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ABSTRACT

The integration of machine learning into cyber-physical systems

(CPS) promises enhanced e�ciency and autonomous capabilities,

revolutionizing �elds like autonomous vehicles and telemedicine.

This evolution necessitates a shift in the software development life

cycle, where data and learning are pivotal. Traditional veri�cation

and validation methods are inadequate for these AI-driven systems.

This study focuses on the challenges in ensuring safety in learning-

enabled CPS. It emphasizes the role of testing as a primary method

for veri�cation and validation, critiques current methodologies, and

advocates for a more rigorous approach to assure formal safety.

CCS CONCEPTS

• Software and its engineering→ Software veri�cation and

validation; • Computer systems organization→ Embedded

and cyber-physical systems; • Computing methodologies→

Machine learning; • Theory of computation → Formal languages

and automata theory.

KEYWORDS

AI-based Systems, LLM-based Testing, automata-learning, model-
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1 CONTEXT, MOTIVATIONS AND AIMS

The integration of machine learning (ML) with cyber-physical

systems (CPS) has revolutionized various sectors, including trans-

portation, logistics, service industries, and healthcare, with innova-

tions like autonomous vehicles (Waymo [63], Tesla Autopilot [56],

Uber ATG [60]), delivery drones (Amazon Prime Air [2], Google

Wing [28], Zipline [70]), and robotic surgeries (Da Vinci [15], Ma-

zor [43], Mako [42]). However, these advancements have raised

signi�cant safety concerns, evidenced by reported incidents caus-

ing fatalities and economic loss [25, 47, 53, 61].

Addressing these issues requires rigorous veri�cation and vali-

dation, presenting unique challenges due to the complexities of

learning-enabled CPS. These systems incorporate critical machine

learning components like perception and planning, as seen in au-

tonomous driving, making them signi�cantly di�erent from tra-

ditional software systems. This complexity, involving a paradigm

shift in the software development life cycle to incorporate data and

learning, demands novel approaches in veri�cation and validation

techniques [3, 54].

We present our initial e�orts to explore practical testing strategies

for the veri�cation and validation of learning-enabled CPS. This

focus is particularly relevant given the extensive use of testing in

the CPS industry and the considerable amount of recent literature

on this topic. From a summary of the current state-of-the-art testing

methodologies for learning-enabled CPS, we propose a roadmap to

formalize the testing e�ort.

More speci�cally, we use large-language models (LLMs) to extract

human knowledge from existing rules and regulations, and analyze

vast amounts of data generated or captured by learning-enabled

CPS, including sensor data and logs. By extracting human knowl-

edge and analyzing data, LLMs can o�er insights into the system’s

behavior and generate a wealth of realistic and high-quality test

data. With this improved data quality, it becomes feasible to employ

data-driven learning to extract underlying formal speci�cations.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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The large language models can also be tasked with identifying cor-

responding formal speci�cations. Based on these derived formal

speci�cations, we can engage in model-based testing—a consider-

ably more formal approach than existing methodologies, such as

search-based testing.

We present a case study utilizing a vision-based LLM to analyze

tra�c accident from photos, showing promising results. This lays

a foundation for employing multi-modal LLMs to distill meaning-

ful latent representations from real-world sensor data in learning-

enabled CPS. For instance, leveraging front-facing cameras in au-

tonomous vehicles to capture diverse tra�c incidents. Another

study demonstrates using GPT-4 and a customized domain-speci�c

language to extract knowledge and generate test scenarios from

a real-world tra�c handbook. Early results indicate potential in

uncovering diverse bugs in autonomous driving systems, aligning

well with the roadmap outlined for formal testing and veri�cation.

2 RELATED WORK

Recent research in formal veri�cation of machine learning models

and testing of learning-enabled CPS has used various techniques

like NNV star sets [59], Sherlock [24], Reluplex [36], and Branch

and Bound [10]. However, these approaches often lack in provid-

ing comprehensive safety guarantees and are limited in handling

the complexity of industry-scale, multi-modal CPS [41, 46]. Sim-

ilarly, while testing in system properties [17, 39, 57] and system

robustness [12, 16, 58] are progressing, they fail to o�er concrete

formal assurances. This highlights the gap in current methodolo-

gies and underscores the need for more robust testing approaches

that can ensure safety and reliability in real-world applications of

CPS [50, 52, 65].

