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Students often make mistakes in their introductory programming assignments as part of their learning process.

Unfortunately, providing custom repairs for these mistakes can require a substantial amount of time and e�ort

from class instructors. Automated program repair (APR) techniques can be used to synthesize such �xes. Prior

work has explored the use of symbolic and neural techniques for APR in the education domain. Both types of

approaches require either substantial engineering e�orts or large amounts of data and training. We propose to

use a large language model trained on code, such as Codex (a version of GPT), to build an APR system – PyDex

– for introductory Python programming assignments. Our system can �x both syntactic and semantic mistakes

by combining multi-modal prompts, iterative querying, test-case-based selection of few-shots, and program

chunking. We evaluate PyDex on 286 real student programs and compare to three baselines, including one

that combines a state-of-the-art Python syntax repair engine, BIFI, and a state-of-the-art Python semantic

repair engine for student assignments, Refactory. We �nd that PyDex can �x more programs and produce

smaller patches on average.
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1 INTRODUCTION

Programming education has grown substantially in popularity in the past decade [Singer 2019]. A

key challenge associated with this growth is the need to provide novice students with e�ective

and e�cient learning support. In an ideal world, teaching assistants would monitor students’

learning process, and when students’ code is not correct, they would then help them to derive

a correct solution. However, this approach does not scale and educational institutions struggle

to �nd teaching assistants. As a result, there is an interest in developing automated tools that

students can use for feedback instead. These tools provide custom repairs for their programming

mistakes. The �eld of automated program repair (APR), which has a long history in the software

engineering community [Ahmed et al. 2022; Le Goues et al. 2012, 2019; Long et al. 2017; Long and

Rinard 2016; Mechtaev et al. 2016], has introduced di�erent approaches [Gulwani et al. 2018; Hu

et al. 2019; Pu et al. 2016; Rolim et al. 2017] to produce such automated repairs for student mistakes

in introductory assignments. Given a buggy student program, the APR system aims to produce a

patch that satis�es a speci�cation (typically the instructor-provided test cases). The patch must

also minimize the number of changes made, with the goal of facilitating student learning [Hu et al.

2019].

Prior automated program repair systems for student programming assignments have generally

been implemented using purely symbolic [Gulwani et al. 2018; Hu et al. 2019; Rolim et al. 2017;

Wang et al. 2018b] or purely neural [Ahmed et al. 2018; Pu et al. 2016] techniques. Symbolic ap-

proaches require substantial engineering e�orts to develop, typically requiring signi�cant program

analysis/repair experience, as well as custom repair strategies tailored to the language domain in

which students implement their assignments. Neural approaches mitigate some of the engineering

challenges but typically require substantial amounts of data, often leading to specialized use cases

for Massive Open Online Courses (MOOCs). Furthermore, these systems are typically tailored to

focus exclusively on syntax repair or exclusively on semantic repair. For the latter, the assumption

is the code to be repaired contains no syntactic errors.

In this paper, we introduce PyDex, a Python repair tool built on top of Codex, a version of

the popular LLM GPT-3 [Brown et al. 2020] that was further trained on code. PyDex is a uni�ed
syntactic and semantic repair engine for introductory Python programming assignments. Using a

large language model trained on code (LLMC) removes the need for custom symbolic repair logic or

retraining of a new neural model, and it allows us to handle both syntactic and semantic mistakes.

While LLMCs have been successfully applied to tasks such as code generation [cop 2024], their

impact in the education domain remains controversial [Berger 2022]. Using an LLMC for repair

provides an opportunity to produce a positive impact in this domain.

We follow the approach of recent work [Joshi et al. 2023; Xia and Zhang 2022] in framing program

repair as a code generation task that can be tackled with an LLMC. However, using LLMCs to

produce student repairs requires addressing three challenges. First, the system must be able to

handle multi-modality: the instructor may provide test cases, a description of the task in natural

language, and language tooling (e.g. a compiler) may provide further information. Second, APR

patches in the education domain need to reduce the number of changes to support learning – this

requires that we limit the extent to which the LLM can generate more code than necessary or make

changes to parts of the program that are not incorrect. Third, incorporating the LLMC as a core

(but black box) component in our design requires that we adapt traditional prompt engineering

techniques to our setting.

PyDex ensembles multi-modal prompts to generate complementary repair candidates. It employs

prompts in an iterative querying strategy that �rst uses syntax-targeted prompts and then semantics-

targeted prompts. To reduce the number of changes induced by syntax errors that should have

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 133. Publication date: April 2024.



PyDex: Repairing Bugs in Introductory Python Assignments using LLMs 133:3

relatively simple �xes, PyDex uses the program’s structure to extract a subprogram to give as

input to the LLMC. By reducing the code surface exposed to the LLMC, PyDex biases repairs

towards fewer edits. When �xing semantics, PyDex takes inspiration from existing symbolic repair

literature [Gulwani et al. 2018; Ke et al. 2015; Wang et al. 2018b] and leverages few-shot learning,

which adds task-related examples to the prompt, by retrieving other students’ programs that

have similar mistakes (and eventual corrections). To identify these programs, PyDex computes a

similarity metric over test-suite outcomes.

We evaluated PyDex on student programs from an introductory Python programming course at a

major university in India. Our evaluation has 15 programming tasks, totalling 286 student programs.

These student programs contain both syntactic and semantic mistakes. As there is currently no tool

that can solve both errors simultaneously, we compare PyDex to three baselines built by composing:

BIFI [Yasunaga and Liang 2021], a state-of-the-art syntax repair tool for Python; Refactory [Hu

et al. 2019], a state-of-the-art semantic repair tool for education Python programs; and GenProg, a

canonical semantic repair tool based on genetic programming. Speci�cally, we compare PyDex to

BIFI+Refactory, PyDex+Refactory, and PyDex+GenProg, where for the latter two baselines we use

PyDex to produce syntactic �xes before applying the corresponding semantic repair tool.

Our results show that PyDex can e�ectively repair student programs in our benchmark set.

PyDex without few-shot learning can repair 86.71% of the student programs. This repair rate climbs

to 96.5% with few-shots. Meanwhile, BIFI+Refactory, PyDex+Refactory, and PyDex+GenProg repair

67.13%, 83.57%, and 49.30%, respectively. Our statistical analysis shows that the improvement over

BIFI+Refactory and PyDex+GenProg is statistically signi�cant.

The average token edit distance associated with PyDex patches is smaller (28.59 without few-

shots and 29.68 with few-shots) compared to the patches produced by the baselines BIFI+Refactory

(70.39) and PyDex+Refactory (73.53). We found that PyDex+GenProg (22.82) produces slightly

smaller patches, but the di�erence is not statistically signi�cant. Our statistical analysis shows that

the improvement over BIFI+Refactory and PyDex+Refactory is statistically signi�cant.

We carried out an ablation study to understand the impact of our design decisions. Our results

indicate that by performing iterative querying the repair rate rises from 82.87% to 86.71%. Further-

more, adding few-shots raises the repair success rate to 96.5%. The evaluation also shows that our

techniques are important for maintaining the repaired program similar to the buggy input program.

For example, removing the program chunker, which selects subprograms in the syntax repair phase,

raises the average token edit distance from 5.46 to 9.38 in the syntax phase. We also show that

di�erent multi-modal prompts have varying performance, but if we combine their candidates as

we do in PyDex, we obtain the best performance.

To summarize, we make the following contributions:

• We propose an approach to automatically repair mistakes in students’ Python programming

assignments using a large language model trained on code (LLMC). Our approach uses

multimodal prompts, iterative querying, test-case-based few-shot selection, and structure-

based program chunking to repair student mistakes. In contrast to prior work, our approach

uses the same underlying LLMC to repair both syntactic and semantic mistakes.

