))]) ×

∑︁𝑡1

(𝑅1(𝑡1) × [𝑥1(𝑡0) = 𝑥0(𝑡1)])

)

𝑓2(𝑡) B
∑︁
𝑡0

(
[𝑡 = 𝑥2(𝑡0)] × 𝑅0(𝑡0) ×

∑︁𝑡1

(𝑅1(𝑡1) × [𝑥1(𝑡0) = 𝑥0(𝑡1)] × 𝑛𝑜𝑡 ([𝐼𝑠𝑁𝑢𝑙𝑙 (𝑥1(𝑡0))]))

)

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 227. Publication date: December 2023.

ProvingQuery Equivalence Using Linear Integer Arithmetic 227:15

Apparently, they include nested summations. Thus, SQLSolver applies the procedure for case-1
and translates the formula ∃𝑡 .𝑓1(𝑡) ̸= 𝑓2(𝑡) into the following nested LIA∗ formula:

∃𝑣1,𝑣2 .𝑣1 ̸= 𝑣2 ∧ (𝑣1, 𝑣2, . . .) ∈ {(𝑥1, 𝑥2, . . .) |
𝑥1 = 𝑖𝑡𝑒(𝑥4 = 0 ∧ 𝑥5 ̸= 0 ∧ 𝑥7 = 𝑥8, 𝑥3, 0)
∧ 𝑥2 = 𝑖𝑡𝑒(𝑥6 ̸= 0 ∧ 𝑥7 = 𝑥8, 𝑥3, 0)
∧ (𝑥5, 𝑥6, _) ∈ {(𝑦1, 𝑦2, _) | 𝑦1 = 𝑖𝑡𝑒(𝑦4 = 𝑦5, 𝑦3, 0)

∧ 𝑦2 = 𝑖𝑡𝑒(𝑥4 = 0 ∧ 𝑦4 = 𝑦5, 𝑦3, 0)}∗}∗

where

𝑣1 B 𝑓1(𝑡), 𝑣2 B 𝑓2(𝑡), 𝑥3 B 𝑅0(𝑡0), 𝑥4 B [𝐼𝑠𝑁𝑢𝑙𝑙 (𝑥1(𝑡0))]
𝑥7 B 𝑡, 𝑥8 B 𝑥2(𝑡0), 𝑦3 B 𝑅1(𝑡1), 𝑦4 B 𝑥1(𝑡0), 𝑦5 B 𝑥0(𝑡1)

According to the procedure for case-1, SQLSolver needs to recursively translate the nested LIA∗

formula into a LIA formula. However, the inner LIA∗ formula (𝑥5, 𝑥6, _) ∈ {(𝑦1, 𝑦2, _) | 𝑦1 = . . .∧𝑦2 =
𝑖𝑡𝑒(𝑥4 = 0 ∧ . . .)}∗ is not in the standard form because 𝑥4 is a free variable defined and used by the
outer formula.

To handle the inner LIA∗ formula with the free variable 𝑥4, SQLSolver first converts the formula
𝑦1 = . . .∧𝑦2 = 𝑖𝑡𝑒(𝑥4 = 0∧ . . .) into a DNF formula. As DNF does not allow 𝑖𝑡𝑒 operators, SQLSolver
expands 𝑖𝑡𝑒 expressions. The inner LIA∗ formula is translated into the following formula:

(𝑥5, 𝑥6, _) ∈ {(𝑦1, 𝑦2, _) |((𝑦4 = 𝑦5) ∧ (𝑥4 = 0) ∧ (𝑦1 = 𝑦3) ∧ (𝑦2 = 𝑦3))
∨ ((𝑦4 = 𝑦5) ∧ (𝑥4 ̸= 0) ∧ (𝑦1 = 𝑦3) ∧ (𝑦2 = 0))
∨ ((𝑦4 ̸= 𝑦5) ∧ (𝑦1 = 0) ∧ (𝑦2 = 0))}∗

This formula can be further translated as a conjunction of three star formulas:

∃®𝑎, ®𝑏, ®𝑐.((𝑥5, 𝑥6) = (𝑎1, 𝑎2) + (𝑏1, 𝑏2) + (𝑐1, 𝑐2)
∧ (𝑎1, 𝑎2, _) ∈ {(𝑦1, 𝑦2, _) | (𝑦4 = 𝑦5) ∧ (𝑥4 = 0) ∧ (𝑦1 = 𝑦3) ∧ (𝑦2 = 𝑦3)}∗

∧ (𝑏1, 𝑏2, _) ∈ {(𝑦1, 𝑦2, _) | (𝑦4 = 𝑦5) ∧ (𝑥4 ̸= 0) ∧ (𝑦1 = 𝑦3) ∧ (𝑦2 = 0)}∗

∧ (𝑐1, 𝑐2, _) ∈ {(𝑦1, 𝑦2, _) | (𝑦4 ̸= 𝑦5) ∧ (𝑦1 = 0) ∧ (𝑦2 = 0)}∗

To apply Theorem 4.3 to the formula (𝑎1, 𝑎2) ∈ {®𝑦 | (𝑦4 = 𝑦5) ∧ (𝑥4 = 0) ∧ (𝑦1 = 𝑦3) ∧ (𝑦2 = 𝑦3)}∗,
SQLSolver identifies that 𝑥4 = 0 is a parameterized predicate. According to Theorem 4.3, the above
star formula can be converted into the following formula without parameters:(

(𝑎1, 𝑎2, _) ∈ {(𝑦1, 𝑦2, _) | (𝑦1 = 𝑦3) ∧ (𝑦2 = 𝑦3) ∧ (𝑦4 = 𝑦5)}∗ ∧ (𝑥4 = 0)
)
∨

(
(𝑎1, 𝑎2, _) = ®0

)
Similarly, SQLSolver shifts the parameter 𝑥4 outside (𝑏1, 𝑏2) ∈ {®𝑦 | (𝑦4 = 𝑦5) ∧ (𝑥4 ̸= 0) ∧ (𝑦1 =
𝑦3) ∧ (𝑦2 = 0)}∗. Following the algorithm for case-1, SQLSolver further converts each inner star
formula to a LIA formula and generates a LIA∗ formula. Finally, SQLSolver further generates an
unsatisfiable LIA formula ∃𝑣1, 𝑣2, 𝜆.(𝑣1 ̸= 𝑣2) ∧ ((𝑣1, 𝑣2) = 𝜆(1, 1)).

Case-3. The formula has non-linear summations. A standard LIA∗ formula only allows
multiplications between a constant and a variable. Non-linear operations, such as multiplications
between variables, cannot be resolved by currently available decision procedures [30, 38, 39].
Unfortunately, these non-linear operations are frequently encountered whenmodeling SQL features,
such as INTERSECT, joined tables, and aggregate functions.

SQLSolver employs the concept of over-approximation [30] to handle non-linear summations.
An over-approximation of a logic formula 𝑃 is a logic formula𝑄 if and only if ¬𝑄 → ¬𝑃 is true. The
definition implies that if𝑄 is unsatisfiable, then 𝑃 is also unsatisfiable. Therefore, when the formula
∃𝑡 .𝑓1(𝑡) ̸= 𝑓2(𝑡) comprises non-linear summations, SQLSolver can construct its over-approximation

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 227. Publication date: December 2023.