3 A ROADMAP TOWARDS FORMAL TESTING

Our roadmap, depicted in Fig.1, targets Multi-Modal LLM-based

Test Generation, Data-Driven Model Learning, and Model-based

Testing. We begin by capturing test scenarios from varied sources

such as rules, sensor data, and accident logs, processing them with

domain-speci�c languages like OpenScenario [7] and Scenic [27] via

an LLM-based parser (ChatGPT or LLaVA [40]). This initial phase

is vital for generating diverse test cases, particularly for safety

and liveness properties. Subsequent phases involve Data-Driven

Model Learning using the !∗ algorithm for model construction and

validation through high-�delity simulations in collaboration with

industry leaders [18, 20, 21]. The �nal phase, Model-based Testing,

utilises these models to generate test cases that formally assure

compliance with speci�ed requirements. This approach is designed

to e�ectively bridge the gap between model checking and runtime

veri�cation in learning-enabled CPS.

3.1 Multi-Modal LLM-Based Test Generation

Generating diverse test cases that violate the formal properties of

learning-enabled CPS, setting the conditions for our second stage,

is a signi�cant hurdle [41]. This complexity arises from a vast

search space [16, 39, 57] and limited domain knowledge [17, 58].

On the other hand, LLMs are being intensively studied for their

applications in personalized learning [34], software testing [62],

and multi-modal scenarios [31]. In learning-enabled CPS, abundant

data including system logs and sensor outputs (such as camera and

lidar feeds) o�er opportunities for �ne-tuning multi-modal LLMs.

These re�nedmodels can interpret the semantics of various physical

environments and their interaction with the system. For example,

in some countries, front-facing cameras are widely installed in

vehicles to deter “pedestrian scams”, where individuals deliberately

throw themselves in front of cars to extort drivers or launch false

insurance claims [11]. An ancillary bene�t of this is that multi-

angle video data can be collected for individual tra�c incidents.

Such data, coupled with accident descriptions, can be used to train

video-based LLMs to understand the nuanced factors leading to

accidents.

These �ne-tuned LLMs can then facilitate test generation in various

ways. For example, they can be employed for seed generation, muta-

tion, and selection in fuzzing techniques, a concept already explored

in traditional software domains [19, 66]. Similarly, in the case of

autonomous drone systems, drones capture a range of images of

surveying or landing sites [1, 22]. These images, along with local

government guidelines on surveying and landing, can be utilised

to generate relevant test cases. To mitigate hallucination, we im-

plement multi-stage validation to ensure the correctness of LLM

outputs, as demonstrated in our pilot study brie�y discussed in

Section 4.1.

3.2 Data-Driven Model Learning

Model learning techniques, from Biermann’s o�ine approach [9] to

Angluin’s online !∗ algorithm [4], have been thoroughly explored.

Online methods generally outperform o�ine methods, being poly-

nomial rather than NP-complete [38]. Implementing membership

and equivalence queries, however, introduces practical challenges

due to the complexities of real system tests [55]. Recent studies

suggest alternatives like falsi�cation for equivalence queries [5]

and using positive examples for learning signal temporal logic (STL)

properties [32], though these require extensive setup or strong as-

sumptions [8, 33]. Our goal is to re�ne system behavior modelling

using structured learning to bypass these traditional automata-

learning limitations, utilising diverse corner cases generated in the

prior step and leveraging our experience in building high-�delity

simulation/co-simulation environments as oracles, we can e�ec-

tively address the queries needed for the adapted !∗ algorithm.

The process begins with the !∗ learning algorithm, which issues

membership queries to a simulator acting as an oracle for the under-

lying CPS, such as Carla [23] for autonomous driving and AirSim

for unmanned aerial vehicles [51]. These queries are instrumental

in exploring the system’s behavior across a myriad of scenarios

generated by the LLM in Section 3.1, with the simulator’s feedback

aiding the construction of a preliminary hypothesis model.

The membership queries, categorized into positive and negative test

cases executed and evaluated by the simulator, are pivotal in shap-

ing the hypothesis model. Positive test cases provide insights into

valid system behaviors, while negative test cases highlight invalid

or erroneous behaviors. This dichotomy aids in the accurate re�ne-

ment of the hypothesis model, steering it towards a more accurate

representation of the system’s dynamics. As the hypothesis model

evolves, the role of equivalence queries becomes important. These

queries are directed at the simulator to ascertain the consistency
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Figure 1: Proposed Roadmap

between the hypothesis model and the simulated system behavior.

Discrepancies uncovered through equivalence queries point out

areas where the hypothesis model needs further re�nement.

Parallelly, the SAT-based learning algorithm similar to [45] en-

hances this iterative learning process by managing the logical struc-

turing of the constraints derived from both membership and equiva-

lence queries. It reviews the consistency of these constraints against

the hypothesis model, identifying and rectifying inconsistencies.