• We implement this approach in PyDex, which uses OpenAI’s popular Codex as the LLMC. We

evaluate PyDex on a dataset of 286 real student Python programs drawn from an introductory

Python programming course in India. We compare performance to three baselines, that

leverage popular repair systems such as BIFI, Refactory, and GenProg. Our results show that

PyDex yields a statistically signi�cant higher repair rate than 2 of our 3 baselines, and a

statistically signi�cant smaller average token edit distance (i.e. smaller patches) than 2 of our

3 baselines.
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The remainder of the paper is structured as follows. Section 2 walks through multiple examples

of real student mistakes, as well as associated PyDex patches. Section 3 provides a brief background

on concepts related to large language models. Section 4 describes our approach in detail. Section 5

provides experimental results on our dataset of student Python programs. Section 6 details further

discussions and limitations. We discuss related work in Section 7. Finally, we conclude with

takeaways in Section 8.

2 MOTIVATING EXAMPLE

2.1 Understanding Challenges in Repairing Introductory-Level Programs

Consider Figure 1, which shows a student’s incorrect program, along with a solution generated by

PyDex. The student is solving the task of reading two numbers from stdin and printing di�erent

results depending on whether both, either, or neither are prime.

The student has made both syntactic and semantic mistakes. Lines 1 and 2 call input twice to

read from stdin, and parse these values as integers using int. However, this constitutes a semantic

mistake, as the assignment input format consists of two values on the same line separated by a

comma. Furthermore, a traditional semantic repair engine would fail to �x this student’s assignment

as there is also a syntactic mistake at line 30. The student used a single = for comparison in the elif

clause (the correct syntax would be a double equals).

The PyDex solution, shown alongside it, �xes the input processing (semantic mistake) by reading

from stdin, splitting on the comma, and applying int (to parse as integer) using the map combinator.

Line 23 �xes the syntax error by replacing single equals with double equals (for comparison).

Interestingly, the underlying LLMC (Codex) also refactored the student’s program. In this case,

lines 8 through 17 correspond to a function to check if a number is prime. This function is called

twice, at lines 18 and 19. This replaces the repeated code in the original program, which spanned

lines 9-17 and lines 18-26.

The edit distance between the PyDex repair and the original student program is 95, while the

distance between the instructor’s reference solution and the original student program is 188. A

smaller edit distance is a key goal for APR in the educational domain, as this can help the student

understand the repair with respect to their own mistakes.

Figure 2 presents another example of an incorrect student program and a solution generated

by PyDex. In this assignment, the students need to check whether a string, read from stdin, is

a palindrome or not, and print out a message accordingly to stdout. For this student’s program,

PyDex has to generate a complex repair that �xes four syntax mistakes and multiple semantic bugs.

The student has made syntax errors on lines 4, 8, 10, and 12, where they have left o� the colon

symbol necessary for control �ow statements in Python. On line 2, the student called a non-existent

function lower. The student has used standard division on lines 5, 6, 13, and 14 when they should

have used integer division. The student has included two spurious print statements, at lines 7 and

15, which will interfere with the instructor’s test-suite execution, as the suite checks values printed

to stdout for correctness. Finally, the student has omitted the expected print statements (along with

the equality check) for the case where the input string is of even length.

While the student’s program has many mistakes, the overall structure and key concepts are

there. Looking at the PyDex solution shown alongside, it resolves these mistakes but preserves the

student’s overall structure. In particular, PyDex replaces the non-existent lower function with a

call to the string method with the same name. It replaces the division operator (/) throughout the

program with the intended �oor division operator (//), comments out the extra print statements,

and adds the missing equality check and print statements in the case of even-length inputs.
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1 a=int(input())

2 b=int(input())

3 n=str(a)

4 m=str(b)

5 n1=n[::-1]

6 m1=m[::-1]

7 x=int(n1)

8 y=int(m1)

9 if x>1:

10 for i in range(2, x):

11 if (x%i)==0:

12 p=0

13 break

14 else:

15 p=1

16 else:

17 p=0

18 if y>1:

19 for j in range(2, y):

20 if (y%j)==0:

21 q=0

22 break

23 else:

24 q=1

25 else:

26 q=0

27 if p==1 and q==1:

28 g=x+y

29 print(g)

30 elif p=1 or q=1:

31 h=a+b

32 print(h)

33 else:

34 print(a*b)

(a) Incorrect Program

1 a,b = map(int, input().split(’,’))

2 n=str(a)

3 m=str(b)

4 n1=n[::-1]

5 m1=m[::-1]

6 x=int(n1)

7 y=int(m1)

8 def prime(z):

9 if z>1:

10 for i in range(2,z):

11 if (z%i)==0:

12 return 0

13 break

14 else:

15 return 1

16 else:

17 return 0

18 p=prime(x)

19 q=prime(y)

20 if p==1 and q==1:

21 g=x+y

22 print(g)

23 elif p==1 or q==1:

24 h=a+b

25 print(h)

26 else:

27 print(a*b)

(b) PyDex’s Repair

Fig. 1. A student’s submission contains both syntactic and semantic mistakes (red). PyDex’s fixes (blue) the
original issues and also refactors part of the student’s code into a function (lines 8 - 17 in (b)) that avoids
code duplication (lines 9-17, 18-26 in (a)).

The edit distance between the PyDex repair and the original student program is 52, while the

distance between the instructor’s reference solution and the original student program is 97. The

reference solution is a standard one-line program for palindrome. Once again, the PyDex repair is

closer to the student submission than the instructor’s reference solution.

2.2 Insights

Based on our observation of errors in student’s introductory-level programs, we extract the fol-

lowing insights guiding our solution design. First, incorrect introductory-level programs often

contain both syntactic and semantics errors at the same time, and this is an extremely challenging
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1 i = input()

2 S = lower(i)

3 l = len(S)

4 if(l%2!=0)

5 B = S[:(l+1)/2]

6 E = S[:(l+1)/2:-1]

7 print(B,E)

8 if(B==E)

9 print(i,'is␣a␣palindrome.')

10 else

11 print(i,'is␣NOT␣a␣

palindrome.')

12 else

13 B = S[:l/2]

14 E = S[:l/2:-1]

15 print(B,E)

(a) Incorrect Program

1 i = input()

2 S = i.lower()

3 l = len(S)

4 if(l%2!=0):

5 B = S[:(l+1)//2]

6 E = S[:l//2-1:-1]

7 #print(B,E)

8 if(B==E):

9 print(i,'is␣a␣palindrome.')

10 else:

11 print(i,'is␣NOT␣a␣

palindrome.')

12 else:

13 B = S[:l//2]

14 E = S[:l//2-1:-1]

15 #print(B,E)

16 if(B==E):

17 print(i,’is␣a␣palindrome.’)

18 else:

19 print(i,’is␣NOT␣a␣palindrome.’)

(b) PyDex’s Repair

Fig. 2. A complex repair (blue) that fixes multiple syntactic and semantic mistakes (red). The repair produced
by PyDex, which preserves the overall structure of the student’s program, makes fewer changes to the
student’s program than a patch with respect to the instructor’s (one-liner) reference solution.

scenario for existing APR tools to handle alone as they are tailored to focus exclusively on syntax

repair [Rolim et al. 2017; Yasunaga and Liang 2021] or exclusively on semantic repair [Mechtaev

et al. 2018, 2016]. While combining a state-of-the-art syntactic �xer and semantic �xer to repair

programs is possible, we detail the (lower) performance and challenges in Section 5 and Section 6.1.

Second, an introductory-level program can have many mistakes, which require complex repairs.

