
Learning CI Configuration Correctness for Early
Build Feedback

Mark Santolucito
Barnard College, Columbia University

NYC, USA
msantolu@barnard.edu

Jialu Zhang
Yale University

New Haven, USA
jialu.zhang@yale.edu

Ennan Zhai
Alibaba Group
Seattle, USA

ennan.zhai@alibaba-inc.com

Jürgen Cito
TU Wien

Vienna, Austria
juergen.cito@tuwien.ac.at

Ruzica Piskac
Yale University

New Haven, USA
ruzica.piskac@yale.edu

Abstract—Continuous Integration (CI) allows developers to
check whether their code can build successfully and pass tests
across various system environments with every commit. To use
a CI platform, a developer must provide configuration files
within a code repository to specify build conditions. Incorrect
configuration settings lead to CI build failures, which can take
hours to run, wasting valuable developer time and delaying
product release dates. Debugging CI configurations is a slow and
error-prone process. The only way to check the correctness of
CI configurations is to push a commit and wait for the build
result. We present VeriCI, the first system for localizing CI
configuration errors at the code level. VeriCI runs as a static
analysis tool, before the developer sends the build request to
the CI server. Our key insight is that the commit history and
the corresponding build histories available in CI environments
can be used both for build error prediction and build error
localization. We leverage the build history as a labeled dataset
to automatically derive customized rules describing correct CI
configurations, using supervised machine learning techniques. To
more accurately identify root causes, we train a neural network
that filters out constraints that are less likely to be connected to
the root cause of build failure. We evaluate VeriCI on real world
data from GitHub and achieve 91% accuracy of predicting a
build failure and correctly identify the root cause in 75% of
cases. We also conducted a between-subjects user study with 20
software developers, showing that VeriCI significantly helps users
in identifying and fixing errors in CI.

Index Terms—configuration files, program analysis, continuous
integration

I. INTRODUCTION

Continuous Integration (CI) is seeing broad adoption with
the increasing popularity of the GitHub pull-based devel-
opment model [1]. There are now a plethora of open-
source, GitHub-compatible, cloud-based CI tools, such as
TravisCI [2], CircleCI [3], Jenkins [4], GitLab CI [5], Code-
fresh [6] and TeamCity [7]. Over 930,000 open-source projects
are using TravisCI alone [2]. A CI platform provides devel-
opers with continuous feedback on every commit indicating
if their code successfully built and whether the given tests
passed. As such, CI has become an integral part of DevOps
and the software development process more generally.

Source Code
(Commit 8a6c986)

Configuration Files
(Commit 8a6c986)

+ Executable
Software

Test Suite

Build

+
Test

Build Failed Test Failed

Pass

VeriCI

Fig. 1: A typical build process of CI. Our tool, VeriCI,
statically analyzes a commit to predict failing builds and
reports the root cause of the failure.

Continuous integration is an essential part of modern soft-
ware development. In Fig. 1, we show the typical development
workflow when using CI. Programmers develop code and write
associated test suites. To build the code and run the test
suite, each CI repository contains configuration files defining
the execution steps. These configuration files specify build
conditions such as the operating system, disk size, which
compiler flags to use, which library dependencies are required,
and other similar properties. Then, each time a developer
commits new code, the CI platform builds multiple versions
of the executable software according to the configuration, with
each version corresponding to the specified build conditions.
The CI platform then runs these executables on the test suite
with appropriate hardware.

However, for all the benefits CI brings, it also suffers from
some serious limitations. If the executable fails to build, the
tests cannot be executed, and the developer must try to fix
the configuration before the code can be checked for func-
tional correctness. This can delay development significantly
as CI builds regularly take on the scale of hours [8], [9].
Furthermore, if the CI configuration is incorrect (e.g. uses a
library incompatible with the specified OS) and the project
fails to build, the user does not receive any feedback on the

functional correctness of their code. By running a query1 on
the historical build data available on TravisTorrent [10], we
find that 662,442 hours or 75 years of server time was spent on
builds that eventually errored. Such incorrect CI configurations
result not only in lost server time, but also lost developer time,
as developers must wait to verify that their work does not break
the build. As one example, the release of a new version of the
open-source project, SuperCollider, was delayed for three days
because of slow TravisCI builds [11].

One of the main sources of difficulty in debugging CI
configurations is that a developer cannot test the configuration
for platforms that are not available locally. The only way
to test a configuration is to push a commit and wait for
the CI platform to complete the build. If these incorrect
configurations could be quickly and statically checked on
the client side before the build, the CI workflow would be
considerably improved.

CI Configurations Analysis. To address these issues, we
developed a tool, VeriCI, for identifying potential errors in
a given CI configuration before the developer sends the build
request to the CI platform. VeriCI employs a language agnostic
approach that learns correctness criteria for CI environments
by extracting features we call magic constants. The magic
constant features embodies the use of hard-coded numerical
constants in a repository (e.g., library version constants, see
Sec. IV-A), as they often represent code locations that are
prone to misconfigurations prevalent in CI. VeriCI works in
two stages: first, it predicts build failures based on code
analysis of the incoming commit (based on our extracted
features), and second, if the build is predicted to error, VeriCI
generates an error message that localized the root cause of the
error in the code.

Build prediction has been extensively studied in the software
engineering community [12], [13], [14], [15], [16], [17], [18].
However, these approaches largely rely on metadata of the
repository and commits for prediction (commit messages,
commit size, repository size, etc.). Since the prediction relies
on metadata, the prediction cannot be deconstructed to localize
the error to a specific line of code. This is a key restriction
on prior work which can only provide file level fault localiza-
tion [16], [17], not code level fault localization. To precisely
localize build failures in the code base, our tool is based solely
on analysis of code and does not utilize metadata associated
with the repository.

While there has also been prior work on configuration error
localization that does not utilize code metadata [19], [20], [21],
[22], it cannot be applied in this setting as these techniques
are limited to traditional key-value configuration languages.

In VeriCI, we leverage two unique properties of the CI
environment. First, as a result of integration with version
control systems, CI also comes with a dataset of build logs
over the commit history. This dataset is inherently a labeled
set, where the commits are classified as passed or failed. We

1https://console.cloud.google.com/bigquery?sq=737774871812:
615ddd94dc2a40e592ea8fca8072a355

use the commit history as our training set, and use super-
vised learning techniques, such as decision trees and neural
networks, to learn a specification of the CI behavior. Using this
specification (as a set of constraints on configuration values),
we then check future commits for potential build errors. VeriCI
continually evolves and refines its learned model as more
commits enter the repository history. One key component of
the supervised learning approaches we use is the selection
of features. We base our feature extraction on hard coded
numerical constants in code, with the intuition that these are
likely to encode configurations settings across the code base.
The use of numerical constants as features allows us to learn
rules such as version inconsistencies between libraries.

The second unique property we gain from the CI environ-
ment is that in our training set, as a product of being a version
controlled repository, there is an incremental change between
successive commits. This allows us to narrow down the search
space for the root cause of the failed builds. To detect these
failed builds, we leverage decision tree learning, specialized to
the task of generating error messages that help users identify
the root cause of a build failure. We additionally combine the
decision tree algorithm with a neural network to increase the
accuracy of our error localization.