This complementary role of SAT-based learning augments the !∗

learning, ensuring a more precise and robust hypothesis model. The

synergy between !∗ learning, SAT-based learning, and the strategic

deployment of equivalence queries, all interfaced with the simula-

tor, crafts a robust framework for model extraction. This iterative,

multi-faceted approach progressively re�nes the hypothesis model,

aligning it closely with the simulated system behavior. The simula-

tor’s role as an oracle is crucial, providing a practical and reliable

benchmark for validating and re�ning the hypothesis model.

In summary, this blended learning approach, rooted in iterative

interaction with a simulator oracle, presents a viable pathway for

extracting accurate models from complex systems. Through an iter-

ative engagement of !∗ learning, SAT-based learning, and strategic

querying, this proposed solution promises a substantial advance-

ment in the �eld of model extraction, especially in scenarios where

a concrete system speci�cation is absent.

3.3 Model-Based Testing

In this paper, we aim to rejuvenate the concept of “model-based

testing” within the realm of learning-enabled CPS. One of the ear-

liest proponents of this concept hails from Bellcore, where a test

data model was articulated using a straightforward speci�cation

named AETGSpec. This speci�cation supports hierarchy in both

�elds and relations [14]. Building on this foundation, Schiefer et

al. [49] highlighted that test case generation for model-based test-

ing can adopt various methods. One approach is deductive theorem

proving, wherein the model is segmented into equivalence classes

based on a set of logical expressions. In its most basic form, each

class can function as a test case. In the context of model checking,

test case generation revolves around identifying counterexamples

where the speci�cation is breached. Symbolic execution can be em-

ployed to navigate every potential program execution path. Tools

like Modbat [6], tailored for event-driven systems, andMoMuT [37],

designed for UML and timed automata, facilitate test case genera-

tion from state machine models. However, such black-box type of

approach relies on random and mutation tests are not applicable to

learning-based CPS as key learning models are not applicable to

random seed generation and mutation operators.

In our research, we gravitate towards generating test cases steered

by STL fuzzing due to STL’s ability to express complex temporal

and spatial relationships within CPS. In a contemporary study by

Meng et al. [44], given a linear-time temporal logic (LTL) prop-

erty q , a Büchi automaton A¬q can be crafted that recognizes the

contravention of the property q . This approach requires manually

extracting LTL properties, dealing with LTL’s limited expressive-

ness compared to STL, and identifying program parts impacted by

LTL’s atomic propositions. The goal is to generate logs to iden-

tify potential proposition violations, guiding future test generation.

This ensures focus on areas likely to breach LTL properties, en-

hancing test e�ectiveness. However, in learning-based CPS, like

in autonomous vehicles where speed control is distributed across

multiple neural networks, pinpointing speci�c locations for such

violations is unfeasible, complicating the application of this strat-

egy.

We propose using data-driven speci�cations from Section 3.1 to

identify STL properties and construct corresponding automata with

suitable acceptance conditions for the negation of these properties.

As learning-based CPS often use robotic operating systems with

message queues, we will create a trace generator to monitor and

record events for each STL predicate, generating relevant traces.

Coverage-guided fuzzing will then be employed to produce test

cases that activate trace data across sequential states up to the

accepting state, creating counterexamples. Considering the com-

plexity of the resulting timed automata, traversal methods such

as depth-�rst, breadth-�rst, or random walk will be considered to

ensure measurable coverage and formal assurance.

In conclusion, our model-based testing paradigm presents a sig-

ni�cant improvement from existing fuzzing techniques. Where
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conventional coverage-guided fuzzers like AFL [64] primarily de-

tect crashes and memory over�ows, and �tness function-guided

fuzzers [29, 30, 39, 68] are designed for speci�c scenarios and ora-

cles with no formal coverage guarantees, our approach elevates the

discourse. Recent e�orts parallel to ours, albeit requiring manual,

error-prone speci�cation of detailed scenarios and properties us-

ing new DSLs, underscore the laborious nature of these tasks [69].

Our model-based testing, on the other hand, automates scenario

generation and property extraction, rendering it more accessible

for industry practitioners dealing with black-boxed critical compo-

nents in learning-enabled systems. The trace generator plugin in

our framework is designed to cater to the extracted speci�cations,

and our coverage-guided fuzzing not only maximizes failure cover-

age but also explores diverse counterexamples violating the tested

property. This approach, therefore, not only aligns with real-world

industrial contexts but also opens new opportunities in ensuring

more robust, formally veri�ed learning-enabled CPS.