Such cases are di�cult to address by traditional existing APR techniques [Le Goues et al. 2012;

Long and Rinard 2015; Mechtaev et al. 2018, 2016; Qi et al. 2014; Xuan et al. 2017], as they often

focus on speci�c error types, are limited to a small number of edits, and target speci�c types of

statements (such as conditionals). For example, the repairs (e.g., control-�ow changes, in-lined

function addition) shown in this section are out-of-scope for traditional APR tools. Third, because

the eventual consumer of the generated patches are introductory-level programmers, we should

minimize the cognitive load associated with many changes where possible. Finally, because students

themselves may want to run the repair tool (enabling them to learn independently), the engineering

e�orts associated with running the APR tool should be minimized as much as possible.

3 BACKGROUND

We now provide a short background on concepts related to large language models.

Large language model. A large language model (LLM) can be viewed as a probability distribution

over sequences of words. This distribution is learned using a deep neural network with a large

number of parameters. These networks are typically trained on large amounts of text (or code)

with objectives such as predicting particular masked-out tokens or autoregressive objectives such as

predicting the next token given the preceding tokens. When the LLM has been trained on signi�cant
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amounts of code, we refer to it as a large language model trained on code (LLMC). In practice, most

LLMs are now trained on code as well, so the functional di�erence between the two categories has

become increasingly less relevant.

Often, LLMs are pre-trained and then �ne-tuned, meaning trained further on more specialized

data or tasks. A particularly popular LLMC is OpenAI’s Codex [Chen et al. 2021], a variant of

GPT-3 [Brown et al. 2020] that is �ne-tuned on code from more than 50 million GitHub repositories.

Few- (or zero-)shot learning. In contrast to traditional supervised machine learning, LLMs have

shown to be e�ective for few- and even zero-shot learning. This means that the LLM can perform

tasks it was not explicitly trained for just by giving it a few examples of the task or even no examples,

respectively, at inference time.

In this setting of few- (or zero-)shot learning, the LLM is typically employed using what is termed

prompt-based learning [Liu et al. 2023]. A prompt is a textual template that can be given as input to

the LLM to obtain a sequence of iteratively predicted next tokens, called a generation. A prompt

typically consists of a query and possibly zero or more examples of the task, called shots. For

example, the prompt below includes a speci�c query to �x a syntax error. One valid generation,

that �xes the syntax error, would be print().

# Fix the syntax error of the program #

# Buggy program #

print(

In practice, a prompt can incorporate anything that can be captured in textual format. In particular,

multi-modal prompts are those that incorporate di�erent modalities of inputs, such as natural

language, code, and data.1

Di�erent prompts may result in di�erent LLM completions. Other factors may also a�ect the

completions produced, such as the sampling strategy or hyperparameters for the sampling strategy.

One important hyperparameter is temperature, which controls the extent to which we sample less

likely completions.

LLM selection. While we use OpenAI’s Codex in this work, other LLMs could be used such as

Salesforce’s CodeGen [Nijkamp et al. 2023] or OpenScience’s BLOOM [Laurençon et al. [n. d.]]. Even

within OpenAI’s Codex there are di�erent underlying models o�ered, including Codex-Edit [Open

AI 2022]. We found performance to be better with the standard Codex completion model. We now

leverage these concepts to describe our approach.

4 METHODOLOGY

Figure 3 provides an overview of PyDex’s architecture. The student’s buggy program �rst enters a

syntax repair phase. In this phase, we extract subprograms from the original program that have a

syntax error. Each such subprogram is fed to a syntax prompt generator that produces multiple

syntax-oriented prompts. The LLMC then generates repair candidates, which are validated by the

syntax oracle. This process is repeated until all syntax errors are removed. Any candidate that has

no syntax errors moves on to the semantic phase. In this phase, PyDex uses a semantic prompt

generator to produce semantics-oriented prompts. If it has access to other student’s assignment

history, PyDex can also add few-shots to these prompts. These prompts are fed to the LLMC, which

generates new program candidates. These are validated by the test-suite-based semantic oracle. If

multiple candidates satisfy all tests, PyDex returns the one with the smallest token edit distance

with respect to the student’s original program. We now describe each step in detail.

1The term multi-modality, in the context of LLMs, is also used for combinations of image/text/audio. In our setting, all

inputs are text but they come from di�erent distributions, such as code versus natural language.
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Fig. 3. PyDex architecture. A buggy program first enters a syntax repair phase. In this phase, PyDex transforms
the program using a program chunker, which performs a structure-based subse�ing of code lines to narrow
the focus for the LLMC. Multiple syntax-oriented prompts are generated using this subprogram, fed to an
LLMC, and any patches are integrated into the original program. If any candidate satisfies the syntax oracle,
it can move on to the semantic phase. In the semantic phase, PyDex leverages both the natural language
description of the assignment and the instructor-provided test cases to create various prompts. In addition, if
available, PyDex can use other peers’ solutions as few-shots by selecting them using test-case-based selection
to identify failures that resemble the current student’s program, along with eventually correct solutions.
Prompts are fed to the LLMC to generate candidates. If multiple candidates satisfy the test suite, PyDex
returns the one with the smallest edit distance with respect to the original student program.

4.1 Syntax Phase

Students typically �rst resolve syntax errors in their assignments, and then move on to resolve

semantic errors (such as test case failures). PyDex takes inspiration from this approach and similarly

splits its repair into syntax and semantic phases.

In the �rst phase, PyDex receives the student’s buggy program. A syntax oracle, for example,

the underlying Python parser2, is used to determine if there is a syntactic mistake. If there is no

such mistake, the program can move into the semantic phase. However, if there is a mistake, PyDex

must produce a patch that resolves it, before moving to the semantic phase.

While our syntax prompt generator could directly include the original program in its entirety in

the prompt, we have found that doing so can result in spurious edits that are not actually necessary

to resolve the syntax error. Existing work has also observed similar phenomena in the related area

of natural language to code generation [Poesia et al. 2022]. As a result, we introduced a component

we call the program chunker to mitigate this challenge by reducing the amount of code included in

the prompt.

2Some errors such as repeated function parameters throw a SyntaxError but are not checked until bytecode compilation
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4.1.1 Program Chunking. For each syntax mistake in the original buggy program, the program

chunker extracts a subset of lines that contains (1) the oracle-reported syntax error location and

(2) the nearest encompassing control-�ow statement. These chunks are a heuristic approximation

of a basic block, and allow us to restrict the code input given to the LLMC. Note that we perform

this heuristic approximation as a standard analysis to extract basic blocks typically requires a

syntactically correct input program.

Algorithm 1 Chunker: extracting the code chunk that contains the error message

Input: sC : Program Source Code

Input: msg : Compiler Message

Output: chunkedCode : Chunked Program Source Code

1: procedure chunker(B�,<B6)

2: lineIndex, errorLine = locateError(B�,<B6)

3: errIndent = getIndentationLevel(B�, 4AA>A!8=4)

4: ⊲ move up until �nd a line with a smaller indentation level

5: startIndex, startIndent = pointerUp(B�, ;8=4�=34G, 4AA�=34=C )

6: ⊲ move down according to both indentation level and control-�ow structure

7: if B� [BC0AC�=34G].startswith(2 5  4~F>A3) then ⊲ control-�ow related keywords

8: endIndex = pointerDown(B�, BC0AC�=34G, BC0AC�=34=C, 2 5  4~F>A3)

9: else

10: endIndex = pointerDown(B�, BC0AC�=34G, BC0AC�=34=C )

11: return chunkedCode = slice(BC0AC�=34G, 4=3�=34G )

PyDex extracts the program chunk for the �rst (top-down) syntax error reported. Algorithm 1

outlines the procedure used to produce this program chunk. It takes advantage of both control-

�ow structure (based on Python keywords) and indentation, which are meaningful in the Python

language. The program chunker �rst identi�es the adjacent code that has the same or larger

indentation level as the line with the syntax error. Then, if the code chunk contains control-�ow

related keywords, such as if and elif, PyDex makes sure the associated keywords (such as elif

or else) for the same control �ow statement are also in the chunk. This code chunk is then provided

to the syntax prompt generator.