We evaluated VeriCI on real world data from GitHub. VeriCI
achieves 91% accuracy when predicting a build failure and cor-
rectly identifies the root cause in 75% of cases. Additionally, to
assess the efficacy of generated error messages, we conducted
a between-subjects user study with 20 software developers.
The control group had access to the standard TravisCI output,
while the treatment group was additionally provided with the
output of VeriCI. Our study shows that VeriCI significantly
helps users in identifying and fixing errors in CI. However, in
cases where the root cause is easily extractable from the log
file, we did not see significant differences between control and
treatment groups.

In summary, this work makes the following contributions:
1) Introduces the first approach to predicting CI build status

that also identifies specific lines of code as probable
root cause locations. Our approach introduces Abstrac-
tion Based Relabelling (ABR), a data set relabelling
technique that mitigates the potential of predicting false
positives from noisy CI build data.

2) Promotes the use of a restricted set of features during the
learning process as a way to achieve classification per-
formance on par with existing tools, while additionally
localizing potential errors.

3) An evaluation of our tool, VeriCI, that achieves 91%
accuracy of predicting a build failure and identifies the
root cause location in 75% of cases.

4) A user study that shows developers using VeriCI can
identify and fix potential CI build errors more accurately
for some cases, while highlighting limitations for others.

II. MOTIVATING EXAMPLES

We give here two examples to illustrate the types of failures
that developers face in the CI environment. In these examples,

https://console.cloud.google.com/bigquery?sq=737774871812:615ddd94dc2a40e592ea8fca8072a355
https://console.cloud.google.com/bigquery?sq=737774871812:615ddd94dc2a40e592ea8fca8072a355

VeriCI generates error messages to guide developers to identify
the root cause of the build failure. All of the following exam-
ples are taken from the existing repositories and they illustrate
real issues that have occurred during the build process.

A. Identifying an error within a single file

We start with an example of a TravisCI build failure from
the sferik/rails admin repository [23] on GitHub. This is a
large repository with (at the time of writing) 4603 commits
over 403 contributors, 7400 stars, and 2100 forks.

In commit 3fd3b32 an administrator merged the changes
from a pull request into the master branch, which caused the
TravisCI build to fail. The pull request changed 3 files by
adding 125 lines and deleting 10 lines. Manually checking
the log information is a tedious process that, in this case,
did not provide any helpful information for understanding or
correcting the issue. As a result, the next 14 commits in the
repository still have the same failed TravisCI status. It was not
until 20 days later that a contributor to the repository was able
to correct this build failure [24].

We ran VeriCI on commit 3fd3b32, which caused the
build to fail, and VeriCI correctly predicted a build failure.
Additionally, VeriCI also provided an explanation for its
classification, by reporting two substrings from the codebase
which are likely to be contributing to the build failure.

Predicted build failure based on these keywords
- if options[:encoding_to].present? &&

@encoding_to == Encoding::UTF_
- rvm

We again confirmed this as a true positive, as this is exactly
the location of the change made by the user when fixing the
build failure [24]. VeriCI identified the “minimal” problem,
i.e., the smallest set of commands that the build system was
not able to handle. Since there may be multiple solutions to
a build failure, VeriCI does not try to suggest a repair, but
rather helps the user identify the root cause of a build failure.
In this way, users can prioritize the potential problems using
their knowledge of the code base.

B. Identifying errors spanning multiple files

In the previous example, VeriCI detected the root cause of
an error which required changing a single line. However, many
CI errors can be a result of complex relationships between
multiple files and branches in a repository. To demonstrate
this, we take another real-world example, from the activescaf-
fold/active scaffold [25] repository which has (at the time of
writing) 5326 commits over 92 contributors, 998 stars, and
327 forks.

Fig. 2 shows a sequence of commits. Each commit is
represented by a box and the arrows point from a parent
commit to a child commit. A commit can have two child
commits (as in commit a086ca7) when two users make
a different change based on the same state of code. This
difference was eventually resolved through a merge, resulting
in a commit that has two parent commits (as in the case of
commit bce9420).

10d78ad
error

a086ca7
pass

2914a53
no build

84eabc9
error

9b09ff3
pass

bce9420
error

87496cf
pass

fix1 fix2

Fig. 2: A GitHub history chain depicting dependencies be-
tween commits.

To better understand these commits, the git diff com-
mand shows the difference between the current and previous
commit. Fig. 3 depicts the git diff from a selection of
commits from Fig. 2. Italics indicate which file was changed,
while (+/-) indicate what was added or removed.

Listing 1: 10d78ad
version.rb
module Version
MAJOR = 3
MINOR = 4
- PATCH = 34
+ PATCH = 35

Listing 2: a086ca7
Gemfile.lock
- active_scaffold

(3.4.34)
+ active_scaffold

(3.4.35)

Listing 3: bce9420
- Gemfile.lock
+ Gemfile.rails− 4.0.x.lock
+ Gemfile.rails− 4.1.x.lock
+ active_scaffold

(3.4.34)

Listing 4: 87496cf
Gemfile.rails− 4.0.x.lock,
Gemfile.rails− 4.1.x.lock
- active_scaffold

(3.4.34)
+ active_scaffold

(3.4.35)

Fig. 3: The git diffs for a selection of the commits from
Fig. 2 illustrating how our feature extraction process (magic
constants) can provide a proper abstraction for identifying
failures based on configurations in CI

In commit 10d78ad in Fig. 2, the author upgraded the
version number of the package from 3.4.34 to 3.4.35 in
the version.rb file [25]. However, in order to correctly
bump the version number in this project, the user needed
to change the number in both the version.rb file, and a
Gemfile.lock file. Commit a086ca7 shows how the user
corrected this error so that the repository is again passing the
build (cf. annotation fix1 in Fig. 2).

At the same time, another user submitted a pull request
with the old version which split the Gemfile.lock into
two separate files for different versions of the rails library.
In the merge process, the user inadvertently removed the
original Gemfile.lock without copying over the fix for the
version number. The merge resulted in the repository taking
commit bce9420 and is in a similar state to the previous
broken commit 10d78ad. There are now two files that are
not consistent with version.rb.

By analyzing the previous data from fix1 (depicted in Fig. 2),
VeriCI has learned that the PATCH value in the version.rb

is potentially problematic in this situation. Running VeriCI at
the point of commit bce9420 generates the error below:

Predicted build failure based on these keywords:
- PATCH
- simplecov

VeriCI predicted a build failure, and provides the explanation
that this failure is likely due to one of the two listed error
locations. We confirmed this error message as a true positive,
as the next day the user discovered this fix on their own, and
applied fix2 to bring the repository back to a correct state [26].

III. PRELIMINARIES

In this section we introduce the basic vocabulary in the
continuous integration paradigm. We describe the formalism
that we use to model the CI terms. This formalism is the basis
for the future analysis and the learning process.

Repository Status. The core structures used in CI platforms
are repositories. A repository, denoted by R, contains all
information required for a CI build, such as source code,
automated tests, lists of library imports, build scripts, and
similar files. The CI process monitors how a repository evolves
over time, so we use Rt to denote the state of repository R
at time t. While many version control systems allow for a
branching timeline (called a branch in git), we linearize and
discretize that timeline according to the build order in the CI
tool in accordance with the linearization of TravisTorrent [10].
Thus, the time indices are always non-negative, monotonically
increasing integers. For a repository Rt, a typical CI tool
usually has three possible outcomes:

1) All builds were successful and all tests pass
2) All builds were successful, but some tests fail
3) There was an error in the build process before tests could

even be executed
Since the focus of this work is analyzing the CI configura-

tion of the repository, we distinguish only between successful
builds and failing builds. If all builds were successful (cases
1 and 2), there is no error in the CI configuration and we call
the status of the repository “passing”. We denote this build
success with S(Rt) = P . In case 3, when a build failed, we
call the status of the repository “failing” (or, a “failed build”),
and we denote this with S(Rt) = F .