227:16 Haoran Ding et al.

that only includes linear operations to reason about the unsatisfiability. Specifically, given the
formula ∃𝑡 .𝑓1(𝑡) ̸= 𝑓2(𝑡) with non-linear summations, SQLSolver first constructs Equation (5) and
replaces each U-expression term with a LIA term. Then, the formula can be represented as:

∃®𝑢, ®𝑣 .𝐹 (®𝑢, ®𝑣) ∧ ®𝑣 ∈ {®𝑥 | (𝑥1 = (𝑥2 × . . . × 𝑥𝑛)) ∧ 𝑃 (®𝑥)}∗ (12)

Then, SQLSolver replaces the multiplication expression (𝑥2 × . . . × 𝑥𝑛) with a new variable 𝑦
and generates the following formula:

∃®𝑢, ®𝑣 .𝐹 (®𝑢, ®𝑣) ∧ (®𝑣, _) ∈ {(®𝑥,𝑦) | (𝑥1 = 𝑦) ∧ 𝑃 (®𝑥)}∗

Note that if two multiplication expressions involve the same group of variables, they will be
substituted with the same variable.
Finally, SQLSolver imposes an additional linear constraint on the value of the new variable.

Specifically, the constraint necessitates that the new variable𝑦 is zero if and only if themultiplication
expression (𝑥2 × . . . × 𝑥𝑛) is zero:

∃®𝑢, ®𝑣 .𝐹 (®𝑢, ®𝑣) ∧ (®𝑣, _) ∈ {(®𝑥,𝑦) | (𝑥1 = 𝑦) ∧ 𝑃 (®𝑥)
∧ ((𝑥2 = 0 ∨ . . . ∨ 𝑥𝑛 = 0) ↔ (𝑦 = 0))}∗

(13)

Equation (13) is an over-approximation of Equation (12). Thus, instead of reasoning the Equation (12),
SQLSolver directly proves Equation (13).

For example, consider the following equivalent SQL queries, which are also unable to be reasoned
by other provers:
𝑄1: select distinct R.x from R

𝑄2: select distinct S.x from

(select ∗ from R intersect select ∗ from R) as S

Their corresponding U-expressions are

f1(t) B

∑︁𝑡1

([𝑡 = 𝑥 (𝑡1)] × 𝑅(𝑡1))

f2(t) B

∑︁𝑡1

([𝑡 = 𝑥 (𝑡1)] × ∥𝑅(𝑡1) × 𝑅(𝑡1)∥)

For these two U-expressions, SQLSolver constructs the following formula:
∃®𝑣 .𝑖𝑡𝑒(𝑣1 = 0, 0, 1) ̸= 𝑖𝑡𝑒(𝑣2 = 0, 0, 1)
∧ (𝑣1, 𝑣2, _) ∈ {(𝑥1, 𝑥2, _) | 𝑥1 = 𝑖𝑡𝑒(𝑥3 = 𝑥4, 𝑥5, 0)

∧ 𝑥2 = 𝑖𝑡𝑒(𝑥3 = 𝑥4 ∧ 𝑥5 × 𝑥5 ̸= 0, 1, 0)}∗

where 𝑥3 B 𝑡, 𝑥4 B 𝑥 (𝑡1), 𝑥5 B 𝑅(𝑡1)

(14)

SQLSolver constructs an over-approximation of the above formula by replacing 𝑥5 × 𝑥5 with 𝑥6.
∃®𝑣 .𝑖𝑡𝑒(𝑣1 = 0, 0, 1) ̸= 𝑖𝑡𝑒(𝑣2 = 0, 0, 1)
∧ (𝑣1, 𝑣2, _) ∈ {(𝑥1, 𝑥2, _) | 𝑥1 = 𝑖𝑡𝑒(𝑥3 = 𝑥4, 𝑥5, 0)

∧ 𝑥2 = 𝑖𝑡𝑒(𝑥3 = 𝑥4 ∧ 𝑥6 ̸= 0, 1, 0)
∧ ((𝑥5 ̸= 0) ↔ (𝑥6 ̸= 0))}∗

This rewrite enables SQLSolver to use LIA∗ theory to convert the formula to the following
unsatisfiable LIA formula, which implies the equivalence between two queries.

∃𝑣1,𝑣2, 𝜆.(𝑖𝑡𝑒(𝑣1 = 0, 0, 1) ̸= 𝑖𝑡𝑒(𝑣2 = 0, 0, 1)) ∧ ((𝑣1, 𝑣2) = 𝜆(1, 1))

All the above decision procedures provide soundness. The detailed discussion can be found
in Section 5.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 227. Publication date: December 2023.

ProvingQuery Equivalence Using Linear Integer Arithmetic 227:17

Table 3. Main extensions of U-expressions to support more SQL features.

SQL Feature U-expression 𝑓 (𝑡) Example Query

Example

U-expression 𝑓 (𝑡)
Aggregate
Function Table 4 / /

INTERSECT ∥ 𝑓𝑙 (𝑡) × 𝑓𝑟 (𝑡)∥
(select ∗ from R)
intersect
(select ∗ from S)

∥𝑅(𝑡) × 𝑆(𝑡)∥

INTERSECT ALL

𝐸 × 𝑓𝑙 (𝑡) + 𝑛𝑜𝑡 (𝐸) × 𝑓𝑟 (𝑡),
𝐸 B [𝑓𝑙 (𝑡) ≤ 𝑓𝑟 (𝑡)]

(select ∗ from R)
intersect all
(select ∗ from S)

𝐸 × 𝑅(𝑡) + 𝑛𝑜𝑡 (𝐸) × 𝑆(𝑡),
𝐸 B [𝑅(𝑡) ≤ 𝑆(𝑡)]

values (𝑡1) · · · [𝑡 = 𝑡1] + · · · select ∗ from
(values (1,2), (3, 4))

[(𝑥 (𝑡) = 1) ∧ (𝑦(𝑡) = 2)]
+[(𝑥 (𝑡) = 3) ∧ (𝑦(𝑡) = 4)]

(Scalar Subquery)
select 𝑥 from R
where p

[1 = ∑
𝑡1 𝐸]

×∥∑𝑡1 (𝐸 × [𝑡 = 𝑎(𝑡1)])∥
+𝐼𝑠𝑁𝑈𝐿𝐿(𝑡) × 𝑛𝑜𝑡 (∑𝑡1 𝐸),
𝐸 B 𝑅(𝑡1) × [𝑝(𝑡1)]

select
(select x from R)

[1 = ∑
𝑡1 𝑅(𝑡1)]

×∥∑𝑡1 (𝑅(𝑡1) × [𝑡 = 𝑥 (𝑡1)])∥)
+𝐼𝑠𝑁𝑢𝑙𝑙 (𝑡) × 𝑛𝑜𝑡 (∑𝑡1 𝑅(𝑡1))

a = case when 𝑝0
then 𝑎0
· · ·
else 𝑎𝑛
end

[𝑝0] × [𝑎 = 𝑎0] + · · ·
+𝑛𝑜𝑡 ([𝑝0]) × · · ·
×𝑛𝑜𝑡 ([𝑝𝑛−1]) × [𝑎 = 𝑎𝑛]

select
(case when R.x = 0
then 1
else 0
end)
from R

∑
𝑡1 (𝑅(𝑡1) × [𝑥 (𝑡1) = 0]