1 ...

2 if (condition1):

3 x = (0 # syntax error

4 x = 1

5 else

6 x = 2

7 if (condition2):

8 x = 3

9 ...

Fig. 4. An illustrated example of program chucking. Lines 3 and 4 have an indentation level of four, line 6 has
an indentation level of two, and the rest of the lines have an indentation level of zero. Line 3 has the initial
syntax error flagged by the interpreter. PyDex uses such indentation (along with control flow keywords) to
heuristically extract program chunks for syntax repair.

For example, in Figure 4, the algorithm starts at line 3, setting the indentation level (errIndent)

to 4. Subsequently, it moves up to traverse lower-indexed code lines, takes any line between
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1 # Buggy Program #

2 while (n > 0):

3 a = n % 10

4 ...

(a) without error message

1 ### Error Msg ###

2 File "<unknown>",line 2

3 a = n % 10

4 ^

5 IndentationError: expected an

indented block

6

7 # Buggy Program #

8 while (n > 0):

9 a = n % 10

10 ...

(b) with error message

Fig. 5. The syntax prompt generator produces prompts that can include the buggy program or the error
message. We elide portions of the code fragments for brevity.

this error line and stops upon encountering the �rst line with an indentation level smaller than

errIndent. The algorithm sets this as the starting line of the code chunk and then mark its

indentation level as startIndent, which in this example is 0. At this starting line, if the line starts

with a control-�ow keyword (such as the if at line 2), the process moves down until reaching the

�rst unmatched control-�ow statement at an indentation level less than or equal to startIndent.

Otherwise, if at the starting line, the code chunk does not start with a control-�ow keyword, the

algorithm simply moves down to higher-indexed code lines, including any consecutive line with an

indentation level greater than or equal to startIndent until it �nds a line with less indentation.

In the provided example, the algorithm stops at line 7, resulting in a �nal code chunk spanning

from line 2 to line 6. This example shows the algorithm’s ability to selectively extract code chunk

based on both indentation levels and control-�ow structures, as depicted in Figure 4.

4.1.2 Syntax Prompt Generator. The syntax prompt generator produces two (multimodal) prompts,

one with and one without the syntax error message reported by the syntax oracle. An example of

both is shown in Figure 5. Because the syntax oracle is available, we do not need to choose a single

prompt template for all programs, but instead we query the LLMC with both prompts, extract

the code portion from each generation, merge it into the original program by replacing the lines

corresponding to the current program chunk, and then rely on the syntax oracle to �lter out invalid

repairs.

If a program candidate has no syntax errors, it can move on to the semantic phase. If any syntax

errors remain, the syntax phase is repeated. This iteration allows the repair of multiple, spatially-

independent, syntax errors. For our evaluation, we allow this procedure to iterate at most two times

to limit repair times.

4.2 Semantic Phase

After PyDex has generated syntactically valid candidate programs, the repair procedure moves to a

semantic repair phase. Intuitively, this phase incorporates information that allows the LLMC to

generate candidate programs that satisfy the programming assignment task, as determined by a

semantic oracle. Following the approach of existing work in automated repair for programming

assignments [Gulwani et al. 2018; Hu et al. 2019], we use the instructor’s test suite (inputs and

expected outputs) as the semantic oracle. We say a program is repaired if it produces the expected

outputs for the given inputs.
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1 [[Buggy Program]]

2 ### Buggy Program ###

3 x=input()

4 y=int(x)

5 z = number % 10

6 y = 10 * y + z

7 number = number / 10

8 number = int(number)

9 print("Reverse:␣{}".format(x[::-1]))

10 print("Sum:␣{}".format(Sum))

11

12

13 [[Problem Description]]

14 #Write a program to read a number (int) from the user. Print the

number in reverse. Also print the sum of the number and its

reverse in a separate line. See the examples.

15 #NOTE: Do not print any prompt in the input().

16

17 [[Test Suite]]

18 #input:

19 43

20 #output:

21 Reverse: 34

22 Sum: 77

23

24 #input:

25 500

26 #output:

27 Reverse: 5

28 Sum: 505

29

30 ### Correct Program ###

Fig. 6. An example multimodal prompt (in zero-shot se�ing for brevity) produced by the semantic prompt
generator. This prompt includes code, natural language, and test cases. Lines starting with the double brackets
are shown only for clarity, they are not part of the prompt itself.

4.2.1 Semantic Prompt Generator. The semantic prompt generator takes advantage of the rich set

of signals available in the education domain. In particular, we exploit the fact that programming

assignments typically have available: (1) a natural language description of the task, (2) a set of test

cases, and (3) peers’ programming solutions.

The semantic prompt generator takes as input a syntactically valid program, the task description

in natural language, and the set of instructor-provided test cases. The generator then produces

prompts with di�erent combinations of this information. Figure 6 shows an example of such a

multimodal prompt. This prompt includes the student’s buggy code, the natural language description

of the assignment, as well as the input-output-based test cases.

If PyDex has access to other student’s assignment solution history, then it can also employ

few-shot learning, described in the following Section 4.2.2, in each of these prompts.

Similarly to the syntax phase, rather than picking a single prompt template, we use all prompts

generated and rely on the semantic oracle to identify viable repair candidates. Each prompt given

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 133. Publication date: April 2024.



133:12 Jialu Zhang, José Pablo Cambronero, Sumit Gulwani, Vu Le, Ruzica Piskac, Gustavo Soares, and Gust Verbruggen

1 [[Shot Starts]]

2 # Incorrect Program #

3 print (m+n)

4 # Correct Program #

5 print (m*n)

6 [Shot Ends]

7

8 [[Buggy Program Starts]]

9 ### Buggy Program ###

10 sum = m

11 i = 0

12 while i < n:

13 sum += 1

14 i += 1

15 print (sum)

16 [[Buggy Program Ends]]

17

18 [[Test Suite Starts]]

19 #input:

20 2 2

21 #output:

22 4

23

24 #input:

25 2 3

26 #output:

27 6

28 [[Test Suite Ends]]

29

30 ### Correct Program ###

Fig. 7. An illustrative example of few-shot learning in PyDex. The incorrect program in the shot and the
target buggy program have the same test suite execution [pass, fail].

to the LLMC can generate up to  candidates, where we heuristically set  to ten to balance

the exploration of candidates with search space explosion. Each of these candidates is given to

the semantic oracle, which executes that candidate on the test suite. We remove any candidate

programs that result in a runtime exception or fail to satisfy any test cases.

If there are multiple valid candidate programs after the semantic phase, we return the one with

the smallest token-based edit distance [Yasunaga and Liang 2021] to the student’s submission as

the repaired program.

4.2.2 Few-Shot Learning. If PyDex has access to other students’ programs it can employ few-shot

learning. In contrast to other repair systems, such as Refactory [Hu et al. 2019], that typically

employ only correct programs, PyDex’s few-shots consist of both correct and incorrect programs.

In particular, PyDex’s few-shot learning example bank consists of pairs of program versions

(?, ? ′) where both ? and ? ′ satisfy the syntax oracle, ? ′ satis�es the semantic oracle but ? does not,

and ? is a historical edit-version ancestor of ? ′. Given a candidate program produced by the syntax

phase of PyDex, we retrieve the three most similar ? and their associated correct versions ? ′ to

include as shots in the LLMC prompts produced by the semantic prompt generator.
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We take inspiration from traditional automated program repair and say two programs are similar

if they result in similar test suite executions [Perry et al. 2019].We de�ne a test suite execution vector

for program ? that captures test failures as )? ∈ B= = (C0, · · · , C=) where = is the number of test

cases, and C8 is the boolean failure status of the 8th test. We de�ne the similarity function between ?1
and ?2 as 1−Hamming()?1 ,)?2 ), where Hamming is the normalized Hamming distance [Hamming

1950] between the two vectors.

