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Abstract
While reactive synthesis and syntax-guided synthesis (Sy-
GuS) have seen enormous progress in recent years, combin-
ing the two approaches has remained a challenge. In this
work, we present the synthesis of reactive programs from
Temporal Stream Logic modulo theories (TSL-MT), a frame-
work that unites the two approaches to synthesize a single
program. In our approach, reactive synthesis and SyGuS col-
laborate in the synthesis process, and generate executable
code that implements both reactive and data-level properties.
We present a tool, temos, that combines state-of-the-art

methods in reactive synthesis and SyGuS to synthesize pro-
grams from TSL-MT specifications. We demonstrate the ap-
plicability of our approach over a set of benchmarks, and
present a deep case study on synthesizing a music keyboard
synthesizer.

CCS Concepts: • Theory of computation→Modal and
temporal logics.

Keywords: Reactive Synthesis, Syntax-Guided Synthesis, Pro-
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1 Introduction
Reactive synthesis, in the tradition of Church’s Problem [12],
and deductive synthesis, in its modern form of syntax-guided
synthesis (SyGuS) [1], have both seen a tremendous amount
of interest in recent years. The synthesis of the industrial
AMBA AHB bus protocol [7] as well as many other device
drivers [37] are considered milestone successes in using the
reactive synthesis for industrial software. In parallel, the
integration of the Flash Fill feature [19] into Microsoft Excel
has also brought to light various SyGuS-based methods.

While both directions of synthesis research have the same
basic goal of automatically generating correct programs,
their methods and application areas are complementary. In
reactive synthesis, we are interested in finding a reactive sys-
tem, such as a hardware circuit, that implements a given
temporal specification. If such system exists, we say that
it realizes the specification. Reactive synthesis focuses on
the potentially infinite interaction between the system and
its environment, and constructs intricate control strategies
that ensure that the system reacts appropriately to any pos-
sible move by the environment. Typically, reactive synthe-
sis approaches rely on automata transformations to con-
struct finite-state control strategies that can be represented
as Mealy or Moore machines [35]. While reactive synthesis
is focused on generating reactive systems, the goal of SyGuS-
style synthesis techniques is to find a data-transforming
function between input and output data. A SyGuS solver
takes as input a specification, written in some logical for-
malism, such as a set of input/output examples. The goal is
to find a function describing the relation given by the spec-
ification. SyGuS methods consider a syntactically defined
search space: the synthesized functions must be expressible
as terms of a given grammar. This grammar is also an input
parameter of a SyGuS problem. A SyGuS solver finds a solu-
tion and uses an SMT solver to verify that the found term
correctly realizes the specification.

https://doi.org/10.1145/3519939.3523429
https://doi.org/10.1145/3519939.3523429
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Ideal application areas for reactive synthesis are control-
dominated programming problems, such as reactive proto-
cols and circuits [9]; ideal applications of SyGuS are data-
dominated programming problems, such as spreadsheet func-
tions and other data manipulations. Nevertheless, modern ap-
plications do not fall exclusively into either category. Smart-
phone apps, for example, are reactive in the sense that there
is a continuous interplay between the actions of the user
(such as clicking on buttons) and actions by the app (such
as requesting some information over the network). On the
other hand, data processing, such as the organization of the
music tracks in a music player app, is equally important for
the correct functioning of the app. As a result, such applica-
tions are difficult to synthesize with either approach: reactive
synthesis reasons about the reactive behavior but not about
the data, SyGuS reasons about the data, but not about the
reactive behavior.
In this paper, we present a program synthesis technique

that combines reactive synthesis and SyGuS, allowing us to
automatically generate non-trivial reactive programs, such as
a Linux kernel scheduler. Ourmethod leverages the strengths
of both approaches, and is well-suited to construct programs
where control and data both play an important role. As the
specification language we use an input formalism that is
powerful enough to express the specification that includes
simultaneously both temporal properties as well as data-
transformations. The main idea behind our synthesis tech-
nique is to automatically derive additional temporal con-
straints from the data-transformation based properties of
the specification. To do this, we first identify data transfor-
mation tasks in the specification, and then, using SyGuS,
we generate functions that implement these data transfor-
mations. Next, using reactive synthesis we integrate these
functions into a control structure that satisfies the reactive
requirements.