×[𝑡 = 1] + 𝑅(𝑡1)
×𝑛𝑜𝑡 ([𝑥 (𝑡1) = 0]) × [𝑡 = 0])

a in (𝑣1, . . .) ∥[𝑎(𝑡) = 𝑣1] + . . . ∥ select ∗ from R
where R.x in (1, 2) 𝑅(𝑡) × ∥[𝑥 (𝑡) = 1] + [𝑥 (𝑡) = 2]∥

4.3 Extension of U-expressions

Compared with previous provers [9, 43] based on U-expressions, SQLSolver additionally extends
the translation method from SQL queries to U-expressions and thus allows modeling more SQL
features, such as concrete aggregate functions, INTERSECT, scalar subqueries, and VALUES. Table 3
shows our main translation methods for these SQL features.
One of the main extensions is the translation of queries with aggregate functions, including

all kinds of aggregate functions specified as mandatory SQL features in the SQL standard [24].
Previous approaches treat aggregate functions as uninterpreted functions, neglecting their concrete
semantics. A query with aggregate functions typically takes the following structure, where 𝑅

denotes a relation and 𝑝 denotes a predicate:

/* agg_func can be max , min , sum , count , and avg */

select R.x, agg_func ([distinct] R.y)

from R group by R.x having p

Table 4 shows how to model the concrete semantics of aggregate functions via U-expressions.
Each tuple in the query result is the concatenation of 𝑡𝑙 and 𝑡𝑟 , which is denoted by 𝑡𝑙 · 𝑡𝑟 . The
tuple 𝑡𝑙 represents the value of 𝑅.𝑥 , while 𝑡𝑟 represents the value of agg_func(R.y). The basic idea of
generating U-expressions is to encode the requirement 𝑡𝑙 and 𝑡𝑟 should satisfy. Although different
aggregate functions have different semantics, there are two common requirements for 𝑡𝑙 and 𝑡𝑟 . First,
the value of agg_func(R.y) should satisfy the predicate 𝑝 of the HAVING clause, which is denoted
by [𝑝(𝑡𝑟)]. The second requirement is that there should exist at least one tuple in the relation 𝑅

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 227. Publication date: December 2023.

227:18 Haoran Ding et al.

Table 4. The translation method from a query with aggregate functions, GROUP BY, and HAVING into a

U-expression.

Function Name U-expression

SUM

𝑓 (𝑡𝑙 · 𝑡𝑟) B [𝑝(𝑡𝑟)] × ∥∑𝑡1 (𝑅(𝑡1) × [𝑡𝑙 = 𝑥 (𝑡1)])∥×
[𝑡𝑟 = ∑

𝑡1 (𝑅(𝑡1) × [𝑡𝑙 = 𝑥 (𝑡1)]×
𝑛𝑜𝑡 ([𝐼𝑠𝑁𝑢𝑙𝑙 (𝑦(𝑡1))]) × 𝑦(𝑡1))]

SUM DISTINCT

𝑓 (𝑡𝑙 · 𝑡𝑟) B [𝑝(𝑡𝑟)] × ∥∑𝑡1 (𝑅(𝑡1) × [𝑡𝑙 = 𝑥 (𝑡1)])∥×
[𝑡𝑟 = ∑

𝑡1 (𝑡1 × 𝑛𝑜𝑡 ([𝐼𝑠𝑁𝑢𝑙𝑙 (𝑡1)])×
∥∑𝑡2 (𝑅(𝑡2) × [𝑡𝑙 = 𝑥 (𝑡2)] × [𝑦(𝑡2) = 𝑡1])∥)]

COUNT

𝑓 (𝑡𝑙 · 𝑡𝑟) B [𝑝(𝑡𝑟)] × ∥∑𝑡1 (𝑅(𝑡1) × [𝑡𝑙 = 𝑥 (𝑡1)])∥×
[𝑡𝑟 = ∑

𝑡1 (𝑅(𝑡1) × [𝑡𝑙 = 𝑥 (𝑡1)]×
𝑛𝑜𝑡 ([𝐼𝑠𝑁𝑢𝑙𝑙(𝑦(𝑡1))]))]

COUNT DISTINCT

𝑓 (𝑡𝑙 · 𝑡𝑟) B [𝑝(𝑡𝑟)] × ∥∑𝑡1 (𝑅(𝑡1) × [𝑡𝑙 = 𝑥 (𝑡1)])∥×
[𝑡𝑟 = ∑

𝑡1 (∥∑𝑡2 (𝑅(𝑡2) × [𝑡𝑙 = 𝑥 (𝑡2)] × [𝑡1 = 𝑦(𝑡2)]×
𝑛𝑜𝑡 ([𝐼𝑠𝑁𝑢𝑙𝑙 (𝑦(𝑡2))]))∥)]

MAX

𝑓 (𝑡𝑙 · 𝑡𝑟) B [𝑝(𝑡𝑟)] × ∥∑𝑡1 (𝑅(𝑡1) × [𝑡𝑙 = 𝑥 (𝑡1)])∥×
𝑛𝑜𝑡 (∑𝑡1 (𝑅(𝑡1) × [𝑡𝑙 = 𝑥 (𝑡1)] × [𝑦(𝑡1) > 𝑡𝑟]))×

∥∑𝑡1 (𝑅(𝑡1) × [𝑡𝑙 = 𝑥 (𝑡1)] × [𝑦(𝑡1) = 𝑡𝑟]∥

MIN

𝑓 (𝑡𝑙 · 𝑡𝑟) B [𝑝(𝑡𝑟)] × ∥∑𝑡1 (𝑅(𝑡1) × [𝑡𝑙 = 𝑥 (𝑡1)])∥×
𝑛𝑜𝑡 (∑𝑡1 (𝑅(𝑡1) × [𝑡𝑙 = 𝑥 (𝑡1)] × [𝑦(𝑡1) < 𝑡𝑟]))×

∥∑𝑡1 (𝑅(𝑡1) × [𝑡𝑙 = 𝑥 (𝑡1)] × [𝑦(𝑡1) = 𝑡𝑟]∥

AVG

𝑓 (𝑡𝑙 · 𝑡𝑟) B [𝑝(𝑡𝑟)] × ∥∑𝑡1 (𝑅(𝑡1) × [𝑡𝑙 = 𝑥 (𝑡1)])∥×
[𝑡𝑟 × (COUNT Expr) = (SUM Expr)]

such that its attribute 𝑥 equals 𝑡𝑙 . Otherwise, the query result has no tuples. This requirement is
represented by ∥∑𝑡1 (𝑅(𝑡1) × [𝑡𝑙 = 𝑥 (𝑡1)])∥.
Then, we introduce how to model different semantics for different aggregate functions in U-

expressions. The straightforward idea is to represent that 𝑡𝑟 is the result of agg_func(R.y) in
U-expressions. When the aggregate function is COUNT, the summations in U-expressions can be
used to calculate the result. Specifically, [𝑡𝑟 = ∑