Figure 7 is an illustrative example (note this is not an actual student problem, we have created a

simpli�ed example) of a prompt structure for our few-shot learning setting. In this prompt example,

we lay out in few-shots as a pre�x, followed by the target buggy program, the test suite information,

and then a pre�x to prompt the model to return a corrected version of the buggy program. Note

that if PyDex does not have access to peer programs, then it can still query the LLMC using a

zero-shot approach. In our evaluation (Section 5) we show that this ablated strategy still performs

competitively.

5 EVALUATION

We explore the following two research questions in our evaluation of PyDex:

• (RQ1) How does PyDex’s overall performance compare to di�erent baselines, which combine

state-of-the-art syntactic and semantic repair approaches?

• (RQ2)What is the impact of the underlying design decisions in PyDex? Speci�cally, what

is the impact of the structure-based program chunking, iterative querying, test-case-based

few-shot selection, and multi-modal ensembled prompts?

Implementation. We have built a PyDex prototype using a mix of Python and open-source

software libraries. The core of PyDex’s implementation consists of approximately 600 lines of

Python code, which is 5 to 10 times less than a typical symbolic repair system in the education

domain [Gulwani et al. 2018; Hu et al. 2019; Rolim et al. 2017]. In addition to the reduced engineering

e�orts, PyDex can handle both syntactic and semantic bugs in one system, while most systems

address one type.

We selected the top 10 program candidates in each syntax and semantics phase based on the

average token log probabilities produced by the LLMC. We used OpenAI’s Codex as our LLMC.

Speci�cally, we used the completion model. We found that other models, such as Codex Edit [Open

AI 2022], did not perform as well. We set the temperature to 0.8 based on preliminary experiments.

We ran experiments on a Windows VM (Intel i7 CPU, 32GB RAM).

Benchmarks.We derived a benchmark set by selecting programs from a collection of introductory

Python assignments collected by third-party authors in a large Indian university [H. Padmanabha

et al. 2023]. This dataset is a Python-version of the dataset described in [Chhatbar et al. 2020].

The dataset contains 18 assignments, each with a problem description, the test suite, and students’

authoring history. A student’s history consists of an ordered collection of program versions, where

each version can be an explicit submission to the testing server, or a periodic (passive) snapshot –

the dataset does not have a way to distinguish between these. For each assignment, we selected the

students that had an eventually correct program. For each such student, we followed the standard

practice [Rolim et al. 2017] of collecting the latest (closest to the correct version in time) version

that had a syntactic mistake as our repair target. This results in a total of 286 program pairs, each
consisting of a buggy and a ground-truth correct program version. We make available our �ltered

evaluation dataset here: https://github.com/microsoft/prose-benchmarks/tree/main/PyDex.

We removed three assignments that required reading �les that are not reported in the dataset or

that asked students to generate a PDF plot, which makes assessing correctness di�cult without

extra manual inspection. We manually checked the students’ submissions and we found their errors
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Table 1. Statistics of 286 syntax errors reported in the datasets.

Error Type Appearance

Misspelling, missing, or misusing parentheses and brackets 68

Incorrect indentation 52

Misspelling, missing, or misusing comma, colon and semicolon 41

Misspelling, missing, or misusing Python keywords 11

Misspelling, missing, or misusing quotation marks 10

Misspelling, missing, or misusing assignment operator (=) 5

Errors on de�ning and calling functions 5

Using Python 2 syntax 3

Others 91

In total 286

were diverse. The repaired syntax errors in PyDex benchmarks include incorrect indentation, illegal

usage of an empty block, misspelling a keyword, unde�ned symbols, and unmatched delimiters

such as parentheses, among others. Table 1 shows a summary of these errors.

Baselines. Most repair systems focus on either syntactic or semantic repairs.3 To create a state-of-

the-art baseline that performs both, we combined BIFI, a state-of-the-art transformer-based Python

syntax repair tool, and Refactory, a state-of-the-art semantics repair tool designed for introductory

Python assignments.

To run this baseline, we gave BIFI the original student program with syntax errors and generated

50 candidate programs for each buggy program. For each candidate, we ran the syntax oracle and

checked for syntactic correctness. For each candidate that passed the syntax check, we called Refac-

tory along with the instructor’s reference solution.4 If Refactory can repair any of the candidates,

we say it has repaired the student’s program. If there are multiple candidate programs that passed

the test suite, we choose the one with the smallest token edit distance from the original.

We also consider two additional baselines. We use PyDex to produce syntax repairs and then

apply Refactory to solve any semantic repairs, as described previously. We refer to this baseline as

PyDex+Refactory.

Finally, we consider a baseline that uses a version of GenProg [Le Goues et al. 2012] for semantic

repairs. Because there is no o�cial implementation of GenProg for Python programs, we took a

publicly available implementation [Zeller 2023] that adapts portions of the algorithm to better

match Python syntax. This approach evolves a student’s buggy submission and can also incorporate

statements from the instructor’s reference solution. Like Refactory, GenProg assumes the input

program does not contain syntax errors. So to run our comparison, we use PyDex to produce syntax

repairs and then apply GenProg. We use GenProg to generate up to 10 candidates with a 30-second

timeout for each repair attempt. We refer to this baseline as PyDex+GenProg.

5.1 RQ1: Overall Repair Performance

Table 2 shows that without few-shot learning PyDex can repair 86.71% of student programs. This

repair rate climbs to 96.5% if we incorporate few shots. In contrast, BIFI+Refactory, PyDex+Refactory,

and PyDex+GenProg repair 67.13%, 83.57%, and 49.30% of student programs, respectively.

3A notable exception in the education domain is sk_p[Pu et al. 2016], however, this tool is not publicly available and the

repair rate (29%) described in the paper is low compared to our baselines.
4The original Refactory paper shows that there is little-to-no performance di�erence between providing one and multiple

correct reference programs.
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Table 2. PyDex (without few shots) repairs a larger fraction of programs (86.71%) compared to our baselines
(67.13%, 83.57%, 49.3%). On average, PyDex repairs are closer in terms of token edit distance (TED) to the
original student program compared to two of the three baselines. Adding few-shots based on other peers’
programs raises PyDex’s repair rate to 96.50% while keeping a comparable average token edit distance (29.68).
To save space in the table, “ID” represents the problem ID in the dataset, “# Sub” means the number of
submissions of this problem, and “RR” is short for repair rate.