As the interface between SyGuS and reactive synthesis, we
use TSL [18], a variant of temporal logic that is sufficiently
powerful to express the requirements on both data trans-
formations and reactive behavior. Temporal Stream Logic
(TSL) [18] extends linear-time temporal logic (LTL) with
first-order variables. TSL also support first-order functions
and predicates. Of particular interest is the update predicate
[𝑥 ↢ 𝑣 ] that assigns a new value 𝑣 to some variable 𝑥 ,
where 𝑣 can be an arbitrary function term. The introduc-
tion of predicate and function terms in a temporal logic
makes it possible to capture both reactive properties and
data-level manipulations within a common specification. Ex-
isting synthesis procedures for TSL [17, 18] are reactive in
its nature and as such they do not employ any particular
theory reasoning but they treat functions and predicates as
uninterpreted symbols. Although these synthesis procedures
can synthesize a music player app and its basic function-
ality [18], its specification is highly complex and contains

many workarounds as not being able to apply semantics of
some predicates and functions is a serious obstacle.
We illustrate the problems that TSL synthesis is facing

using the following simple:

(𝑥 = 0 → 𝑥 = 2)
( [𝑥 ↢ 𝑥 + 1] ∨ [𝑥 ↢ 𝑥 − 1])

The system described by this specification must eventually
set the counter value to 𝑥 = 2 after the counter reaches
𝑥 = 0. To do this, the system can apply one of two updates
in every time step: either incrementing or decrementing the
𝑥 counter. Conceptually, this specification can be satisfied
with a simple system, denoted by S, that always chooses to
increment the counter.
However, the above specification is not realizable in TSL

logic, because TSL synthesis techniques treat the symbols
for addition, subtraction, and equality as uninterpreted. Yet,
it is clear to us that the system S implements the given speci-
fication. To synthesize such a system, we need to combine an
understanding of temporal properties with an understanding
of Linear Integer Arithmetic.

We use this example to outline the basic steps of our syn-
thesis procedure. We first extract predicate and function sym-
bols to form the grammar for the SyGuS problem. By running
a SyGuS solver on the problem extracted from the specifi-
cation, we obtain a sequential program [𝑥 ↢ 𝑥 + 1]; [𝑥 ↢
𝑥 + 1], which increases the value of 𝑥 from 0 to 2. Next, we
analyze this program to add the temporal understanding that
this program would take two time steps to execute given the
constraints of our system, and augment the original specifi-
cation with an additional assumption:

𝜓 = (𝑥 = 0∧ [𝑥 ↢ 𝑥 + 1] ∧ [𝑥 ↢ 𝑥 + 1] → 𝑥 = 2),
which states that whenever 𝑥 is 0, its value can be changed
to 2 by incrementing 𝑥 twice. Formula𝜓 is valid in TSL and it
is safe to add it as an assumption to the original specification.
The resulting formula𝜓 → 𝜑 is passed to the reactive synthe-
sis algorithm. While “+” is only an uninterpreted function
symbol in TSL, the assumption formula 𝜓 provides addi-
tional constraints that “+” has to satisfy. Those constraints
are derived from the semantics of “+”. Note that formula 𝜑
is unrealizable in TSL, but𝜓 → 𝜑 is realizable.