𝑡1 (𝑅(𝑡1) × [𝑡𝑙 = 𝑥 (𝑡1)] × 𝑛𝑜𝑡 ([𝐼𝑠𝑁𝑢𝑙𝑙 (𝑦(𝑡1))]))] means
that 𝑡𝑟 equals the sum of the attribute 𝑦 from every possible tuple 𝑡1 satisfying: 1) 𝑡1 is in the relation
R; 2) the attribute 𝑥 of 𝑡1 equals to 𝑡𝑙 ; 3) the attribute 𝑦 of 𝑡1 is not NULL because COUNT ignores
NULL. Similarly, we can leverage summations to calculate the result of SUM, SUM DISTINCT, and
COUNT DISTINCT.
Different from previous aggregate functions, MAX compares the attribute 𝑦 of tuples and finds

the maximum value to be the result, which cannot be directly calculated by summations. Thus,
SQLSolver models two properties of the maximum value rather than calculating the exact value.
These properties can imply that 𝑡𝑟 is the result of max(R.y). First, no tuple in the relation 𝑅 can
satisfy 1) its attribute 𝑥 equals 𝑡𝑙 , and 2) its attribute 𝑦 is greater than 𝑡𝑟 . This property is denoted
as 𝑛𝑜𝑡 (∑𝑡1 (𝑅(𝑡1) × [𝑡𝑙 = 𝑥(𝑡1)] × [𝑦(𝑡1) > 𝑡𝑟])). Second, there exists a tuple in relation R such that
its attribute 𝑥 is 𝑡𝑙 and its attribute 𝑦 equals 𝑡𝑟 . The property is denoted by ∥∑𝑡1 (𝑅(𝑡1) × [𝑡𝑙 =
𝑥 (𝑡1)] × [𝑦(𝑡1) = 𝑡𝑟])∥. Similarly, we can generate U-expressions for queries withMIN, which can be
found in Table 4.
Finally, we explain how to model queries with AVG functions. Since SQLSolver can represent

the result of sum(R.y) and count(R.y) in U-expressions, the basic idea is to calculate the result
of avg(R.y) via dividing the result of sum(R.y) by the result of count(R.y). Although there is no
division operator in U-expressions, we observe that the result of sum(R.y) equals the multiplication
between the result of count(R.y) and avg(R.y). Thus, SQLSolver models the semantics of avg(R.y)

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 227. Publication date: December 2023.

ProvingQuery Equivalence Using Linear Integer Arithmetic 227:19

by [𝑡𝑟 × (COUNT 𝐸𝑥𝑝𝑟) = (SUM 𝐸𝑥𝑝𝑟)], where COUNT 𝐸𝑥𝑝𝑟 and SUM 𝐸𝑥𝑝𝑟 are U-expressions
representing the result of count(R.y) and sum(R.y), respectively.

4.4 Support of Ordered Bag Semantics

Existing works focus on proving the equivalence of queries under bag or set semantics. In particular,
two queries are equivalent if their results consist of the same tuples. However, SQL queries may
return ordered tuples (i.e., ordered bag semantics), such as queries with ORDER BY clauses.
To support ordered bag semantics, SQLSolver adopts a “divide and conquer” strategy. The

equivalence of queries withORDER BY clauses can be proved by the equivalence of their sub-queries
without ORDER BY clauses. Specifically, if two queries sort the tuples returned by sub-queries
according to the value of the same attribute, the equivalence of the two queries can be implied by
the equivalence of their sub-queries. For example, we can prove the equivalence between “select *
from R order by id” and “select * from S order by id” by proving the equivalence between
“select * from R” and “select * from S”.

Before discussing details, we need to revise the definition of query equivalence under ordered
bag semantics.

Definition 1. Given two SQL queries𝑄1 and𝑄2, if the result of𝑄1 is ordered, then𝑄2 is equivalent
to 𝑄1 if and only if: 1) the results of 𝑄1 and 𝑄2 contain the same multiset of tuples; 2) for any two
tuples 𝑡1 and 𝑡2, they are in the same order in both results of 𝑄1 and 𝑄2.

SQLSolver first simplifies queries by eliminating and merging ORDER BY clauses. Then, it
checks the equivalence between two queries by recursively checking their sub-queries based on
the algorithm in Section 4.2.
Step 1. Eliminate and merge ORDER BY clauses. SQLSolver eliminates and merges ORDER BY

clauses in the following three cases. First, anORDER BY clause is in a sub-query and is not followed
by LIMIT or OFFSET clauses. This is because an ORDER BY clause affects the result of queries
only if it appears in the top-most query. Second, a query in the form of “R order by expression
limit 0” can be replaced by “select * from (values) as R”, where “values” represents an
empty table. Third, a query in the form of the following 𝑄1 can be rewritten into 𝑄2.
𝑄1: (𝑅1 order by expression limit number_rows offset offset_value)

[union all|full join|left join] 𝑅2
order by expression limit number_rows offset offset_value

𝑄2: (𝑅1 [union all|full join|left join] 𝑅2)

order by expression limit number_rows offset offset_value

SQLSolver can also merge multipleORDER BY clauses into one clause. Specifically, for a sub-query
in the form of the following 𝑄1, SQLSolver will merge its ORDER BY/ LIMIT/ OFFSET clauses
and generate 𝑄2.
𝑄1: (R order by expression limit number_rows1 offset offset_value1)

order by expression limit number_rows2 offset offset_value2

𝑄2: R order by expression limit number_rows3 offset offset_value3

The constant offset_value3 equals (offset_value1 + offset_value2). When (offset_value2 + num-
ber_rows2) ≤ number_rows1, number_rows3 equals to number_rows2. Otherwise, number_rows3
is the MAX ((number_rows1 - offset_value2), 0).

Step 2. Check the equivalence recursively. Assume two queries after simplification are 𝑄1 and 𝑄2.
First, SQLSolver checks whether 𝑄1 and 𝑄2 have ORDER BY clauses. If no ORDER BY clauses
exist, SQLSolver invokes the algorithm based on LIA to check their equivalence and finishes.
Second, SQLSolver randomly selects an ORDER BY clause in 𝑄1. If it fails to find ORDER BY

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 227. Publication date: December 2023.

227:20 Haoran Ding et al.

clauses, the verification fails. The two queries are not equivalent. Otherwise, it further finds the
set of all ORDER BY clauses in 𝑄2 that match the selected ORDER BY clause in 𝑄1, which is 𝑆 .
Specifically, two ORDER BY clauses are matching means: 1) they sort tuples by the same attributes;
2) they are followed by the same LIMIT/ OFFSET clauses. Third, SQLSolver returns true when any
ORDER BY clause ∈ 𝑆 passes the following check, which means 𝑄1 and 𝑄2 are equivalent. Assume
that two ORDER BY clauses in 𝑄1 and 𝑄2 are performed on the tuples returned by the sub-query
𝑄3 and 𝑄4, respectively. SQLSolver recursively checks the equivalence between 𝑄3 and 𝑄4. If they
are proved to be equivalent, SQLSolver replaces 𝑄3 and 𝑄4 along with their following ORDER BY/
LIMIT/ OFFSET clauses in 𝑄1 and 𝑄2 by the same arbitrary relation, generating two new queries
𝑄5 and 𝑄6. Then, SQLSolver recursively checks the equivalence between 𝑄5 and 𝑄6. If they are
proved to be equivalent, the check succeeds.

The following theorem shows the soundness of the above algorithm.

Theorem 4.4. Given two queries with ORDER BY clauses, if they pass the check of the step 2 after

simplification, they are equivalent under ordered bag semantics.