Of a particular interest are changes in the repositories
that cause the build status to change, for example when the
repository status changes from passing to failing. To capture
this, we introduce the following notation:

S(Rt,t+1) = PF :⇔ S(Rt) = P ∧ S(Rt+1) = F

S(Rt,t+1) = FP :⇔ S(Rt) = F ∧ S(Rt+1) = P

Repository Summary. Our main algorithm for build predic-
tion takes as input a dataset of feature vectors and labels. A
feature vector is a set of tuples of the type (String,R), and
the label is the build status (passing or failing). To map a
repository Rt to a feature vector, we introduce the notation
of a repository summary, R̂t. A repository summary, R̂t, is

feature vector capturing an abstraction of that repository’s CI
configuration.

We consider the scope of a CI configuration to encapsulate
both the CI configuration files (e.g. .travis.yaml), as well
as some parts of the source code configurations (e.g. library
imports and their versions). There is no strict definition that
separates the CI configuration and the application configura-
tion or source code - they are intertwined by definition. The
boundary of what we consider in the scope of CI configura-
tions is defined by our feature extraction design. The process of
extracting feature vectors that summarize the CI configuration
is detailed in Sec. IV. We validate this definition empirically
in Sec. V.

In the summarization process, we only select information
that is relevant to the CI configuration. Every repository
contains a number of files that are not relevant for deriving
the properties about the CI configuration. Examples of these
files include “readme” files, .csv files, or images. We filter
out all such files based on their extensions. For example, for
Ruby programs we consider all *.rb, Gemfile, gemspec files.

IV. SYSTEM DESCRIPTION

To statically check that a CI repository is correctly config-
ured and the build will succeed, we must build a model of
correctness. To do this, we analyze a number of existing CI
repositories, including both the code and configuration files,
and their corresponding CI build results. Once we learn this
model of correctness, our system VeriCI can make a judgement
on whether a new commit to the repository is likely to break
the build. In the case that VeriCI predicts a build failure, VeriCI
provides an explanation to the user for the prediction so that
the user may proactively check and fix the CI configuration.

For each repository, we consider a training set of commits
from the repository, R. The process of learning the model is
an iterative process. As new commits appear in the repository,
they are integrated into a refined version of the model.

The goal of producing useful error messages creates two
new challenges in this domain. First, we must use a learning
strategy that not only classifies the build status, but also
provides a justification for output of the classifier. This prob-
lem of justification is referred to as interpretability [27] and
explainable AI [28] in machine learning. In order to generate
useful justifications, we must restrict ourselves from using
any kind of metadata in our learning process. Our goal is to
produce a justification that guides users to the root cause of a
build failure. As such, the learning process must rely on code
feature extraction that only uses a set of features directly tied
to the code.

An overview of our learning approach is shown in Fig. 4
and consists of three main components:

1) We introduce Abstraction Based Relabeling (ABR) as
a novel method to reduce noise in the training set T R
of past commits. The underlying dataset is noisy due to
non-deterministic build outcomes introduced by errors
out of the users’ control (such as network failures, power
outages, or even a hardware failure on the part of the CI

Past Commits
T R = R0, R1, ... Rt

Future Commits
Rt+1, Rt+2, ...

Abstraction Based Relabelling
Sec. IV-BDecision Tree

Sec. IV-C

Predict
Build Status

No Action Message Filtering
Neural Network

Sec. IV-D

Confidence in
error message?

Flag as potential
Build Error

Error Message

Pass Error

Low High

Fig. 4: VeriCI trains a model to predict build failures on
previous commits. If the model predicts a new commit will
result in an failure, VeriCI tries to generate an error message.
If VeriCI has confidence in the error message, it reports this
to the user, and otherwise remains silent.

provider). We call these types of errors transient errors.
ABR ensures that if the extracted code feature vectors
are the same, so are their build outcomes.

2) Given a pre-processed training set, we use decision trees
to construct a model that predicts whether or not a build
will fail. In the case that the decision tree predicts a
build failure, we generate an error message.

3) Constructing an appropriate error message is difficult
without actually running the build. To increase the
confidence in providing a helpful message, we train a
neural network model that allows us to filter out cases
of messages that are likely not contributing in resolving
the build failure.

A. Feature Extraction

The first step in our system design is to pre-process the train-
ing set of a timeline of past commits. This list of commits form
our labelled dataset, with each past commit R0, . . . , Rt ∈ T R
being tied to a label denoting the corresponding build status,
as introduced in Sec. III. In order to leverage machine learning
techniques, we must extract a selection of code features from
these commits to form a summary of the repository state, R̂t

(also called a feature vector) to be used in the learning process.
We focus on extracting what we call magic constant code

features. This feature tracks the use of hard-coded numerical
constants in a repository. Magic constants are especially im-
portant in CI configurations as they often represent locations
prone to misconfiguration, such as library version constraints.
More generally, the core idea is that, if a line contains a scalar
that we can embed into a feature vector, we build a tuple,

where the first element is the context of the scalar, and the
second element is the numerical constant value. We give an
example of this process in Fig. 5.

Listing 5: R1

import Tweet V1.0
m = rndMsg(1)

Listing 6: R2

import Tweet V2.0
m = rndMsg(1)

Listing 7: R̂1

("import Tweet", 1.0)
("m = rndMsg", 1.0)

Listing 8: R̂2

("import Tweet", 2.0)
("m = rndMsg", 1.0)

Fig. 5: Two examples for extracting code features (Listings 7
and 8) from repository code (Listings 5 and 6 respectively) at
time points 1 and 2 of a commit history.

The number of potential code features when analyzing a
repository is intractably large (a complete feature extraction
would encode all behavior of the code), thus we must reduce
the dimensionality of the code by selecting key features. As
with many feature extraction tasks, our code feature extraction
uses a set of templates through a process known as feature
engineering [29]. Our feature extraction templates are simply
looking for numerical constants, and finding a corresponding
keyword on the same line as that constant. To do this, we
parse the relevant files in the codebase (R) to find lines of
code that have numerical constants. Our simple parsing proce-
dure handles common syntax patterns across languages such
as ignoring comments, associating code across line breaks,
parsing function call syntax, etc. (see link.anonymized for the
exact code). There is no manual tuning of the features on a per
repo, or per language basis. While this means we may consider
magic constants that are specific to test or production code in
our current work, we leave further filtering to future work.

B. Abstraction Based Relabeling
During this feature extraction process we may face cases

where we end up with two repository summaries that are
identical, although the build statuses differ. This can happen
for two reasons. First, it is possible that our feature extraction
has abstracted too much of the code and we have lost the
key difference between a build that succeeds and a build
that fails. Second, we must account for the fact that CI
builds are not pure in the sense that some builds can fail
due to transient errors. This non-determinism of configuration
behavior has also been observed in other settings of configura-
tion analysis [30]. Transient errors are problematic as having
identical data points with different labels injects noise into
the training set. In order to reduce the noise that our learning
module needs to handle, we want to ensure that if extracted
code feature vectors are the same, their build outcomes are
also the same. That is, the goal of ABR is to ensure that
R̂t = R̂t′ ⇒ SABR(Rt) = SABR(Rt′), where SABR(Rt) is
the status of the repository at time t after relabeling.