4 EARLY RESULTS AND EFFORTS

We conducted two case studies to investigate Research Question

1 (RQ1): assessing the ability of LLM to generate diverse yet real

test cases through in-context learning. Similarly, initial evaluations

were made for Research Question 2 (RQ2): examining a multi-modal

LLM’s understanding of tra�c accident’s root cause. We will share

some promising initial results, aligning well with our roadmap.

4.1 RQ1: Test Case Generation Capability using

LLM

Using ChatGpt4.0, we interpreted the Texas tra�c rule handbook to

create a DSL (Fig. 2) that transforms these rules into tra�c scenar-

ios. This DSL, focusing on semantic descriptions rather than precise

coordinates, di�erentiates from others such as OpenScenario and

Scenic [7, 26, 48]. We implemented multi-level validation to ensure

the correctness of the DSL speci�cations, mitigating hallucination

issues. We then translated these DSL speci�cations into test scripts

for the CARLA simulation platform [23], uncovering signi�cant

bugs in autonomous driving systems. The DSL comprises elements

like Environment, Road network, Actor, and Oracle, each capturing

intricate scenario semantics. This approach enabled us to generate

diverse, semantically rich test scenarios that revealed rule violations

in real-world autonomous systems, aiding developers in pinpoint-

ing speci�c issues. In our experiments, we observed that the MMFN

model [67] failed to stop at the stop sign, Autoware [35] collided

with a front vehicle, and LAV [13] did not respond to a pedestrian

crossing the road. We reported these issues, along with detailed log

data, to the developers of these widely-used autonomous driving

systems. They utilised our logs to pinpoint the root causes of these

rule violations. Further details about the DSL, including insights, ex-

amples, and the methodology for translating DSLs into test scripts,

along with replicable artifacts, are provided in [20].

4.2 RQ2: Accident Root Cause Analysis using

Multi-Modal LLM

In this study, we utilized a vision encoder-based multi-modal Large

Language Model (LLaVA [40]) to closely examine speci�c tra�c ac-

cidents. Our objective is to investigate the boundaries of what such

<Scenario> ::= <Environment>; <Road network>;

<Actors>; <Oracle>;

<Environment> ::= <weather> <time>

<Road network> ::= <road type> <road marker> <tra�c signs>

<Actors> ::= <ego vehicle>, <npc actors>

<Oracle> ::= <longitudinal oracles> <lateral oracles>

...

Figure 2: High-level structure of the Scenario DSL

a multi-modal LLM can discern about the causes of these incidents.

We hypothesize that if the LLM can accurately comprehend these

causes, then its latent vector representation should e�ectively cap-

ture essential features. Consequently, this would enable the LLM to

generate a variety of “corner cases” that closely resemble real-world

tra�c incidents. These test cases serve dual functions: they can

evaluate the robustness of autonomous driving systems (Section 3.1)

and also pave the way for our future work in data-driven learning

(Section 3.2) and model-based testing (Section 3.3).

Figure 3: A single frame taken

from a tra�c collision video

As demonstrated in Fig-

ure 3, without �ne-tuning

or in-context learning,

when we posed the ques-

tion “Can you describe

the scene?”, LLaVA re-

sponded, “The scene in

the image shows a chaotic

and damaged street, with

two cars involved in a col-

lision. One of the cars has

been �ipped over, and debris is scattered around the area. The acci-

dent has caused signi�cant damage to both vehicles...”.

When we modi�ed the query to “Can you imagine what leads

to such a collision?”, the LLM responded, listing several common

causes including speeding, distracted driving, and poor visibility.

The �rst response accurately depicts the accident, while the rest

elaborate on potential contributing factors.

We are transitioning from an image-based to a video-based vision

encoder in our LLM, expecting improved con�dence and temporal

information capture. This enhancement should better detect key

features of tra�c incidents and facilitate the creation of realistic

and complex corner cases, as outlined in stage 1 of our plan.

5 CONCLUSION

This paper critically evaluates the existing formal veri�cation pro-

cesses for learning-enabled CPS and highlights the limitations of

traditional software testing methods due to their lack of robust

guarantees. Our forward-looking three-stage roadmap addresses

key challenges, such as generating diverse corner cases, accessing

sensor data ethically, and improving methods for timed automata

extraction and state coverage. Our case studies demonstrate the

roadmap’s potential to ful�ll the rigorous requirements of stakehold-

ers like manufacturers, lawmakers, and customers. We anticipate

this roadmap will catalyze collaborative e�orts across communities

to enhance formal guarantees in learning-enabled CPS.
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