The theorem can be proved by two lemmas about the above two steps. First, eliminating unnec-
essary ORDER BY clauses from a query always produces another equivalent query. Second, if two
queries can pass the check of step 2, then they are equivalent under ordered bag semantics.

5 SOUNDNESS AND COMPLETENESS

Verifying the equivalence of two SQL queries is an undecidable problem [1]. Thus, it is impossible
to have a verification algorithm that is both sound and complete. The decision procedure proposed
by SQLSolver is sound but incomplete. This section provides a proof sketch of the soundness and
a short discussion about the completeness.

Theorem 5.1. SQLSolver ensures soundness under both bag semantics and ordered bag semantics.

Specifically, given two queries 𝑄1 and 𝑄2, if SQLSolver proves they are equivalent, they must be

equivalent under bag semantics or ordered bag semantics.

Proof sketch. When two queries 𝑄1 and 𝑄2 do not have ORDER BY clauses, we need to prove
that the unsatisfiability of the LIA formula generated by SQLSolver implies the equivalence
between two queries. UDP [9] has proved that the equivalence of two queries’ U-expressions 𝑓1(𝑡)
and 𝑓2(𝑡) implies the equivalence of 𝑄1 and 𝑄2. Thus, we only need to prove that if the generated
LIA formula is unsatisfiable, then 𝑓1(𝑡) and 𝑓2(𝑡) are equivalent. When two queries have ORDER BY

clauses, the soundness can be proved by Theorem 4.4. □
On the aspect of completeness, SQLSolver cannot ensure completeness because of the following

reasons: 1) it does not model all SQL features, such as lateral sub-queries. This is also the major
reason why there are 13 query pairs derived from Spark SQL that cannot be proved by SQLSolver; 2)
Translating U-expressions into a LIA∗ formula and the algorithm of handling non-linear operations
can also introduce completeness issues. Specifically, the FOL formula generated by SQLSolver is
the over-approximation [30] of the original formula ∃𝑥 .𝑓1(𝑥) ̸= 𝑓2(𝑥). They are not equisatisfiable.
If the FOL formula is unsatisfiable, ∃𝑥 .𝑓1(𝑥) ̸= 𝑓2(𝑥) is unsatisfiable. The two queries are equivalent.
However, if the FOL formula is satisfiable, SQLSolver cannot ensure that ∃𝑥 .𝑓1(𝑥) ̸= 𝑓2(𝑥) is
satisfiable. Two queries may still be equivalent. 3). Our method of supporting ordered bag semantics
relies on syntax structures and cannot handle any queries with ORDER BY clauses. However, in
our evaluation, the last two reasons do not incur any false positives. The equivalent query pairs
that fail to be proved are due to the lack of semantics modeling.
Besides, SQLSolver ensures the completeness for conjunctive queries (CQ) and unions of

conjunctive queries (UCQ), which is similar to existing works [9, 47]. However, the real power of

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 227. Publication date: December 2023.

ProvingQuery Equivalence Using Linear Integer Arithmetic 227:21

SQLSolver lies in other kinds of queries. To illustrate it, we present another kind of SQL query
such that SQLSolver guarantees completeness, whereas other provers cannot.

Theorem 5.2. SQLSolver is complete if the input SQL queries have the following form

𝑄1: 𝑄 ′
1 union all ... union all 𝑄 ′

𝑛

𝑄2: 𝑄 ′
𝑛+1 union all ... union all 𝑄 ′

𝑚

and each 𝑄 ′
𝑖 has either one of the following forms.

𝑄 ′
𝑖
: select 𝑅𝑖 .𝑎1, ..., 𝑅𝑖 .𝑎 𝑗 , 𝑎𝑔𝑔1(𝑅𝑖 .𝑏1), ..., 𝑎𝑔𝑔𝑘 (𝑅𝑖 .𝑏𝑘)
from 𝑅𝑖 where 𝑝𝑖

group by 𝑅𝑖 .𝑎1, ..., 𝑅𝑖 .𝑎 𝑗 having 𝑞𝑖

𝑄 ′
𝑖
: select [distinct] 𝑅𝑖 .𝑎1, ..., 𝑅𝑖 .𝑎 𝑗 from 𝑅𝑖 where 𝑝𝑖

The aggregate functions are limited to count, max or min, and these queries do not include any

predicates whose satisfiability cannot be determined by SMT solvers.

6 EVALUATION

In evaluation, we want to answer the following questions.
Q1. Does SQLSolver have better verification capability than existing provers?
Q2.What is the main reason for its advantage?
Q3. Can SQLSolver help find more rewrite rules?

6.1 Experimental Setup

SQLSolver is built using Java 17.0.4 and employs Z3 4.8.9 [15] as the SMT solver. It implements a
parser for queries based on the parser generator ANTLR 4.8 [35].
Baseline. To answer the first two questions, we compare the verification capability of SQLSolver
with other provers based on their source code, including UDP [10], SPES [45], andWeTune [44].
Benchmark. The verification capability is evaluated using 232 equivalent query pairs derived
from Calcite test suites and 127 pairs of equivalent queries derived from the rewrite rules in the
optimization engine of Spark SQL. Additionally, we construct 19 pairs of equivalent queries from
TPC-C [21] and 22 pairs of equivalent queries from TPC-H [22]. Specifically, TPC-C and TPC-H are
used to evaluate the performance of database systems. We use the query optimizer of Spark SQL to
generate an equivalent query for each query in TPC-C and TPC-H. Then, we use SQLSolver to
verify the equivalence of each pair of queries. Since Spark SQL generates a logical plan rather than
a SQL query, we manually convert a plan into a SQL query while preserving its semantics. For the
third question, we integrate SQLSolver intoWeTune, which discovers new rewrite rules based on
query equivalence verification. Then, we compare the rules discovered based on SQLSolver with
those in WeTune’s paper.
Testbed. Each prover is executed on an AWS EC2 c5a.8xlarge machine. To discover new rules, we
integrate SQLSolver into WeTune and run the rule discovery program on m4.10xlarge AWS EC2
instances. When assessing the performance benefits posed by rules discovered by SQLSolver, we
use them to rewrite queries and measure latency on Microsoft SQL Server 2019. The initial tables
with 1M rows are populated with randomly generated data derived from the uniform distribution.
Each query is recurrently executed 200 times within a closed-loop framework.

6.2 Verification Capability

Among all 400 equivalent query pairs, UDP, SPES, and WeTune are able to prove the equivalence
of 207 pairs in total. Compared with them, SQLSolver can prove 384 pairs, 177 of which cannot be
proved by any of these existing provers. Notably, every equivalent query that can be proved by

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 227. Publication date: December 2023.

227:22 Haoran Ding et al.

Table 5. Reasons of verification failure for each prover and the number of failed query pairs due to each

reason.

Unsupported Cases
Reason

Unsupported
SQL Feature

Checking
Algorithm

Ordered Bag
Semantics

UDP 331 132 160 39
SPES 214 103 72 39
WeTune 275 63 181 31

existing provers can also be proved by SQLSolver. Additionally, SQLSolver could prove all 232
query pairs derived from Calcite and all 19 query pairs constructed based on TPC-C. There remain
a total of 16 query pairs that could not be verified by SQLSolver or any other existing provers.
The main reason is due to SQL features unsupported by SQLSolver, such as lateral subqueries and
window functions.