We introduce the notion of Abstraction Based Relabeling
(ABR) to account for the impact of CI build non-determinism

link.anonymized

TABLE I: An example learning process demonstrating ABR.
Source code for R̂1 and R̂2 are listed in Fig. 5.

Repository States R̂1 R̂2 R̂3 R̂4

Original Status : S(Rt) P F P F

Code Features Extraction
R̂

import Tweet 1.0 2.0 2.0 2.0

rndMsg 1.0 1.0 1.0 2.0

ABR Status : SABR(Rt) P P P F

and information loss during feature extraction. The goal of
ABR is to relabel the training set so that it is self-consistent
with our observation (feature extraction) of the training set.
Initially, we start the ABR process with SABR(Rt) = S(Rt)
for all time points t. Then we examine each repository
summary and if at some point the build status changes, but the
code features do not, we relabel that failing status as a passing
state. We only relabel failing statuses to passing (and passing
to failing), as we want to minimize the noise in the positive
classification set. Decreasing noise in the positive classification
set (failing status) helps decrease false positives, although it
does increase false negatives. In the context of CI prediction,
we find this to be a positive trade-off in practice. Formally,
the relabeling from the original build status S(Rt) to the ABR
build status SABR(Rt), works as follows:

If SABR(Rt,t+1) = PF ∧ R̂t = R̂t+1 ⇒ SABR(Rt+1) = P

If SABR(Rt,t+1) = FP ∧ R̂t = R̂t+1 ⇒ SABR(Rt) = P

To understand the effect of ABR, we provide an example
process in Table I. In this example, the build of S(R2) = F
failed (for the sake of demonstration, due to a network failure),
but we can see that S(R3) = P succeeded. During the learning
process we do not have information on the root cause of these
failures, but we can observe the code features and CI status,
so we relabel S(R2) accordingly.

In addition to ABR, we tried applying resampling methods
in VeriCI, such as SMOTE [31] to reduce the noise in the
datasets. However, implementing oversampling by generating
synthetic samples from the minority class adds noise to our
training sets. While this assists in prediction, it decreases
accuracy of error localization, which is the key contribution of
this work. We also tried undersampling, but this led to deleting
passing commits, which contain important information about
the build fix. Hence, in order to balance both CI build status
prediction accuracy and accurate error localization, we found
that ABR was more effective than resampling methods.

C. Predicting Build Status

After we preprocess the training set with ABR, we build a
decision tree classifier to analyze a new commit to a repository
and predict the build status. Decision tree learning [32] is a
widely used machine learning technique that constructs a tree
consisting of two types of nodes: decision nodes and leaf
nodes. Decision nodes contain a Boolean condition, which

defines branching depending on if the condition is true or false.
The leaf nodes represent the final classification of a data point.
For a data point belonging to some leaf node in a decision
tree, we extract a decision path that describes which decision
nodes were used to arrive at that leaf node. This decision
path is constructed by recording the traversal of the decision
tree - that is, tracking the conditions in decision nodes (or
their negations) on the path from the root to that leaf. More
importantly, the ability of a decision tree to easily provide a
justification for its classification is the key property of decision
trees as a machine learning technique that makes it a good fit
for our purposes.

(1) Tweet=2.0

(2) RndMsg=2.0 (3) Pass
R1

(4) Fail
R4

(5) Mixed → Pass
R2, R3

True False

True False

Fig. 6: An example of a decision tree with white boxes as
decision nodes and gray boxes as leaf nodes.

Fig. 6 depicts a decision tree generated from the results of
ABR shown in Table I. Our tree needs to classify four com-
mits, based on the given two features (Tweet and RndMsg).
In this example, the learning process results in a decision tree
with three leaf nodes. Node (3) contains only R̂1, correctly
classifying it as a passing node. Node (4) contains only R̂4 and
it is correctly classified as a failing node. We call nodes (3)
and (4) pure nodes, since they perfectly predict the commits
from the training set.

In contrast, node (5) is a mixed node, since some repos-
itories from the training set classified by this node pass
(S(R2) = F) and others fail (S(R3) = P). Although these
repositories had different build statuses, based on the feature
vectors we have extracted, they are equivalent - and thus had
equivalent ABR statuses. This leaf node cannot then be split
further based on the available features and we cannot correctly
classify both of these repositories. We mark both these builds
as passing to avoid a false positive report where we tell the
user there is an error, when in fact the system is passing.

Using decision trees as the classification learning technique
also allows us to easily extract the root causes of the failed
build. To do this, we trace the path traversed through the tree to
classify a data point. As an example, we can construct an error
message for the classification of R4 by tracing the decision
path and generating the error message: (Tweet = 2.0 ∧
Rndmsg = 2.0).

D. Filtering Error Messages

VeriCI predicts the build status of a new commit, and
extracts a potential error message using the decision tree
classification path. This is a key benefit to our technique, as
these error messages allow VeriCI to not only pre-emptively
tell users the status of their build, but also give them feedback

on how to fix it. However, not all our error messages are
informative - it is possible that we may predict the correct
status for the wrong reason. An incorrect error message (even
if the build is failing) is potentially worse than no error
message at all. If we report an incorrect error message, users
may waste time searching in the wrong location for the root
cause of the build error. However, if we can refrain from
reporting bad error messages, even when the build does fail,
the user workflow remains at the status quo as it is when not
using VeriCI.

Thus, to ensure we minimize the number of misleading
error messages, we trained a neural network to predict the
effectiveness of our generated error messages. We measure
the effectiveness of the error message by checking if the error
message we report is contained within the git diff of
the commit that eventually fixes the build. If any part of the
decision tree path for the failing commit appears as a substring
of the fix, we label the error message as Hit, otherwise we label
the error message as a Miss.

In summary, we train our neural network with an input
of labeled error message sets. To label our training set, we
“learn from our mistakes” by looking at the error messages
we have previously reported. In labeling our training set for the
neural network, there are two cases we must consider. First, we
may have previously reported an error, and have already seen
the fixing commit for this failing build. In this case, we can
label out error message by checking the ground truth. Second,
we may have previously reported an error, but not yet seen
a fixing commit for the failing build. In this case, we will
construct a label instead from the breaking commit, e.g., the
git diff between this failing build and the last previous
build that succeeded.

In order to encode the error message as a feature vector that
can be understood by the neural network, we convert the text
to its ASCII representation. As error messages can differ in
length, we pad all error messages shorter than a fixed feature
vector size with spaces, and truncate all error messages longer
than this size. We then use a technique called feature scaling
to ensure all features (characters of the error message) are
represented by a float value 0-1. This is an important step, as
neural networks are sensitive to the scale of feature values,
whereas decision trees are not. More specifically, we used a
multi-layer perceptron neural network with two hidden layers.
Finally, to integrate the neural network with the rest of VeriCI,
we use the resulting model as a binary classifier. If the neural
network predicts an error message to be a Hit, we report both
the predicted build status and its corresponding error messages
to the user. However, if the neural network predicts a Miss, we
only report the predicted build status to the user. We report the
frequency with which we accurately predict Hits and Misses
in Sec. V-B.