In this paper we define a general synthesis procedure for
TSL modulo theories (TSL-MT) [16], which combines reac-
tive synthesis and SyGuS. Existing synthesis methods for
TSL [18] cannot handle specifications in TSL-MT because
TSL assumes functions and predicates terms are uninter-
preted. This means TSL requires the specification to be sat-
isfied for all possible interpretations of the symbols, rather
than only by the interpretations admitted by the specific the-
ories. In general, we must therefore weaken the TSL formula
with additional assumptions that are valid in the theories
under consideration but do not hold in general for uninter-
preted symbols.
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inputs:
𝑡𝑎𝑠𝑘1
𝑡𝑎𝑠𝑘2

cells:
𝑣𝑟𝑢𝑛𝑡𝑖𝑚𝑒1, 𝑣𝑟𝑢𝑛𝑡𝑖𝑚𝑒2

output:
𝑛𝑒𝑥𝑡_𝑡𝑎𝑠𝑘

control
circuit

enqueueenqueue

dequeuedequeue

updatesupdates

Figure 1. The process scheduler uses predicate evaluations
to control which function will be applied to generate the
updated values in each time step.

Our synthesis procedure takes as input a TSL-MT formula
and outputs an executable program code. The synthesis pro-
cedure supports any theory extension that is also supported
by the underlying SyGuS solver.

We have empirically tested our approach by implementing
a tool, temos, and evaluated it on a set of benchmarks for
reactive systems. We also present a case study where we
build an online tool that allows users to synthesize and then
run JavaScript code from a TSL-MT specification.

In summary, our contributions are as follows:
1. We introduce the synthesis problem of TSL modulo

theories (TSL-MT) as a way of synthesizing reactive
systems over first-order theories.

2. We present a method for the extraction of data trans-
formation tasks from TSL-MT specifications, and for
the translation of programs that implement such tasks
into valid TSL-MT assumptions.

3. We demonstrate the practical applications of the ap-
proach by synthesizing executable code for a Linux
process scheduler as well as a music keyboard synthe-
sizer.

2 Motivating Example
One of the most complicated tasks that we have synthesized
is the Linux Completely Fair Scheduler (CFS) [30, 39]. We
use it as an illustrative example to show how TSL-MT can
be used to specify behavior with both temporal guarantees
and data-transformation guarantees. In Linux, CFS is the
default scheduler for most user processes, with its policy
SCHED_NORMAL. Whenever CFS needs to schedule a new task,
it does so by choosing the task with the lowest virtual run-
time (vruntime), a weighted value of how long each task has
used the CPU. Diagrammatically, this can be modeled as a
reactive system as shown in Fig. 1.

For better readability, the scheduler depicted in Fig. 1 is a
simplified version with only two processes. The scheduler
takes as input two signals, task1 and task2, and outputs the