Method PyDex (without few-shot) PyDex (with few-shot) BIFI + Refactory PyDex(syntax) + Refactory PyDex(syntax) + GenProg

ID # Sub RR (%) Mean TED (SD) RR (%) Mean TED (SD) RR (%) Mean TED (SD) RR (%) Mean TED (SD) RR (%) Mean TED (SD)

2865 11 100.00 6.45 (4.74) 100.00 6.45 (4.74) 100.00 16.45 (7.00) 100.00 20.55 (6.08) 90.91 16.10 (6.08)

2868 28 85.71 8.79 (8.94) 100.00 8.64 (8.49) 82.14 36.35 (19.26) 96.43 35.15 (19.24) 96.43 26.00 (9.06)

2869 23 95.65 16.68 (18.47) 100.00 10.30 (10.99) 69.57 47.75 (20.27) 100.00 42.35 (19.77) 30.43 20.29 (12.85)

2870 27 74.07 10.00 (13.33) 100.00 15.00 (19.35) 85.19 39.48 (31.38) 92.59 35.72 (31.78) 33.33 20.22 (21.35)

2872 18 100.00 8.33 (15.15) 100.00 7.39 (13.01) 72.22 105.08 (34.58) 100.00 103.06 (38.65) 88.89 15.94 (6.56)

2873 32 78.13 12.00 (16.18) 90.63 12.93 (15.47) 84.38 75.00 (19.75) 100.00 71.41 (20.37) 25.00 18.63 (5.48)

2874 16 100.00 9.56 (12.50) 100.00 8.50 (11.76) 87.50 35.79 (18.63) 100.00 38.94 (31.43) 75.00 15.83 (5.48)

2875 23 86.96 14.75 (19.97) 100.00 11.52 (12.52) 78.26 63.22 (28.97) 100.00 58.65 (28.55) 47.83 17.09 (7.94)

2877 21 100.00 9.71 (16.82) 100.00 9.14 (16.79) 80.95 67.47 (27.87) 100.00 57.95 (32.19) 85.71 19.44 (11.49)

2878 25 100.00 37.00 (60.16) 100.00 36.32 (59.53) 68.00 138.18 (44.17) 88.00 167.50 (66.11) 52.00 21.46 (15.49)

2879 21 76.19 131.19 (51.62) 85.71 132.78 (52.61) 52.38 183.45 (40.90) 71.43 195.33 (55.24) 4.76 229.00 (N/A)

2882 23 60.87 90.64 (71.76) 91.30 106.57 (77.57) 0.00 N/A 0.0 N/A 17.39 42.00 (18.30)

2883 5 100.00 17.40 (14.67) 100.00 17.40 (14.67) 40.00 141.00 (8.49) 100.00 103.60 (39.37) 60.00 46.00 (19.47)

2920 10 80.00 84.38 (67.62) 80.00 53.50 (66.05) 0.00 N/A 10.00 69.00 (N/A) 20.00 42.00 (5.66)

2921 3 100.00 28.00 (3.61) 100.00 28.00 (3.61) 0.00 N/A 0.0 N/A 0.0 N/A

Overall 86.71 28.59 96.50 29.68 67.13 70.39 83.57 73.53 49.30 22.82

The mean token edit distance between the buggy program and our repaired program is 28.59 (no

few-shot) and 29.68 (with few shots) compared to 70.39 for BIFI+Refactory, 73.53 for PyDex+Re-

factory, and 22.82 for PyDex+GenProg.

We carry out a statistical analysis to compare performance across these systems. We exclude

PyDex without few-shots as this is e�ectively an ablation. We compare the repair rate and mean

token edit distance across assignments and systems by using paired t-tests. We use paired tests

as performance is paired at the assignment level. We carry out the paired t-tests using pairwise

comparisons with a Bonferroni adjustment for repeated comparisons. For the repair rate, we

consider a 1-sided test with an alternative hypothesis of performance being greater for PyDex. For

the mean token edit distance (TED), we consider a 1-sided test with an alternative hypothesis of

PyDex’s TED being smaller. Because TED can be unde�ned if a system fails to repair any programs,

we exclude assignments where any baseline has a repair rate of zero (i.e. assignments 2882, 2920,

2921).

For repair rates, we �nd that the comparison between PyDex and BIFI+Refactory (and similarly

between PyDex+Refactory and BIFI+Refactory) is statistically signi�cant (at 0.01), and so we reject

the null hypothesis. We �nd that the comparison between PyDex and PyDex+Refactory results in a

p-value of 0.057 (after Bonferroni adjustment), so we do not reject the null hypothesis in this case

(though if we reduce the number of pair-wise comparisons it is signi�cant). Finally, the comparison

between PyDex and PyDex+GenProg is statistically signi�cant at 0.01.

For mean TED, we �nd that the comparison between PyDex and BIFI+Refactory (as well as

between PyDex and PyDex+Refactory) is signi�cant at p=0.01. We also �nd that the comparison

between PyDex and PyDex+GenProg is not statistically signi�cant.

From this analysis, we conclude5 that PyDex outperforms the baseline BIFI+Refactory on both

repair rate (higher) and size of repair (smaller), PyDex+Refactory on the size of repair but not

necessarily on repair rate, and PyDex+GenProg on repair rate but not on the size of repair.

5We arrived at similar conclusions with two-sided tests.
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Table 3. The first stage in the repair process is to fix syntax errors. PyDex can produce a syntactically valid
candidate for all programs in our benchmark, compared to 80.07% for BIFI. On average, PyDex’s repairs are
also closer to the original program (edit distance of 5.46 versus 25.07).

Method PyDex BIFI

ID # Sub Mean TED (SD) Repair rate (%) Mean TED (SD)

2865 11 2.18 (1.25) 100.00 1.82 (0.75)

2868 28 2.75 (2.17) 82.14 1.83 (1.11)

2869 23 2.91 (2.41) 73.91 1.47 (0.80)

2870 27 2.33 (2.18) 85.19 2.04 (1.89)

2872 18 2.39 (1.2) 72.22 1.62 (0.87)

2873 32 2.84 (2.58) 84.38 2.56 (2.04)

2874 16 2.06 (1.84) 87.50 2.07 (2.02)

2875 23 2.78 (2.71) 78.26 1.78 (1.56)

2877 21 2.19 (1.29) 80.95 3.18 (7.47)

2878 25 4.84 (8.58) 0.00 40.2 (60.65)

2879 21 18.86 (21.24) 66.67 117.00 (58.15)

2882 23 17.39 (23.23) 86.96 127.65 (74.76)

2883 5 5.60 (9.74) 80.00 36.25 (37.98)

2920 10 10.30 (18.68) 50.00 51.75 (54.90)

2921 3 1.67 (0.58) 100.00 1.33 (0.58)

Overall 5.46 80.07 25.07

Repairing semantic errors typically depends on �rst resolving any syntactic errors. Indeed,

students often focus on resolving mistakes reported by the parser/compiler before they move on

to debugging test cases. PyDex’s architecture re�ects this approach. As a result, we also want to

understand syntax repair performance by comparing just PyDex and BIFI.

Table 3 summarizes the syntax repair rates across assignments and approaches. Our results show

that PyDex repairs the syntax bugs in all of the 286 programs, with a 100% syntax repair rate. This

outperforms the state-of-the-art BIFI, which has a syntax repair rate of 80.07%. In addition, PyDex’s

syntax repairs have a substantially lower mean token edit distance (5.46 versus 25.07), meaning

our repairs on average introduce fewer changes to the original programs, which may facilitate

understanding of the �xes.

We also observed that in 17 out of 286 cases, BIFI fails to handle the input program, potentially

due to lexer issues. This highlights another advantage of using PyDex to repair programs because

PyDex does not have any constraints over the input as a result of its prompt-based learning strategy.

BIFI is very e�ective at repairing small syntax mistakes in assignments of lower di�culty. For

example, in assignment 2865, BIFI repairs all syntax errors and does so with a smaller average token

edit distance (1.82 versus 2.18) compared to PyDex. One interesting direction for future work is to

combine BIFI with PyDex, as the repairs can be complementary. In this case, PyDex could focus

on generating more complex repairs and BIFI could focus on small edits for simpler tasks such as

missing a quote in a string.

5.2 RQ2: Ablation Study

We now present the results of experiments to analyze di�erent design choices in PyDex. PyDex uses

multimodal prompts, iterative querying, test-case-based few-shot selection, and structure-based

program chunking to repair student mistakes. The power of few-shot selection was already shown

in Table 2. We will now present the results of the other three design choices.
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Table 4. Chunking reduces the average token edit distance across all assignments. PG is short for performance
gain.