V. EVALUATION

We implemented VeriCI to statically check repositories
that use the open-source continuous integration testing tool,
TravisCI. TravisCI is an ideal testbed for analyzing CI builds,

as the tool is free for open-source projects and widely used
on GitHub. Additionally, a log history of the builds for a
number of large, active, and open-source project has been
made available through the TravisTorrent dataset [10]. This
dataset directly provides us with the labeled, temporally or-
dered commit data over many repositories. Our evaluation
set consists of all 35 repositories available in TravisTorrent
which have 150 - 200 commits and whose main language
is Ruby. We chose Ruby as this is the language with the
best representation in the TravisTorrent dataset. As we require
many commits as training data, we wanted to take repositories
with the largest number of commits possible. However, taking
repositories with a history of larger than 200 commits slowed
down the training process, due to limited network speed and
memory needed to clone the repositories.

In the evaluation, we aim to answer the following questions:
1) Does VeriCI accurately predict the build status of a

commit before the build actually executes?
2) Does VeriCI report error messages that correctly identify

the root cause of the build failure?
3) Are the error messages VeriCI generates helpful to

users?

A. Accuracy of Prediction

In order to evaluate the accuracy of VeriCI, our evaluation
models the way VeriCI would be used in a real world setting.
In practice, when integrated into the DevOps pipeline, VeriCI
would be trained over a set of commits up until the present
moment, and used to predict commits for one day. Then, at the
end of the day, VeriCI would build a new model, incorporating
the information from that day, so that the model the next day
can learn from the new commits and any mistakes that were
made. We show this on a timeline in Fig. 7.

10d78ad
May 1

a086ca7
May 2

9b09ff3
May 2

2914a53
May 3

84eabc9
May 3

bce9420
May 3

87496cf
May 4

Training Set for May 3
Training Set for May 4

Fig. 7: VeriCI rebuilds a model at the end of every day to
provide better prediction the next day.

The strategy that we employed in the evaluation is presented
in Table II. For a repository with n total commits, we build the
first model with n/2 commits, and use that model to evaluate
commit R(n/2)+1. We then rebuilt the model with a training set
of (n/2)+1 commits and used that model to predict the status
of the next commit. Using this approach, we found that VeriCI
can predict build status with an overall accuracy of 91%. This
is competitive with other tools for build status prediction based
on metadata such as the committer’s historical rate of correct

commits, size of the commit, sentiment analysis on the commit
message, use of emojis, and similar metadata [14], [12], [15],
[13], [18], [17]. We also find VeriCI has a F1-score of .569,
though existing tools do not report this metric, making it
difficult to compare. We also attempted to run the existing
tools for build prediction (HireBuild [17] and HoBuFF [18]),
but the tools were not made publicly available in a way that
allowed use to rerun their tool (HireBuild is distributed as a .jar
without source code that only runs their original experiments,
while the link for the tool in HoBuFF paper is a 404).

One interesting note is that we should always expect our
prediction to have a non-zero number of false negatives and
false positives. A recent study investigated the reliability of
TravisCI builds [30], and found that roughly 9% of builds have
a misleading or incorrect outcome. These incorrect outcomes
manifest from transient errors outside the code base, such as in
dependencies or through network failures. Since our method
only looks at the code inside the repository itself, and thus
learns from this “misleading” build data, we should not expect
that VeriCI will be able to detect these types of errors.

B. Accuracy of Error Messages

We have shown that VeriCI can predict build status with
very high accuracy, but the key innovation in this work is
that we also provide an explanation for the classification that
our model provides. We must also evaluate how well the
explanation provided by VeriCI corresponds to a change in the
code base that would successfully fix the failing build status.
To evaluate the rate at which VeriCI provides accurate error
messages, we check if any of the keywords we presented in
the error message appear in the difference between the failing
commit and the next passing commit. If the user has changed
a keyword that we suggested in order to fix the repository’s
build status, it can be seen as evidence that we suggested a
correct root cause of the failure.

Using this metric, we found that over the repositories listed
in Table II, the error we reported corresponded to the change
that the user eventually made to fix the build 75% (15/20) of
the time, for the rules we learned. We report the full effect of
the error messaging filtering technique described in Sec. IV-D
in Table III. We recorded the results of running VeriCI with
various configurations of ABR to measure the impact of these
new methods. Enabling ABR has little effect the accuracy of
our error messages (increasing from %90.55 to %90.96), and
reduces the average error message size from 2.31 to 1.99.
This means that average number of keywords reported in an
error message (the decision path depth) by VeriCI was 1.99.
In other words, VeriCI correctly identifies a critical key word
in a breaking commit with an average of 1.99 guesses in 75%
of cases.

C. User Study

In the previous section we have shown that the error
messages produced by VeriCI are accurate, but this still leaves
the question of how useful these messages are to developers.
To assess the impact of VeriCI of how developers identify

and fix CI build failures, we conducted a user study with a
total of 20 professional developers. Our goal was to investigate
whether the use of VeriCI increases the correctness of solutions
to errors in CI, compared to solely the output of TravisCI.
The null hypothesis and alternative hypothesis corresponding
to this question can be formulated as follows:

• H10: Error messages generated by VeriCI do not increase
the user’s ability to correctly find solutions to CI errors.

• H1: Error messages generated by VeriCI increase the
user’s ability to correctly find solutions to CI errors.

Tasks & Environment. We asked participants to fix two
TravisCI build failures from a GitHub repository [33], [34].
Given the failed builds, participants were asked to identify
the root cause of the failure and describe a possible fix. Our
user study was designed as a between-subjects study. In the
control group, participants were required to fix builds with the
log file provided by TravisCI itself. In the treatment group, we
provided the error messages generated from VeriCI. In both
groups, participants had no prior knowledge of the code base
and were told to make use of any resources available to them
(including internet), except looking at future commits in the
repository of the study. This setting was designed to, as closely
as possible, model the information available to developers in
real-world CI use cases. Users were asked to identify the root
cause and propose a fix in an open response field.
Variables & Analysis. The independent variable in our exper-
iment is the presence of error messages by VeriCI during the
tasks. The dependent variable is the correctness of the given
answers. To convert the participants’ answers into quantitative
information for further analysis, we designed a rubric to
classify answers into one of three categories (following the
methodology by similar user studies [35], [36]). We evaluate
participants’ results by comparing their answers to the actual
subjects’ fix provided by the TravisCI users.

1) The participant identifies the root cause or describes a fix
with enough detail to directly resolve the build failure.

2) The participant mentions part of the root cause or
describes a partial fix, but does not provide enough detail
to completely resolve the failure. We use a similar, but
more relaxed, criteria for correctness here compared to
Sec. V-B - the user must only mention a substring of any
possible fix (not just the eventual fix in this repository).

3) The participant incorrectly identifies the root cause and
proposes an incorrect fix.

Subjects. Since our study setting requires knowledge on how
to identify and fix production build errors, we recruited 20
subjects (N = 20) with professional software development
experience to participate in our study, 10 for both control and
treatment conditions. We also collected the subjects’ levels of
expertise on different topics (continuous integration, TravisCI,
Ruby, and GitHub) through a self-reported assessment on a
Likert-scale. We performed a Mann-Whitney U test [37] to as-
sess whether both groups’ expertise is comparable. The results
did not show any significant differences between expertise
levels in the groups (results were overall not significant at

TABLE II: Classification rates across 150 - 200 commits of a random selection of repositories including TP (True Positive -
correctly predicted failure), TN (True Negative), FP (False Positive - incorrect predicted failure when actual status was pass),
and FN (False Negative). We also report precision (= TP / TP + FP) and recall (= TP / TP + FN).