( [𝑛𝑒𝑥𝑡_𝑡𝑎𝑠𝑘 ↢ 𝑡𝑎𝑠𝑘1 ] ∨ [𝑛𝑒𝑥𝑡_𝑡𝑎𝑠𝑘 ↢ 𝑡𝑎𝑠𝑘2 ]∨
[𝑛𝑒𝑥𝑡_𝑡𝑎𝑠𝑘 ↢ 𝑖𝑑𝑙𝑒 ])
(enqueue 𝑡𝑎𝑠𝑘1 → ( [𝑛𝑒𝑥𝑡_𝑡𝑎𝑠𝑘 ↢ 𝑡𝑎𝑠𝑘1 ])
∨ dequeue 𝑡𝑎𝑠𝑘1)
(enqueue 𝑡𝑎𝑠𝑘2 → ( [𝑛𝑒𝑥𝑡_𝑡𝑎𝑠𝑘 ↢ 𝑡𝑎𝑠𝑘2 ])
∨ dequeue 𝑡𝑎𝑠𝑘2)
(dequeue 𝑡𝑎𝑠𝑘1 → (¬[𝑛𝑒𝑥𝑡_𝑡𝑎𝑠𝑘 ↢ 𝑡𝑎𝑠𝑘1 ])
W enqueue 𝑡𝑎𝑠𝑘1)
(dequeue 𝑡𝑎𝑠𝑘2 → (¬[𝑛𝑒𝑥𝑡_𝑡𝑎𝑠𝑘 ↢ 𝑡𝑎𝑠𝑘2 ])
W enqueue 𝑡𝑎𝑠𝑘2)
( [𝑛𝑒𝑥𝑡_𝑡𝑎𝑠𝑘 ↢ 𝑡𝑎𝑠𝑘1 ] ↔
[𝑣𝑟𝑢𝑛𝑡𝑖𝑚𝑒1 ↢ 𝑣𝑟𝑢𝑛𝑡𝑖𝑚𝑒1 +𝑤𝑒𝑖𝑔ℎ𝑡1 ])
( [𝑛𝑒𝑥𝑡_𝑡𝑎𝑠𝑘 ↢ 𝑡𝑎𝑠𝑘2 ] ↔
[𝑣𝑟𝑢𝑛𝑡𝑖𝑚𝑒2 ↢ 𝑣𝑟𝑢𝑛𝑡𝑖𝑚𝑒2 +𝑤𝑒𝑖𝑔ℎ𝑡2 ])
(𝑣𝑟𝑢𝑛𝑡𝑖𝑚𝑒1 < 𝑣𝑟𝑢𝑛𝑡𝑖𝑚𝑒2 → ¬[𝑛𝑒𝑥𝑡_𝑡𝑎𝑠𝑘 ↢ 𝑡𝑎𝑠𝑘2 ])
(𝑣𝑟𝑢𝑛𝑡𝑖𝑚𝑒2 < 𝑣𝑟𝑢𝑛𝑡𝑖𝑚𝑒1 → ¬[𝑛𝑒𝑥𝑡_𝑡𝑎𝑠𝑘 ↢ 𝑡𝑎𝑠𝑘1 ])

Figure 2. The TSL-MT specification for a simplified Linux
CFS.

signal next_task which is the next task to be scheduled. A
signal in TSL plays the same role as a variable in the first-
order logic: signals are arguments of function and predicate
expressions. In this particular case, each signal is actually an
integer variable corresponding to the process ID generated
by the kernel. Internal signals, so called “cells”, are internal
variables. They can be updated, and their updated values are
used in further computations. This way cells are both: input
and output signals.

A simplified specification for CFS with two processes can
be written as shown in Fig. 2.

Here, enqueue and dequeue are environmental predicates,
and weight is a positive integer that the user (the environ-
ment) can modify. The weak until operator, 𝜑W𝜓 , states
that either 𝜑 holds until𝜓 happens, or 𝜑 holds always. In our
particular example, the specification states that if a task is de-
queued, it cannot be scheduled until it is again enqueued. The
first four formulas define the usual properties of a scheduler
that enqueues and dequeues tasks, with liveness guarantees
for enqueued tasks. More interestingly, the last four formu-
las define the fairness of the scheduler. They specify that
scheduling a task updates its vruntime with respect to its
weight (assumed to be positive), and that the system should
always choose the task with the lowest vruntime to run next.
Even though the specification is just a simplified version

of a real scheduler, it contains components of both reactive
control and data manipulation: the system must react to the
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environment by applying data transformations to virtual run-
times. Standard synthesis methods based on temporal logic
cannot synthesize this system, because it requires knowledge
of how data transformations alter its state. For instance, the
synthesis algorithmmust be aware that it is possible to satisfy
the liveness guarantee [𝑛𝑒𝑥𝑡_𝑡𝑎𝑠𝑘 ↢ 𝑡𝑎𝑠𝑘1 ] by ensuring
that 𝑣𝑟𝑢𝑛𝑡𝑖𝑚𝑒1 < 𝑣𝑟𝑢𝑛𝑡𝑖𝑚𝑒2 does not hold forever: incre-
menting 𝑣𝑟𝑢𝑛𝑡𝑖𝑚𝑒1 at each timestep will eventually make it
greater than 𝑣𝑟𝑢𝑛𝑡𝑖𝑚𝑒2. In other words, the synthesis must
infer the following data properties:

(𝑣𝑟𝑢𝑛𝑡𝑖𝑚𝑒1 < 𝑣𝑟𝑢𝑛𝑡𝑖𝑚𝑒2 ∧
([𝑣𝑟𝑢𝑛𝑡𝑖𝑚𝑒1 ↢ 𝑣𝑟𝑢𝑛𝑡𝑖𝑚𝑒1 +𝑤𝑒𝑖𝑔ℎ𝑡1 ] ∧
[𝑣𝑟𝑢𝑛𝑡𝑖𝑚𝑒2 ↢ 𝑣𝑟𝑢𝑛𝑡𝑖𝑚𝑒2 ]W 𝑣𝑟𝑢𝑛𝑡𝑖𝑚𝑒2 < 𝑣𝑟𝑢𝑛𝑡𝑖𝑚𝑒1)
→ 𝑣𝑟𝑢𝑛𝑡𝑖𝑚𝑒2 < 𝑣𝑟𝑢𝑛𝑡𝑖𝑚𝑒1)

(𝑣𝑟𝑢𝑛𝑡𝑖𝑚𝑒2 < 𝑣𝑟𝑢𝑛𝑡𝑖𝑚𝑒1 ∧
([𝑣𝑟𝑢𝑛𝑡𝑖𝑚𝑒2 ↢ 𝑣𝑟𝑢𝑛𝑡𝑖𝑚𝑒2 +𝑤𝑒𝑖𝑔ℎ𝑡2 ] ∧
[𝑣𝑟𝑢𝑛𝑡𝑖𝑚𝑒1 ↢ 𝑣𝑟𝑢𝑛𝑡𝑖𝑚𝑒1 ]W 𝑣𝑟𝑢𝑛𝑡𝑖𝑚𝑒1 < 𝑣𝑟𝑢𝑛𝑡𝑖𝑚𝑒2)
→ 𝑣𝑟𝑢𝑛𝑡𝑖𝑚𝑒1 < 𝑣𝑟𝑢𝑛𝑡𝑖𝑚𝑒2)

In the following sections, we present a method of gener-
ating these reactive data transformation specifications by
dividing up the synthesis task into two parts: a reactive syn-
thesis component, and a syntax-guided synthesis component.
We then allow the synthesis tasks to collaborate, and ulti-
mately produce a program.

3 Preliminaries
3.1 Temporal Stream Logic
Temporal Stream Logic (TSL) [18] extends linear-time tempo-
ral logic (LTL) [34] with uninterpreted predicates and func-
tions. TSL is a specialized logic for reactive synthesis, specif-
ically for the synthesis of functional reactive programs [15].
With TSL, one can specify a reactive system that reacts to
an infinite stream of inputs to produce an infinite stream of
outputs. Based on such a specification, TSL synthesis pro-
duces a reactive program in a language such as Haskell or
JavaScript.

TSL is based on the usual LTL operators next and until
U. Additionally, the syntax of TSL contains predicate terms
𝜏𝑃 , function terms 𝜏𝐹 , and update terms 𝜏𝑈 , as defined in the
following grammar:

𝜑 := 𝜏 ∈ T𝑃 ∪ T𝑈 | ¬𝜑 | 𝜑 ∧ 𝜑 | 𝜑 | 𝜑U 𝜑

𝜏𝐹 := s | f(𝜏0𝐹 , 𝜏
1
𝐹 , . . . , 𝜏

𝑛−1
𝐹 )

𝜏𝑃 := p(𝜏0𝐹 , 𝜏
1
𝐹 , . . . , 𝜏

𝑛−1
𝐹 )