To address the second question, we analyze all failed query pairs for each existing provers out
of the query pairs that SQLSolver can prove, as shown in Table 5. Note that WeTune does not
support ordered bag semantics, but it can reason some equivalent queries with ORDER BY clauses.
Because it performs verification by repeatedly rewriting their subqueries without ORDER BY

clauses until the two queries with ORDER BY become the same. Thus, we still treat it to be a
prover that does not consider ordered bag semantics. The algebraic representation defined by SPES
cannot represent scalar subqueries, but it can prove a query pair with scalar subqueries. Because it
uses Calcite to transform SQL queries into logical plans, which eliminates scalar subqueries via
rewrite. Thus, we still treat SPES to be a prover that does not support scalar subqueries. The first
reason is that SQLSolver supports more SQL features under bag semantics, such as VALUES and
scalar sub-queries. Among query pairs that can be proved by SQLSolver, 132, 103, and 63 query
pairs cannot be proved by UDP, SPES andWeTune due to this reason, respectively. In addition,
SQLSolver’s LIA-based verification algorithm also contributes a lot to its verification capability.
Even if the given queries do not have SQL features unsupported by other provers or other provers
adopt our algorithm to convert more SQL features to U-expressions, they still cannot prove many
pairs due to this reason. Among the query pairs proved by SQLSolver under bag semantics, UDP
and SPES fail to prove 160, 72 pairs of them due to the limitations of their syntax-based algorithm.
They cannot handle queries whose algebraic representations vary a lot. WeTune fails to prove
181 pairs of them because its semantics-based algorithm cannot handle complicated unbounded
summations in U-expressions via its rules. Last, existing provers target bag semantics rather than
ordered bag semantics. This also causes verification failure, as shown in Table 5.

The algorithm SQLSolver employs to addressORDER BY clauses is decoupled with the algorithm
used to establish the equivalence of queries under bag semantics. We combine other provers with it
to address queries withORDER BY clauses. Among the total of 400 query pairs, SQLSolver relies on
the algorithm in Section 4.4 to prove 39 of them under ordered bag semantics. Combined with our
algorithm, UDP, SPES, andWeTune can prove the equivalence of 22 query pairs in total. The other
17 query pairs cannot be proved by them because of SQL features unsupported by these provers and
the limitations of their checking algorithms. This evaluation result demonstrates that SQLSolver’s
algorithm of addressing ORDER BY clauses and its algorithm of proving query equivalence under
bag semantics are both essential to handling these queries with ORDER BY clauses.

Table 6 presents a comparison of the average verification latency between SQLSolver and other
existing provers, including UDP, SPES, and WeTune. To ensure fairness in our comparison, we
compare each pair of provers on a set of query pairs that both provers can prove. Note that every pair

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 227. Publication date: December 2023.

ProvingQuery Equivalence Using Linear Integer Arithmetic 227:23

Table 6. Average verification latency (ms) for each prover. UDP vs. SQLSolver means the average latency of

proving query pairs that can be proved by both of them. We use “/” to indicate that no query pair can be

proved by both provers.

Calcite Spark SQL TPC-C TPC-H
UDP vs. SQLSolver 3178 vs. 28 3039 vs. 12 / /
SPES vs. SQLSolver 45 vs. 122 17 vs. 35 38 vs. 39 /
WeTune vs. SQLSolver 8 vs. 30 2 vs. 10 / /

of queries that can be proved by UDP, SPES, and WeTune can also be proved by SQLSolver. Since
UDP andWeTune cannot handle queries derived from TPC-C and TPC-H, we do not compare their
verification latencies with SQLSolver on these queries. We also do not compare the verification
latencies of SPES and SQLSolver on query pairs derived from TPC-H because SPES cannot prove
any of these query pairs. As shown in Table 6,WeTune exhibits the fastest verification speed owing
to its distinct verification approach from other existing provers. It targets the verification of rewrite
rules rather than concrete SQL queries. Thus, to prove the equivalence between two concrete
queries,WeTune rewrites each of them using a set of rules it discovers and checks whether the
two queries can be rewritten to the same query. Thus,WeTune achieves the fastest verification
speed by not invoking SMT solvers for verification. In contrast, SQLSolver employs SMT solvers
several times, resulting in a comparatively longer verification time thanWeTune and SPES. Despite
this, SQLSolver stands out by proving more queries than other provers, including queries with
complicated syntax structures. Furthermore, the algorithm of SQLSolver supports more SQL
features, enabling it to prove the equivalence of more query pairs. Note that verification latency
does not affect query execution latency because verification is performed offline.

6.3 Discovery of Useful Rewrite Rules

To answer the third question, we integrate SQLSolver into the WeTune framework’s rewrite rule
discovery module to discover additional useful rules. Our integration of SQLSolver reveals all
35 useful rules previously found by WeTune. Furthermore, SQLSolver also identifies novel rules
intended to eliminate unnecessary aggregate functions and UNION operators. For quantitative
analysis, we evaluate the performance benefit of these discovered rules with a few manually crafted
queries. On these generated queries, the new rules induce a latency reduction of up to 99.70%
compared to queries without rewrite. The decreased latency can be attributed to removing certain
relational operations, demonstrating the usefulness of the newly discovered rules.

7 RELATEDWORK

Formalization of semantics for SQL queries. There are several different methods to formalize
SQL semantics in recent works. UDP [9] defines an algebra called U-expression to model SQL
queries under bag semantics as a function, which returns the multiplicity of a tuple in the query
result.WeTune extends U-expressions in UDP to represent NULL. Compared with U-expression,
the algebra representation defined in SPES [47] can encode concrete predicates. However, it cannot
encode integrity constraints. Inspired by UDP and WeTune, SQLSolver proposes new methods to
encode more SQL features.
Automated verification for equivalence between SQL queries. Proving the equivalence of
queries is an important problem [6, 7, 13, 14, 23, 25, 40]. Recent works have proposed multiple
methods to prove the equivalence between queries automatically. Some recent work [46] targets
set semantics, while our work targets bag semantics. The other work supporting bag semantics
can be classified into two classes. The first type of work[8, 9, 11, 47] translates SQL queries into

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 227. Publication date: December 2023.

227:24 Haoran Ding et al.

algebra representations, rewrites the algebra via manually crafted rules, and compares them based
on syntax structure. The second type of work [43] translates the equivalence problem of two SQL
queries into a FOL formula and uses SMT solvers to perform the verification, which captures the
concrete semantics of SQL queries. The verification capabilities of these works are limited by their
manually crafted rules.
Decision procedure for LIA

∗
formulas. SQLSolver is inspired and based on existing works

about LIA∗ [28–30, 37, 39]. Piskac et al. [39] proves that the satisfiability problem of a LIA∗ formula
is NP-complete and gives an algorithm to reduce it to the satisfiability problem of a LIA formula.
Recent work [30] further designs a more efficient decision procedure for a LIA∗ formula based on
approximation, which SQLSolver adopts to solve the generated LIA∗ formula.
Query optimization. There is a long line of work targeting the optimization of queries [3, 16, 19,
20, 26, 27, 31–34, 42, 48]. SQLSolver is orthogonal to these works. We will explore how to combine
SQLSolver with them to further optimize the performance of queries, which will be an interesting
topic in the future.

8 CONCLUSION

This paper presents SQLSolver, which is a new prover for SQL equivalence. The evaluation shows
that SQLSolver can prove more equivalent pairs of queries than existing provers and help discover
more useful rewrite rules.