Repository Name Accuracy Precision
(TP / TP + FP)

Recall
(TP / TP + FN)

TP TN FP FN

sferik/rails_admin 93% 0.933 0.700 14 75 1 6
thoughtbot/shoulda-matchers 98% 1.000 0.500 2 80 0 2
jnunemaker/flipper 87% 0.850 0.630 17 68 3 10
pagseguro/ruby 91% 0.750 0.462 6 80 2 7
activescaffold/active_scaffold 89% 0.778 0.583 7 51 2 5
twitter/twitter-cldr-rb 92% 0.833 0.870 20 63 4 3

Average over 35 repositories 91.0% 0.780 0.448 2.943 41.914 0.829 3.629

TABLE III: Accuracy of neural network postprocessing on
error messages. N/A indicates we do not report a message to
the user.

Prediction Ground Truth Number of Occurrences
Hit Hit 15
Hit Miss 5

Miss Hit 5
Miss Miss 37

Prediction Reason for N/A Number of Occurrences
N/A Non-Alphanumeric 1
N/A Insufficient Training Data 24
N/A No Fixing Commit 16

TABLE IV: Statistical results related to the correctness of how
developers identify and fix CI build failures

Task One Exact Fix Partial Fix Not Related
Control Group (nC = 10) 1 0 9

Treatment Group (nT = 10) 2 4 4
Task Two Exact Fix Partial Fix Not Related

Control Group (nC = 10) 6 2 2
Treatment Group (nT = 10) 4 4 2

p < .05 with critical value of U > 27, full table available in
our online appendix).

Results. We asked each participant to fix two failed TravisCI
builds. We report the detailed distribution of their coded
answers in Table IV. We combined the category one and two
into a new category of “at least partially correct” and use
Barnard’s test2[38] for significance. We found strong evidence
(p = 0.0227) that rejects the null hypothesis (i.e. we showed
that VeriCI helped participants to correctly identify the root
cause or find a fix for the build failure). This experiment
strongly indicates that VeriCI successfully helped users to find
the root cause of the failed build or even a fix. For the second
task, we found no significant differences in both control and
treatment conditions. We found that 80% participants (eight
out of ten) achieved at least a partially correct fix.

We examined the second task more carefully to form a
hypothesis for this inconclusive result. When checking the
Travis log file of this specific build, we found that the root
cause of this build failure was already contained in the Travis

2A more conservative version of Chi-Square specialized to small values.

TABLE V: Training time for VeriCI over a single repository
with variable number of commits (training set size).

Num of Commits 1 20 40 60 80
Training Times (s) 0.049 1.067 2.887 4.824 7.623

log file. This observation leads us to the theory that if the root
cause is easily extractable from the log file, the generated error
message by VeriCI does not yield any significant differences
to find the fix.

VI. DISCUSSION

We discuss the challenges of building learning-based static
analyzers, and how we mitigate possible threats to the validity
of our evaluation.

Uncertainty and Explainability. We envision VeriCI being
used by a developer, or team of developers, in their everyday
CI workflow. In deploying probabilistic program analysis
tools, one of the most important metrics is that the tool has
a very low false positive rate. In the context of VeriCI, it
quantifies the number of times developers are falsely led to
believe there is a build failure that they need to investigate.
Often in practice, this can be the single metric that prevents
adoption, as users will quickly ignore tools with too many false
alarms. Our evaluation results (Table II) have shown that the
average number of false positive reports to average number of
correct classifications are at only 1.8% (FP/TP+TN). For the
remaining uncertainty, our use of decision trees for learning
provides developers with a comprehensible set of rules (see
Fig. 6) that led to the classification. This allows developers to
reason about the outcome more quickly and disqualify false
positives and continue to run the build on the server.

Scalability. We find that VeriCI scales roughly linearly (de-
pendent on the size and complexity of the repositories in
the training set) and list training times in Table V. All the
experiments in this section are conducted on a MacBook Pro
equipped with Haswell Quad Core i7-4870HQ 2.5 GHz CPU,
16GB memory, and PCIe-based 512 GB SSD hard drive.

A. Threats to Validity

Internal Validity. Our learned model may not be the most
ideal within the space of potential hypotheses that classify

build outcomes. In particular, there may be more effective
ways to do code feature extraction. However, the goal of
VeriCI is not to act as a standalone tool, but rather interface
with existing build error prediction tools. The focus of VeriCI
is on prediction of build error localization, not just prediction
of build error status. Despite this more challenging setting,
overall, our results show we have found a sufficiently good
model to demonstrate the value of using a restricted set of
features in the learning process.

External Validity. Our evaluation samples from open-source
projects using Ruby with TravisCI. We sought to ensure that
our results generalize to other contexts, such as repositories
that focus on different core programming languages. First, we
note that the features that we use for learning are agnostic
to the specific languages and technologies used. We intended
for our magic constant feature extraction to be easily applied
to different programming and configuration languages. To test
this, we ran VeriCI on 22 Java repositories (selected using
the same criteria described in Sec. V) and found VeriCI to
have 90.6% predication accuracy, but leave a more thorough
investigation to future work. In terms of generalizing to other
CI frameworks beyond Travis, we note that the information
required from TravisCI to build our model is also available in
other continuous integration frameworks.

VII. RELATED WORK

Building tools for configuration support, management, and
verification has been an active area of research [39], [40], [41],
[42], [43], [44], [21], [45], [46], [22]. Nevertheless, generating
models and checking configuration settings still remains an
open problem.

Continuous Integration build prediction. The increasing
prevalence of CI as a core software development tool has
inspired significant work on the topic. The topic of CI analysis
in particular was explored in the 2017 Mining Software Repos-
itories Mining Challenge [47]. Existing efforts on prediction
of build failures for CI largely rely on metadata in the
learning process [12], [13], [14], [17], [18]. Natural language
processing and sentiment analysis has also been used to predict
build status [15]. Other work falls into the category of test-
case prioritization, and is used to skip CI builds in part or
in whole by analyzing prior build results [48], or observing
changes to comments [49]. However, as none of these metrics
are tied to the code itself, approaches using such metadata
cannot provide the user with any information about which part
of the code they should inspect to isolate and fix the root cause
of the failure. That is - the prior work only provides file level
fault localization [16], [17], not code level fault localization.
In contrast, VeriCI specifically predicts the build status based
on direct code features that users have control over, allowing
them to more easily fix builds.

An additional line of work in CI, complementing build
failure prediction and localization, is that of post-mortem
analysis to automatically repair failed builds. As one example,
BuildMedic [50], is able to automatically repair broken CI

builds in Java repos that use the Maven build system by
analyzing the build logs, but requires the build to execute in
order to analyze the logs.

Learning-based configuration verification. Several machine
learning based misconfiguration detection efforts also have
been proposed [51], [20], [52], [53], [54], [55]. EnCore’s [55]
learning process is guided by a set of predefined rule templates
that enforce learning to focus on patterns of interest. These
works largely target key-value style configurations, which is a
more structured representation than CI configurations.

Language-support misconfiguration checking. There have
been several language-based efforts proposed for specifying
the correctness of system-wide configurations. For example,
in the datacenter network management field, the network ad-
ministrators often produce configuration errors in their routing
configuration files. PRESTO [56] automates the generation
of device-native configurations with configlets in a template
language. Loo et al. [57] adopt Datalog to reason about routing
protocols in a declarative fashion. COOLAID [58] constructs
a language abstraction to describe domain knowledge about
network devices and services for convenient network man-
agement. In software configuration checking area, Huang et
al. [59] proposed a specification language, ConfValley, for
the administrators to write their specifications, thus validating
whether the given configuration files meet administrators’
written specifications. ConfSuggester [22] allows software
versions to be updated while making appropriate changes to
configuration options to maintain backwards compatibility.