Method PyDex (no chunking) PyDex (with chunking)

ID Mean TED (SD) Mean TED (SD) PG (%)

2865 2.45 (1.21) 2.18 (1.25) 11.11

2868 2.82 (2.14) 2.75 (2.17) 2.53

2869 2.91 (2.41) 2.91 (2.41) 0.00

2870 2.33 (2.18) 2.33 (2.18) 0.00

2872 2.44 (1.2) 2.39 (1.2) 2.27

2873 3.09 (2.61) 2.84 (2.58) 8.08

2874 2.25 (2.08) 2.06 (1.84) 8.33

2875 3.52 (4.13) 2.78 (2.71) 20.99

2877 2.29 (1.27) 2.19 (1.29) 4.17

2878 11.08 (20.3) 4.84 (8.58) 56.32

2879 33.14 (24.91) 18.86 (21.24) 43.10

2882 42.57 (41.54) 17.39 (23.23) 59.14

2883 6.20 (11.08) 5.60 (9.74) 9.68

2920 15.20 (19.45) 10.30 (18.68) 32.24

2921 1.67 (0.58) 1.67 (0.58) 0.00

Overall 9.38 5.46 41.79

5.2.1 ProgramChunking. In the syntax stage, PyDex �rst extracts program chunks from the original

buggy program as detailed in Section 4. The intuition is that these chunks contain the syntax error

we want to �x, along with the surrounding context, while excluding code lines that are not relevant

to the �x. Our goal is to reduce the number of (spurious) edits produced by the LLMC by reducing

the code surface in the prompt.

To evaluate the impact of program chunking on the syntax repair stage, we removed it from

PyDex and compared syntax repair performance to the original approach. Table 4 shows the average

token edit distance produced in the syntax phase with and without program chunking. We found

that program chunking can reduce the average token edit distance up to 56.32% (problem assignment

2878). Overall, the average token edit distance is reduced from 9.38 to 5.46 (41.79%) by adding

program chunking.

5.2.2 Iterative�erying. Students typically resolve syntax errors �rst and thenmove on to resolving

semantic mistakes. PyDex’s architecture follows this same intuition. To compare the e�ectiveness

of this iterative approach, we ran a variant of PyDex that addresses both syntax and semantic

bugs in a single round. Table 5 shows the results of this ablated variant and full PyDex (without

few-shots). We �nd that splitting concerns into two phases results in an increase in the overall

repair rate from 82.87% to 86.71%. Using two phases increases the average TED slightly (26.79 to

28.59). However, for the majority of the problems (10 out of 15), PyDex (with iterative) has a smaller

or equal mean TED than PyDex (no iterative). In the remaining 5 problems, we found PyDex with

iterative querying has a larger mean TED because it successfully generates repairs for challenging

buggy submissions where PyDex (no iterative) is unable to repair.

5.2.3 Multimodal Prompts. PyDex combines di�erent types of input (code, natural language, test

cases) into its prompts. This richness of inputs is a particular advantage of the educational setting.

PyDex ensembles these various prompts by querying the LLMC and then relying on the (syntax or
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Table 5. PyDex performs iterative querying, spli�ing the repair procedure into a syntactic and a semantic
phase. We find that this iterative approach raises the overall repair rate (RR) from 82.87% to 86.71% (without
few-shots).

Method PyDex (no iterative) PyDex (with iterative)

ID RR (%) Mean TED (SD) RR (%) Mean TED (SD)

2865 100.00 6.45 (4.74) 100.00 6.45 (4.74)

2868 85.71 8.92 (8.88) 85.71 8.79 (8.94)

2869 86.96 13.35 (12.36) 95.65 16.68 (18.47)

2870 70.37 11.42 (13.87) 74.07 10.00 (13.33)

2872 100.00 8.50 (15.22) 100.00 8.33 (15.15)

2873 71.88 9.48 (11.63) 78.13 12.00 (16.18)

2874 100.00 9.75 (12.51) 100.00 9.56 (12.50)

2875 82.61 13.16 (18.69) 86.96 14.75 (19.97)

2877 100.00 9.71 (16.82) 100.00 9.71 (16.82)

2878 100.00 38.16 (62.24) 100.00 37.00 (60.16)

2879 71.43 130.07 (53.23) 76.19 131.19 (51.62)

2882 56.52 97.85 (72.64) 60.87 90.64 (71.76)

2883 100.00 17.40 (14.67) 100.00 17.40 (14.67)

2920 50.00 50.20 (48.9) 80.00 84.38 (67.62)

2921 100.00 28.00 (3.61) 100.00 28.00 (3.61)

Overall 82.87 26.79 86.71 28.59

semantics) oracle to �lter out candidates. This approach is based on the idea that di�erent prompts

may produce complementary candidates.
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Fig. 8. PyDex ensembles multiple prompts, by querying and then relying on the (syntax and semantic) oracles
to rule out invalid candidates. Ensembling complementary prompts outperforms any particular prompt.

Figure 8 shows that di�erent prompt structures result in di�erent overall performances in terms

of �x rate. If a single prompt structure needs to be chosen, Program + Diagnostics + Description +

Tests structure is most e�ective in this experiment. However, if we ensemble the candidates, these
are complementary.

6 DISCUSSION

We now discuss two important points. First, we provide details on why simply combining a state-

of-the-art syntax repair tool and a separate semantics repair tool is not as e�ective as using PyDex.

Second, we discuss important limitations.
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6.1 Why Not Combine a State-of-the-Art Syntactic Fixer and Semantics Fixer to Repair

Programs?

We investigated why BIFI+Refactory, which combines two state-of-the-art repair systems, produces

repairs that (on average) have a larger token edit distance compared to PyDex. We found that in

some cases, BIFI produces repairs by deleting a portion of the code snippet that contains the syntax

errors. Although this is an e�ective way to deal with syntax errors, it makes repairing semantic

errors harder by deleting parts that may capture crucial logic.

Below is one such example from our evaluation. The code snippet contains a syntax mistake

in the last line. The parser complains that the “Expression cannot contain an assignment =”. In
particular, the student has written an equal (highlighted below in red) when they should have used

a plus operator (which corresponds to the repair produced by PyDex).

1 marksSum={}

2 for i in total:

3 if int(i[0])not in marksSum:

4 marksSum[int(i[0])]= int(i[2])

5 else:

6 k=int(i[2])

7 marksSum[int(i[0])]+=k

8 for i in sorted(marksSum):

9 print(str(i)=":"+str(marksSum[i]))

However, BIFI produced a di�erent �x by removing the second for loop (lines 8-9) completely.

This deletion introduced challenges for Refactory in the later semantic repair phase. Although

Refactory in the end successfully repaired this program, the repair it generated is syntactically

equivalent to the reference solution and is e�ectively completely rewritten with respect to the

original incorrect program.

Overall, our comparison between PyDex and BIFI+Refactory highlights the challenges in com-

bining state-of-the-art syntax and semantics tools to repair incorrect introductory programming

assignments. BIFI and Refactory each focus on their targets, syntactic bug repair and semantic

bug repair, respectively, and combining them may result in unexpected performance. Additionally,

combining BIFI and Refactory required non-trivial engineering e�orts (approximately 3 weeks of

e�ort from one Python expert). This further motivates the need for a uni�ed approach that can

handle both types of bugs for introductory Python programmers.

6.2 Limitations

PyDex validates candidate repairs by comparing execution results on the test suite with the reference

program given by instructors. Validating program correctness through tests is not as strong as

formal veri�cation. To the best of our knowledge, the use of tests as a proxy for correctness is

standard in the educational domain [Gulwani et al. 2018; Singh et al. 2013].