𝜏𝑈 := [s ↢ 𝜏𝐹 ]
We also use the standard derived operators, such as release
𝜑 R𝜓 ≡ ¬(¬𝜑U¬𝜓 ), always 𝜑 ≡ ⊥R 𝜑 , eventually 𝜑 ≡
𝑡𝑟𝑢𝑒U 𝜑 , and weak until 𝜑W𝜓 ≡ (𝜑U𝜓 ) ∨ ( 𝜑). All TSL
formulas can be transformed into a negation normal form,

where negations only appear in front of predicate and update
terms, and all operators are in the set {∧,∨, ,U,R}.
TSL describes the behavior of a reactive system in terms

of signals, denoted with s, which carry data values of arbi-
trary type. A TSL specification describes how the functions
may be applied to these signals over time. Signals can be
pure outputs or cells that memorize data values such that
the outputs of time 𝑡 is available as an input for time 𝑡 + 1.
These properties define the semantics of TSL, which follow
the usual LTL semantics with the addition of predicate eval-
uations, function evaluations, and update terms. A formal
definition of the TSL semantics is available in [18].

The realizability problem of TSL is stated as: given a TSL
formula 𝜑 , is there a strategy 𝜎 ∈ I+ → O mapping a finite
input steam to an output, such that for any input stream
𝜄 ∈ I𝜔 , and every possible function interpretation (some
concrete implementation) ⟨·⟩ : F→ F , the execution of that
strategy over the input 𝜎 ≀ 𝜄 satisfies 𝜑 , i.e.,

∃𝜎 ∈ I+ → O . ∀𝜄 ∈ I𝜔 . ∀⟨·⟩ : F→ F . 𝜎 ≀ 𝜄, 𝜄 ⊨⟨·⟩ 𝜑

If such a strategy𝜎 exists,𝜎 realizes𝜑 . The synthesis problem
of TSL asks for a concrete instantiation of 𝜎 . In TSL synthesis,
this model 𝜎 can be abstracted as a Control Flow Model
(CFM), which can then be implemented as program code. A
formal definition of the TSL realizability and synthesis is
available in [18].

3.2 First-Order Theories
A First-Order Theory T is a class of models over First-Order
Logic (FOL) with the some signature Σ [5]. More precisely,
we can define a first-order theory as a tuple (Σ𝐹 , Σ𝑃 ,A)
where:

• Σ𝐹 a set of function symbols, Σ𝑃 a set of predicate
symbols. The set Σ = Σ𝐹 ∪ Σ𝑃 is known as a signature.

• A a set of closed FOL formulae over Σ𝐹 , Σ𝑃 , and V a
set of variables. Then A is called the axioms of T .

Solving for constraint satisfiability of these first-order the-
ory formulas is known as the Satisfiability Modulo Theories
(SMT) [5] problem, which has seen large progress in the
previous two decades.

3.3 TSL Modulo Theories (TSL-MT)
TSL-MT [16] generalizes TSL with first-order theories. Given
a First-Order Theory T = (Σ𝐹 , Σ𝑃 ,A), a TSL-MT formula
𝜑T is constructed as follows:

𝜑T := 𝜏 ∈ T𝑃 ∪ T𝑈 | ¬𝜑T | 𝜑T ∧ 𝜑T | 𝜑T | 𝜑T U 𝜑T
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f ∈ Σ𝐹

𝜏𝐹 := s | f(𝜏0𝐹 , 𝜏
1
𝐹 , . . . , 𝜏

𝑛−1
𝐹 )

p ∈ Σ𝑝

𝜏𝑃 := p(𝜏0𝐹 , 𝜏
1
𝐹 , . . . , 𝜏

𝑛−1
𝐹 )

𝜏𝑈 := [s ↢ 𝜏𝐹 ]

TSL-MT specifications can refer to any arbitrary first-
order theory, such as the theory of Linear Integer Arithmetic
(LIA) or the Theory of Arrays. TSL is the special case of TSL-
MT where all symbols are from the Theory of Uninterpreted
Functions.

3.4 Syntax-Guided Synthesis
Syntax-Guided Synthesis (SyGuS) [1] is a framework for
program synthesis that applies both semantic and syntac-
tic restrictions on the possible space of solutions. A SyGuS
problem is defined in two parts: a second-order formula
∃𝑓 .∀𝑥 . 𝜑 [𝑓 , 𝑥] over some first-order theoryT , and a context-
free grammar R that defines the possible syntactic forms of
𝑓 . A solution 𝑓 for the SyGuS problem then is a lambda term
𝜆𝑥.𝑒 of the same type as 𝑓 such that ∀𝑥 . 𝜑 [𝜆𝑥. 𝑒, 𝑥] is valid
in T and where 𝑒 can be generated by the grammar R.