Misconfiguration diagnosis. Misconfiguration diagnosis ap-
proaches have been proposed to address configuration prob-
lems post-mortem. For example, BART [60] automatically
extracts anti-patterns and decay in CI by analyzing regular
build logs and repository information, and supports build
fixing through CI build log summarization and linking to Stack
Overflow resources. In addition to log analysis, ConfAid [40]
and X-ray [61] use dynamic information flow tracking to find
possible configuration errors that may have resulted in failures
or performance problems.

VIII. CONCLUSIONS

This paper has presented a novel tool, VeriCI, that auto-
matically checks for errors in CI configurations before the
build process. Driven by the insight that repositories in CI
environments are already labeled with build status histories,
our approach automatically generates specifications for correct
CI configurations. We evaluate VeriCI on real world data from
GitHub and find that we have 91% accuracy of predicting a
build failure. We believe this tool presents a step forward in
improving programmer productivity by eliminating the time
spent waiting on unsuccessful builds.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant No.s CCF-1715387, CCF-
2105208, CCF-1553168 and CNS-1565208.

REFERENCES

[1] G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study of
the pull-based software development model,” in ICSE. ACM, 2014,
pp. 345–355.

[2] “Travis CI,” https://travis-ci.org/, Jan. 2021.
[3] “CircleCI,” https://circleci.com/, Jan. 2021.
[4] “Jenkins,” https://jenkins.io/, Jan. 2021.
[5] “GitLab CI,” https://about.gitlab.com/, Jan. 2021.
[6] “Codefresh,” https://g.codefresh.io/signup?ref=BJV2J4zib, Jan. 2021.
[7] “TeamCity,” https://www.jetbrains.com/teamcity/, Jan. 2021.
[8] SuperCollider, “Supercollider builds,” Oct. 2021, https://travis-ci.org/

github/supercollider/supercollider/builds.
[9] N. Bjorner, “Z3 azure build,” Oct. 2021, https://dev.azure.com/Z3Public/

Z3/ build/results?buildId=2507&view=results.
[10] Z. A. Beller M, Gousios G, “Oops, my tests broke the build: An

analysis of travis ci builds with github,” PREPRINT, 2016. [Online].
Available: https://doi.org/10.7287/peerj.preprints.1984v1

[11] SuperCollider, “[sc-dev] 3.9 delayed to tomorrow,” Mailing List, Jan.
2018, http://www.listarc.cal.bham.ac.uk/lists/sc-dev-2018/msg57997.
html.

[12] A. Ni and M. Li, “Cost-effective build outcome prediction using
cascaded classifiers,” in Mining Software Repositories (MSR), 2017
IEEE/ACM 14th International Conference on. IEEE, 2017.

[13] T. Wolf, A. Schroter, D. Damian, and T. Nguyen, “Predicting build
failures using social network analysis on developer communication,”
in Proceedings of the 31st International Conference on Software Engi-
neering. IEEE Computer Society, 2009.

[14] A. E. Hassan and K. Zhang, “Using decision trees to predict the
certification result of a build,” in Automated Software Engineering, 2006.
ASE’06. 21st IEEE/ACM International Conference on. IEEE, 2006.

[15] K. V. R. Paixão, C. Z. Felı́cio, F. M. Delfim, and M. de A. Maia, “On the
interplay between non-functional requirements and builds on continuous
integration,” in Proceedings of the 14th International Conference on
Mining Software Repositories, ser. MSR ’17. Piscataway, NJ, USA:
IEEE Press, 2017. [Online]. Available: https://doi.org/10.1109/MSR.
2017.33

[16] F. Hassan, “Tackling build failures in continuous integration,” in 2019
34th IEEE/ACM International Conference on Automated Software En-
gineering (ASE). IEEE, 2019.

[17] F. Hassan and X. Wang, “Hirebuild: An automatic approach to history-
driven repair of build scripts,” in International Conference on Software
Engineering (ICSE), 2018.

[18] Y. Lou, J. Chen, L. Zhang, D. Hao, and L. Zhang, “History-driven
build failure fixing: How far are we?” in Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and
Analysis, ser. ISSTA 2019. Association for Computing Machinery,
2019. [Online]. Available: https://doi.org/10.1145/3293882.3330578

[19] M. Santolucito, E. Zhai, and R. Piskac, “Probabilistic automated lan-
guage learning for configuration files,” in CAV, Jul. 2016.

[20] M. Santolucito, E. Zhai, R. Dhodapkar, A. Shim, and R. Piskac,
“Synthesizing configuration file specifications with association rule
learning,” PACMPL, vol. 1, no. OOPSLA, 2017. [Online]. Available:
http://doi.acm.org/10.1145/3133888

[21] A. Weiss, A. Guha, and Y. Brun, “Tortoise: interactive system
configuration repair,” in ASE, 2017. [Online]. Available: https:
//doi.org/10.1109/ASE.2017.8115673

[22] S. Zhang and M. D. Ernst, “Which configuration option should I
change?” ser. ICSE, 2014.

[23] d. bbenezech, “Railsadmin,” https://github.com/sferik/rails admin, 2016,
3fd3b32551e6d2d41cbbc623c99d08656a80be07.

[24] mshibuya, “Rails admin,” https://github.com/sferik/rails admin, 2016,
dca8911f240ea11ebb186c33573188aa9e1b031d.

[25] scambra, “Active scaffold,” https://github.com/activescaffold/active
scaffold, 2016, 10d78ad6ac45a0a55e3c15e12c39d2019aff5146.

[26] ——, “Active scaffold,” https://github.com/activescaffold/active
scaffold, 2016, 87496cfa09a49d071817ba3da0fa6364c92a5191.

[27] G. Forman, “An extensive empirical study of feature selection metrics
for text classification,” Journal of machine learning research, vol. 3, no.
Mar, 2003.

[28] D. Gunning, “Explainable artificial intelligence (XAI),” Defense Ad-
vanced Research Projects Agency (DARPA), nd Web, 2017.

[29] S. Scott and S. Matwin, “Feature engineering for text classification,” in
16th International Conference on Machine Learning (ICML), Jun. 1999.

[30] K. Gallaba, C. Macho, M. Pinzger, and S. McIntosh, “Noise and
heterogeneity in historical build data: An empirical study of travis
ci,” in Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, ser. ASE 2018. ACM, 2018.
[Online]. Available: http://doi.acm.org/10.1145/3238147.3238171

[31] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
Synthetic minority over-sampling technique,” J. Artif. Int. Res., vol. 16,
no. 1, Jun. 2002.

[32] L. Rokach and O. Maimon, Data Mining with Decision Trees: Theroy
and Applications. River Edge, NJ, USA: World Scientific Publishing
Co., Inc., 2008.

[33] jnunemaker, “Flipper,” https://github.com/jnunemaker/flipper, 2019,
f4d68e4eb923d1bd6273aa452fbc4dd7146db75f.

[34] ——, “Flipper,” https://github.com/jnunemaker/flipper, 2019,
9221c50d83e7214fad8f971e5d8d6b76453ebd4f.

[35] B. Cornelissen, A. Zaidman, A. Van Deursen, and B. Van Rompaey,
“Trace visualization for program comprehension: A controlled ex-
periment,” in 2009 IEEE 17th International Conference on Program
Comprehension. IEEE, 2009.

[36] R. Wettel, M. Lanza, and R. Robbes, “Software systems as cities: A
controlled experiment,” in ICSE. IEEE, 2011.