ACKNOWLEDGMENTS

We sincerely thank the anonymous reviewers for their valuable comments. We appreciate Zhuoran
Wei for developing some of the code in SQLSolver. This work is supported by the National Natural
Science Foundation of China (No. 62272304 and 62132014) and the Fundamental Research Funds
for the Central Universities. Jinyang Li and Ruzica Piskac are partially supported by NSF grant
FMitF-2220407. Ruzica Piskac is also partially supported by NSF grant CCF-2131476.

REFERENCES

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of databases. Vol. 8. Addison-Wesley Reading.
[2] amcintosh. 2013. Query featuring outer joins behaves differently in oracle 12c. http://stackoverflow.com/questions/

19686262.
[3] Edmon Begoli, Jesús Camacho-Rodríguez, Julian Hyde, Michael J. Mior, and Daniel Lemire. 2018. Apache Calcite: A

Foundational Framework for Optimized Query Processing Over Heterogeneous Data Sources. In Proceedings of the

2018 International Conference on Management of Data (Houston, TX, USA) (SIGMOD ’18). Association for Computing
Machinery, New York, NY, USA, 221–230. https://doi.org/10.1145/3183713.3190662

[4] Aaron R Bradley and ZoharManna. 2007. The calculus of computation: decision procedures with applications to verification.
Springer Science & Business Media.

[5] Apache Calcite. 2021. Calcite Test Suite. https://ipads.se.sjtu.edu.cn:1312/opensource/wetune/-/blob/main/
wtune_data/calcite/calcite_tests.

[6] Ashok K. Chandra and Philip M. Merlin. 1977. Optimal Implementation of Conjunctive Queries in Relational Data
Bases. In Proceedings of the Ninth Annual ACM Symposium on Theory of Computing (Boulder, Colorado, USA) (STOC
’77). Association for Computing Machinery, New York, NY, USA, 77–90. https://doi.org/10.1145/800105.803397

[7] Surajit Chaudhuri and Moshe Y Vardi. 1993. Optimization of real conjunctive queries. In Proceedings of the twelfth

ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems. 59–70.
[8] Shumo Chu, Daniel Li, Chenglong Wang, Alvin Cheung, and Dan Suciu. 2017. Demonstration of the cosette automated

sql prover. In Proceedings of the 2017 ACM International Conference on Management of Data. 1591–1594.
[9] Shumo Chu, Brendan Murphy, Jared Roesch, Alvin Cheung, and Dan Suciu. 2018. Axiomatic Foundations and

Algorithms for Deciding Semantic Equivalences of SQL Queries. Proc. VLDB Endow. 11, 11 (jul 2018), 1482–1495.
https://doi.org/10.14778/3236187.3236200

[10] Shumo Chu, Brendan Murphy, Jared Roesch, Alvin Cheung, and Dan Suciu. 2018. UDP source code. https://github.
com/uwdb/Cosette/tree/master/uexp.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 227. Publication date: December 2023.

http://stackoverflow.com/questions/19686262
http://stackoverflow.com/questions/19686262
https://doi.org/10.1145/3183713.3190662
https://ipads.se.sjtu.edu.cn:1312/opensource/wetune/-/blob/main/wtune_data/calcite/calcite_tests
https://ipads.se.sjtu.edu.cn:1312/opensource/wetune/-/blob/main/wtune_data/calcite/calcite_tests
https://doi.org/10.1145/800105.803397
https://doi.org/10.14778/3236187.3236200
https://github.com/uwdb/Cosette/tree/master/uexp
https://github.com/uwdb/Cosette/tree/master/uexp

ProvingQuery Equivalence Using Linear Integer Arithmetic 227:25

[11] Shumo Chu, Chenglong Wang, Konstantin Weitz, and Alvin Cheung. 2017. Cosette: An Automated Prover for SQL.. In
Proceedings of the 8th Biennial Conference on Innovative Data Systems Research (Chaminade, California, USA) (CIDR
’17).

[12] Shumo Chu, Konstantin Weitz, Alvin Cheung, and Dan Suciu. 2017. HoTTSQL: Proving Query Rewrites with Univalent
SQL Semantics. SIGPLAN Not. 52, 6 (June 2017), 510–524. https://doi.org/10.1145/3140587.3062348

[13] Sara Cohen, Werner Nutt, and Yehoshua Sagiv. 2007. Deciding equivalences among conjunctive aggregate queries.
Journal of the ACM (JACM) 54, 2 (2007), 5–es.

[14] Sara Cohen, Werner Nutt, and Alexander Serebrenik. 1999. Rewriting aggregate queries using views. In Proceedings of

the eighteenth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems. 155–166.
[15] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Proceedings of the Theory and Practice of

Software, 14th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (Budapest,
Hungary) (TACAS ’08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 337–340.

[16] Visweswara Sai Prashanth Dintyala, Arpit Narechania, and Joy Arulraj. to appear. SQLCheck: Automated Detection
and Diagnosis of SQL Anti-Patterns. (to appear).

[17] The Apache Software Foundation. 2023. Spark SQL. https://github.com/apache/spark/tree/master/sql.
[18] Richard A Ganski and Harry KT Wong. 1987. Optimization of nested SQL queries revisited. ACM SIGMOD Record 16,

3 (1987), 23–33.
[19] Goetz Graefe. 1995. The cascades framework for query optimization. IEEE Data Eng. Bull. 18, 3 (1995), 19–29.
[20] Goetz Graefe and William J McKenna. 1993. The volcano optimizer generator: Extensibility and efficient search. In

Proceedings of IEEE 9th International Conference on Data Engineering. IEEE, 209–218.
[21] Carnegie Mellon Database Research Group. 2023. Multi-DBMS SQL Benchmarking Framework via JDBC. https:

//github.com/cmu-db/benchbase/tree/main/src/main/java/com/oltpbenchmark/benchmarks/tpcc.
[22] Carnegie Mellon Database Research Group. 2023. Multi-DBMS SQL Benchmarking Framework via JDBC. https:

//github.com/cmu-db/benchbase/tree/main/src/main/java/com/oltpbenchmark/benchmarks/tpch.
[23] Yannis E. Ioannidis and Raghu Ramakrishnan. 1995. Containment of Conjunctive Queries: Beyond Relations as Sets.

ACM Trans. Database Syst. 20, 3 (sep 1995), 288–324. https://doi.org/10.1145/211414.211419
[24] ISO. 2016. ISO/IEC 9075-2:2016. https://www.iso.org/standard/63556.html.
[25] T. S. Jayram, Phokion G. Kolaitis, and Erik Vee. 2006. The Containment Problem for <bi>Real</bi> Conjunctive

Queries with Inequalities. In Proceedings of the Twenty-Fifth ACM SIGMOD-SIGACT-SIGART Symposium on Principles

of Database Systems (Chicago, IL, USA) (PODS ’06). Association for Computing Machinery, New York, NY, USA, 80–89.
https://doi.org/10.1145/1142351.1142363

[26] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, and Alfons Kemper. 2019. Learned cardinalities:
Estimating correlated joins with deep learning. In Proceedings of the 9th Biennial Conference on Innovative Data Systems

Research (Asilomar, California, USA) (CIDR ’19).
[27] Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph Hellerstein, and Ion Stoica. 2018. Learning to optimize join

queries with deep reinforcement learning. arXiv preprint arXiv:1808.03196 (2018).
[28] Viktor Kuncak, Huu Hai Nguyen, and Martin Rinard. 2005. An algorithm for deciding BAPA: Boolean algebra with

Presburger arithmetic. In International Conference on Automated Deduction. Springer, 260–277.
[29] Viktor Kuncak, Huu Hai Nguyen, and Martin Rinard. 2006. Deciding Boolean algebra with Presburger arithmetic.