We carried out our evaluation on one particular set of 286 student programs. The size of the

dataset is on par with literature on state-of-the-art automated program repair [Ahmed et al. 2022;

Li et al. 2022b], but increasing the size of the evaluation dataset may provide additional insights

and present an opportunity for future work.

PyDex relies on an LLM so it inherits its limitations. PyDex (like the LLM it uses) does not have

a soundness or completeness guarantee. Also, we acknowledge randomness is another limitation

in PyDex and we sampled and picked the top repair candidates to mitigate the e�ect caused by

randomness. These limitations might be addressed by requesting further information from the

students, and it remains future work.
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Language requirement.We scoped PyDex to introductory Python assignments as that is the only

domain where we have a suitable dataset and carry out an evaluation. Other education tools [Bhatia

et al. 2018; Wang et al. 2018a] share this same limitation of focusing on one programming language.

However, the principles behind the design of PyDex apply to programs written in other imperative

languages, as conceptually none of our prompt engineeringmethods are language-speci�c. Applying

PyDex to education assignments in these other languages would require reimplementation of

the chunking procedure, test-case execution harness, and swapping the syntax oracle for the

corresponding domain. For example, if we were to apply PyDex to Java programs, the chunker can

rely on control-�ow keywords (if, for, while), but indentation may no longer be meaningful; the

execution harness could be replaced with JUnit, and the syntax oracle could be replaced with javac.

Data leakage. Data leakage is also a threat to validity in PyDex. PyDex is built on top of Codex,

and Codex is trained on public internet data. To have a fair comparison, we only use a non-public

dataset as our evaluation target to mitigate the data leakage problem (all our results are on this

dataset). Using a public dataset could otherwise in�ate performance. This limitation is unfortunately

shared by all existing work that uses LLMs. Using a non-public dataset is our best e�ort, but we

agree that data leakage cannot be completely avoided at this stage. For example, "determine if a

string is a palindrome" is a question used in our evaluation, but we also found "determine if a string

is a palindrome" is also one of the questions in the HumanEval dataset (the human-written dataset

used to evaluate the original Codex model).

Moreover, for introductory programming assignments, PyDex provides unique value in that it

can craft and customize the solution to the student’s errors (i.e., smaller edit distance patches, as

shown in our evaluation). Students can always search for reference solutions as repairs, but we

observe that this is not a good option in practice because the di�erences between buggy program

and reference program can be large, as we show in Section 2.

Why can students bene�t pedagogically from a tool that automatically repairs their buggy

programs? Automatically �xing students’ submissions is not the same as providing an explanation

for their mistakes. However, human feedback, in the form of a student-tailored corrected solution,

represents a substantial time investment [Keuning et al. 2016; Singh et al. 2013]. Absent such time

investment, students typically must rely on a reference solution. This is the starting motivation for

employing automated repair in this context. In this way, PyDex provides a preferable alternative to

comparing to a standard answer key. Furthermore, a repaired solution is often a starting point for

more meaningful feedback. For example, Tung et al [Phung et al. 2023] produced a syntax repair to

then generate a natural language explanation of the error and needed changes.

Runtimes of the di�erent tools. We use tools with substantially di�erent environments. PyDex

relies on an API (so network time plays a role), BIFI requires GPU-based computing for inference,

and GenProg is done on a CPU. Therefore, we did not compare runtimes as they would be hard to

interpret. More importantly, from our analysis, the lower repair rate of the baselines is due to the

repair capability, not tool timeouts.

7 RELATED WORK

Automated Program Repair. The programming languages and software engineering community

has a long history of developing tools for automatically repairing errors in buggy programs. Existing

approaches have applied a variety of technical ideas, including program analysis [Mechtaev et al.

2018, 2016; Shari�deen et al. 2021; Zhang et al. 2021], search-based techniques [Wong et al. 2021] like

genetic programming [Kim et al. 2013; Le Goues et al. 2012; Qi et al. 2014], machine learning [Ahmed

et al. 2021; Bhatia et al. 2018; Long et al. 2017; Long and Rinard 2016; Santolucito et al. 2022; Wang

et al. 2018a; Zhang et al. 2020] and more recently LLM [Xia and Zhang 2023a,b]. A particularly
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popular approach to APR consists of generating many program candidates, typically derived by

performing syntactic transformations of the original buggy program, and then validating these

candidates using a test suite as an oracle [Le Goues et al. 2012]. Similarly, PyDex uses a syntax

oracle (the Python parser) and semantic oracle (test cases) to validate candidate programs produced.

However, state-of-the-art APR tools are limited to repairing either syntax [Joshi et al. 2023] or

semantic errors [Fan et al. 2023], but not both. PyDex signi�cantly di�ers from these existing tools

by automatically repairing both syntax and semantic errors in buggy programs.

In addition, PyDex employs a large language model (Codex) as the main program transformation

module and uses an ensemble of multi-modal prompts to improve its success rate. Therefore, PyDex

is able to generate complex repairs, which are di�cult to address by existing traditional APR

techniques [Le Goues et al. 2012; Long and Rinard 2015; Mechtaev et al. 2018, 2016; Qi et al. 2014;

Xuan et al. 2017], which often focus on speci�c error types, are limited to a small number of edits,

and repair speci�c statements (such as conditionals) exclusively. Moreover, PyDex targets students’

incorrect submissions, rather than professional developers’ production bugs or LLM-generated

bugs [Chen et al. 2024; Fan et al. 2023]. As a result, PyDex has two additional requirements: 1)

minimizing the size of the change made to allow students to better learn from the repaired program,

and 2) reducing the engineering e�orts to run the APR tool.

AI for Programming Education. AI has been extensively applied to the domain of educa-

tion [Finnie-Ansley et al. 2022; Li et al. 2022a]. Past programming education research has explored

topics including feedback generation [Gulwani et al. 2018; Hu et al. 2021, 2019; Phung et al. 2023;

Rolim et al. 2017; Singh et al. 2013; Song et al. 2021; Wang et al. 2018b; Zhang et al. 2023] and

program repair [Dinella et al. 2020; Lu et al. 2021; Wang et al. 2018a; Xin and Reiss 2017; Yasunaga

and Liang 2021; Yi et al. 2017]. PyDex is complementary to this work, showing that the task of

program repair in this domain can be successfully tackled using an LLMC.

LLMs for Code Intelligence. Large pre-trained language models, such as OpenAI’s Codex,

Salesforce CodeGen [Nijkamp et al. 2023], and BigScience’s BLOOM[Laurençon et al. [n. d.]],

have been shown to be e�ective for a range of code intelligence tasks. For example, Microsoft’s

Copilot[cop 2024] builds on Codex to produce more e�ective single-line and multi-line code

completion suggestions. Prior work has shown that such LLMs can also be used for repairing

programs outside of the educational context [Dinella et al. 2022; Lian et al. 2023; Mao et al. 2023;

Rahmani et al. 2021; Su et al. 2023; Verbruggen et al. 2021; Xiang et al. 2023; Zhang et al. 2022]. Using

these models to perform code generation from informal speci�cations, such as natural language,

has also been a topic of active research [Li et al. 2022a]. Similarly to this work, PyDex uses an LLM

but is designed to focus on student programming, and as such our design decisions (e.g., reducing

token edit distance) may not apply to other domains such as professional developers.

8 CONCLUSION

We introduced an approach to repair syntactic and semantic mistakes in introductory Python

assignments. At the core of our approach sits a large language model trained on code. We leverage

multi-modal prompts, iterative querying, test-case-based few-shot selection, and program chunking

to produce repairs. We implement our approach using Codex in a system called PyDex and evaluate

it on real student programs. Our results show that our uni�ed system PyDex can e�ectively repair

real student programs, while producing smaller patches.
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