[37] H. B. Mann and D. R. Whitney, “On a test of whether one of two
random variables is stochastically larger than the other,” The annals of
mathematical statistics, pp. 50–60, 1947.

[38] G. A. Barnard, “A new test for 2× 2 tables,” Nature, vol. 156, 1945.
[39] T. Dai, A. Karve, G. Koper, and S. Zeng, “Automatically detecting

risky scripts in infrastructure code,” in Proceedings of the 11th ACM
Symposium on Cloud Computing, ser. SoCC ’20, 2020, p. 358–371.

[40] M. Attariyan and J. Flinn, “Automating configuration troubleshooting
with dynamic information flow analysis,” in OSDI, Oct. 2010.

[41] S. Baset, S. Suneja, N. Bila, O. Tuncer, and C. Isci, “Usable declarative
configuration specification and validation for applications, systems, and
cloud,” in Proceedings of the 18th ACM/IFIP/USENIX Middleware
Conference: Industrial Track. ACM, 2017.

[42] M. Raab, “Elektra: universal framework to access configuration param-
eters,” The Journal of Open Source Software, vol. 1, no. 8, 2016.

[43] R. Shambaugh, A. Weiss, and A. Guha, “Rehearsal: a configuration
verification tool for puppet,” in PLDI, 2016. [Online]. Available:
http://doi.acm.org/10.1145/2908080.2908083

[44] Y. Su, M. Attariyan, and J. Flinn, “AutoBash: Improving configuration
management with operating systems,” in 21st ACM Symposium on
Operating Systems Principles (SOSP), Oct. 2007.

[45] T. Xu, X. Jin, P. Huang, Y. Zhou, S. Lu, L. Jin, and S. Pasupathy,
“Early detection of configuration errors to reduce failure damage,” in
OSDI, Nov. 2016.

[46] T. Xu and Y. Zhou, “Systems approaches to tackling configuration errors:
A survey,” ACM Comput. Surv., vol. 47, no. 4, p. 70, 2015.

[47] J. M. González-Barahona, A. Hindle, and L. Tan, Eds., Proceedings
of the 14th International Conference on Mining Software Repositories,
MSR 2017, Buenos Aires, Argentina, May 20-28, 2017. IEEE
Computer Society, 2017. [Online]. Available: http://ieeexplore.ieee.org/
xpl/mostRecentIssue.jsp?punumber=7959735

[48] S. Elbaum, G. Rothermel, and J. Penix, “Techniques for improving
regression testing in continuous integration development environments,”
in FSE, 2014. [Online]. Available: https://doi.org/10.1145/2635868.
2635910

[49] R. Abdalkareem, S. Mujahid, E. Shihab, and J. Rilling, “Which commits
can be CI skipped?” IEEE Transactions on Software Engineering, 2019.

[50] C. Macho, S. McIntosh, and M. Pinzger, “Automatically repairing
dependency-related build breakage,” in International Conference on
Software Analysis, Evolution and Reengineering (SANER), 2018.

[51] B. Amand, M. Cordy, P. Heymans, M. Acher, P. Temple, and J.-
M. Jézéquel, “Towards learning-aided configuration in 3d printing:
Feasibility study and application to defect prediction,” in Proceedings of
the 13th International Workshop on Variability Modelling of Software-
Intensive Systems. ACM, 2019.

[52] M. Santolucito, E. Zhai, and R. Piskac, “Probabilistic automated lan-
guage learning for configuration files,” in 28th Computer Aided Verifi-
cation (CAV), Jul. 2016.

[53] O. Tuncer, N. Bila, C. Isci, and A. K. Coskun, “Confex: An analytics
framework for text-based software configurations in the cloud,” Tech.
Rep. RC25675 (WAT1803-107), IBM Research, Tech. Rep., 2018.

https://travis-ci.org/
https://circleci.com/
https://jenkins.io/
https://about.gitlab.com/
https://g.codefresh.io/signup?ref=BJV2J4zib
https://www.jetbrains.com/teamcity/
https://travis-ci.org/github/supercollider/supercollider/builds
https://travis-ci.org/github/supercollider/supercollider/builds
https://dev.azure.com/Z3Public/Z3/_build/results?buildId=2507&view=results
https://dev.azure.com/Z3Public/Z3/_build/results?buildId=2507&view=results
https://doi.org/10.7287/peerj.preprints.1984v1
http://www.listarc.cal.bham.ac.uk/lists/sc-dev-2018/msg57997.html
http://www.listarc.cal.bham.ac.uk/lists/sc-dev-2018/msg57997.html
https://doi.org/10.1109/MSR.2017.33
https://doi.org/10.1109/MSR.2017.33
https://doi.org/10.1145/3293882.3330578
http://doi.acm.org/10.1145/3133888
https://doi.org/10.1109/ASE.2017.8115673
https://doi.org/10.1109/ASE.2017.8115673
https://github.com/sferik/rails_admin
https://github.com/sferik/rails_admin
https://github.com/activescaffold/active_scaffold
https://github.com/activescaffold/active_scaffold
https://github.com/activescaffold/active_scaffold
https://github.com/activescaffold/active_scaffold
http://doi.acm.org/10.1145/3238147.3238171
https://github.com/jnunemaker/flipper
https://github.com/jnunemaker/flipper
http://doi.acm.org/10.1145/2908080.2908083
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7959735
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7959735
https://doi.org/10.1145/2635868.2635910
https://doi.org/10.1145/2635868.2635910

[54] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y. Wang, “Automatic
misconfiguration troubleshooting with PeerPressure,” in OSDI, Dec.
2004.

[55] J. Zhang, L. Renganarayana, X. Zhang, N. Ge, V. Bala, T. Xu, and
Y. Zhou, “Encore: Exploiting system environment and correlation in-
formation for misconfiguration detection,” in Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Mar. 2014.

[56] W. Enck, P. D. McDaniel, S. Sen, P. Sebos, S. Spoerel, A. G. Greenberg,
S. G. Rao, and W. Aiello, “Configuration management at massive
scale: System design and experience,” in USENIX Annual Technical
Conference (USENIX ATC), Jun. 2007.

[57] B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan, “Declar-
ative routing: Extensible routing with declarative queries,” in ACM
SIGCOMM (SIGCOMM), Aug. 2005.

[58] X. Chen, Y. Mao, Z. M. Mao, and J. E. van der Merwe, “Declarative
configuration management for complex and dynamic networks,” in ACM
CoNEXT (CoNEXT), Nov. 2010.

[59] P. Huang, W. J. Bolosky, A. Singh, and Y. Zhou, “Confvalley: A
systematic configuration validation framework for cloud services,” in
EuroSys, Apr. 2015.

[60] C. Vassallo, S. Proksch, T. Zemp, and H. C. Gall, “Every build you
break: Developer-oriented assistance for build failure resolution,” 2020.

[61] M. Attariyan, M. Chow, and J. Flinn, “X-ray: Automating root-cause
diagnosis of performance anomalies in production software,” in OSDI,
Oct. 2012.

	Introduction
	Motivating Examples
	Identifying an error within a single file
	Identifying errors spanning multiple files

	Preliminaries
	System Description
	Feature Extraction
	Abstraction Based Relabeling
	Predicting Build Status
	Filtering Error Messages

	Evaluation
	Accuracy of Prediction
	Accuracy of Error Messages
	User Study

	Discussion
	Threats to Validity

	Related Work
	Conclusions
	References