Journal of Automated Reasoning 36, 3 (2006), 213–239.
[30] Maxwell Levatich, Nikolaj Bjørner, Ruzica Piskac, and Sharon Shoham. 2020. Solving LIA* Using Approximations. In

International Conference on Verification, Model Checking, and Abstract Interpretation. Springer, 360–378.
[31] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh, Tim Kraska, Olga Papaemmanouil, and

Nesime Tatbul. 2019. Neo: A learned query optimizer. arXiv preprint arXiv:1904.03711 (2019).
[32] Ryan Marcus and Olga Papaemmanouil. 2018. Deep reinforcement learning for join order enumeration. In Proceedings

of the First International Workshop on Exploiting Artificial Intelligence Techniques for Data Management. 1–4.
[33] Ryan Marcus and Olga Papaemmanouil. 2019. Towards a Hands-Free Query Optimizer through Deep Learning. In

Proceedings of the 9th Biennial Conference on Innovative Data Systems Research (Asilomar, California, USA) (CIDR ’19).
[34] M. Muralikrishna. 1992. Improved Unnesting Algorithms for Join Aggregate SQL Queries. In Proceedings of the 18th

International Conference on Very Large Data Bases (VLDB ’92). Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 91–102.

[35] Terence Parr. 2020. ANTLR v4. https://github.com/antlr/antlr4.
[36] Ruzica Piskac. 2011. Decision Procedures for Program Synthesis and Verification. (2011), 200. https://doi.org/10.507

5/epfl-thesis-5220
[37] Ruzica Piskac and Viktor Kuncak. 2008. Decision procedures for multisets with cardinality constraints. In International

Workshop on Verification, Model Checking, and Abstract Interpretation. Springer, 218–232.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 227. Publication date: December 2023.

https://doi.org/10.1145/3140587.3062348
https://github.com/apache/spark/tree/master/sql
https://github.com/cmu-db/benchbase/tree/main/src/main/java/com/oltpbenchmark/benchmarks/tpcc
https://github.com/cmu-db/benchbase/tree/main/src/main/java/com/oltpbenchmark/benchmarks/tpcc
https://github.com/cmu-db/benchbase/tree/main/src/main/java/com/oltpbenchmark/benchmarks/tpch
https://github.com/cmu-db/benchbase/tree/main/src/main/java/com/oltpbenchmark/benchmarks/tpch
https://doi.org/10.1145/211414.211419
https://www.iso.org/standard/63556.html
https://doi.org/10.1145/1142351.1142363
https://github.com/antlr/antlr4
https://doi.org/10.5075/epfl-thesis-5220
https://doi.org/10.5075/epfl-thesis-5220

227:26 Haoran Ding et al.

[38] Ruzica Piskac and Viktor Kuncak. 2008. Decision Procedures for Multisets with Cardinality Constraints (VMCAI’08).
Springer-Verlag, Berlin, Heidelberg, 218–232.

[39] Ruzica Piskac and Viktor Kuncak. 2008. Linear Arithmetic with Stars. In Computer Aided Verification, Aarti Gupta and
Sharad Malik (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 268–280.

[40] Yehoshua Sagiv andMihalis Yannakakis. 1980. Equivalences among relational expressions with the union and difference
operators. Journal of the ACM (JACM) 27, 4 (1980), 633–655.

[41] David Schmitt. 2010. Optimizer creates strange execution plan leading to wrong results. http://tinyurl.com/hwwn5
3r.

[42] Michael Stillger, Guy M. Lohman, Volker Markl, and Mokhtar Kandil. 2001. LEO - DB2’s LEarning Optimizer. In
Proceedings of the 27th International Conference on Very Large Data Bases (VLDB ’01). Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 19–28.

[43] Zhaoguo Wang, Zhou Zhou, Yicun Yang, Haoran Ding, Gansen Hu, Ding Ding, Chuzhe Tang, Haibo Chen, and Jinyang
Li. 2022. WeTune: Automatic Discovery and Verification of Query Rewrite Rules. In Proceedings of the 2022 International

Conference on Management of Data (Philadelphia, PA, USA) (SIGMOD ’22). Association for Computing Machinery, New
York, NY, USA, 94–107. https://doi.org/10.1145/3514221.3526125

[44] Zhaoguo Wang, Zhou Zhou, Yicun Yang, Haoran Ding, Gansen Hu, Ding Ding, Chuzhe Tang, Haibo Chen, and Jinyang
Li. 2022. WeTune source code. https://ipads.se.sjtu.edu.cn:1312/opensource/wetune.

[45] Qi Zhou, Joy Arulraj, Shamkant Navathe, William Harris, and Jinpeng Wu. 2020. SPES source code. https://github.
com/georgia-tech-db/spes.

[46] Qi Zhou, Joy Arulraj, Shamkant Navathe, William Harris, and Dong Xu. 2019. Automated Verification of Query
Equivalence Using Satisfiability modulo Theories. Proc. VLDB Endow. 12, 11 (jul 2019), 1276–1288. https://doi.org/
10.14778/3342263.3342267

[47] Qi Zhou, Joy Arulraj, Shamkant B. Navathe, William Harris, and Jinpeng Wu. 2022. SPES: A Symbolic Approach to
Proving Query Equivalence Under Bag Semantics. In 2022 IEEE 38th International Conference on Data Engineering

(ICDE). 2735–2748. https://doi.org/10.1109/ICDE53745.2022.00250
[48] Xuanhe Zhou, Guoliang Li, Chengliang Chai, and Jianhua Feng. 2021. A Learned Query Rewrite System Using Monte

Carlo Tree Search. Proc. VLDB Endow. 15, 1 (sep 2021), 46–58. https://doi.org/10.14778/3485450.3485456

Received April 2023; accepted June 2023

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 227. Publication date: December 2023.

http://tinyurl.com/hwwn53r
http://tinyurl.com/hwwn53r
https://doi.org/10.1145/3514221.3526125
https://ipads.se.sjtu.edu.cn:1312/opensource/wetune
https://github.com/georgia-tech-db/spes
https://github.com/georgia-tech-db/spes
https://doi.org/10.14778/3342263.3342267
https://doi.org/10.14778/3342263.3342267
https://doi.org/10.1109/ICDE53745.2022.00250
https://doi.org/10.14778/3485450.3485456

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Syntax vs. Semantics-based Checking
	2.2 Challenge of Semantics-based Checking

	3 Overview
	4 Decision Procedure with LIA*
	4.1 Basic Concept of LIA*
	4.2 Reasoning Equivalence of U-expressions
	4.3 Extension of U-expressions
	4.4 Support of Ordered Bag Semantics

	5 Soundness and Completeness
	6 Evaluation
	6.1 Experimental Setup
	6.2 Verification Capability
	6.3 Discovery of Useful Rewrite Rules

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