4 Synthesis from TSL-MT Specifications
The synthesis problem of TSL-MT is to generate a model
that satisfies a TSL-MT formula. This is a generalization of
the synthesis problem of TSL. In TSL synthesis, since all
functions and predicates are uninterpreted, we search for a
strategy 𝜎 that satisfies the specification 𝜑 over all possible
function implementations ⟨·⟩ (equation (1)). However, in TSL-
MT, we search for a strategy 𝜎 that satisfies the specification
𝜑T with function and predicate implementations as defined
by the user in the selected first order theory T (equation (2)):

∃𝜎 ∈ I+ → O . ∀𝜄 ∈ I𝜔 . ∀⟨·⟩ : F→ F . 𝜎 ≀ 𝜄, 𝜄 ⊨⟨·⟩ 𝜑 (1)

∃𝜎 ∈ I+ → O . ∀𝜄 ∈ I𝜔 . 𝜎 ≀ 𝜄, 𝜄 ⊨⟨·⟩ 𝜑T (2)

The synthesis problem of TSL is then a sub-problem of
the synthesis problem of TSL-MT: TSL is equivalent to TSL-
MT with the Theory of Uninterpreted Functions being the
selected first order theory T . A consequence of this relation
is that since TSL synthesis is undecidable [18], the general
problem of TSL-MT synthesis is also undecidable and hence
incomplete.

In order to synthesize a program from a TSL-MT specifica-
tion, we first decompose the formula into its corresponding
TSL formula, the set of its predicate literals, and the set of
data transformation obligations. On the predicate literals, we
perform a consistency checking step to produce assumptions
that the environment does not produce invalid inputs. With
our data transformation obligations, we perform our main
task, using SyGuS to implement data transformation pro-
grams. We combine these programs with the obligations and

encode them as assumptions in TSL. The resulting (weak-
ened) TSL formula is fed into reactive synthesis. If the TSL
formula is realizable, we synthesize a program; otherwise,
we refine by returning to SyGuS for further assumptions.

Figure 3 shows an overview of the procedure. In the fol-
lowing, we describe each part of the process in detail.

TSL-MT
Specification

Syntactic
Decomposition

Predicate LiteralsTSL Specification Data Transformation
Obligations

Consistency
Checking

Syntax-Guided
Synthesis

Consistency
Assumptions

Data Transformation
Programs

TSL with
Assumptions

Reactive
Synthesis

Reactive Program

✗ Refinement Loop

✓

Figure 3. Overview of the Synthesis Procedure

4.1 Syntactic Decomposition
We begin by decomposing the TSL-MT specification into a
TSL specification, predicate literals, and data transformation
obligations. We obtain the predicate literals by parsing the
TSL-MT formula, and produce the TSL specification by re-
moving the semantics of function and predicate terms from
TSL-MT.

To generate the necessary data transformations, we frame
the problem as enumerating data transformation obligations,
analogous to the proof obligations of a Hoare Triple [21].
From some predicate evaluation state, the pre-condition, we
define a future predicate evaluation we want to reach, the
post-condition. Then, unlike a Hoare Triple, which has a pre-
defined command, we can frame our obligation as a program
synthesis problem searching for the data transformation
program S that satisfies the pre- and post-conditions:
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Pre-condition Program Post-condition
𝑝𝑝𝑟𝑒 (𝑠1 · · · 𝑠𝑚) S ( 𝑛 | ) 𝑝𝑝𝑜𝑠𝑡 (𝑠1 · · · 𝑠𝑚)
To generate the obligations, we choose the pre-condition

and post-conditions from the predicate literals in the spec-
ification. However, since the specification states that the
post-condition must hold in the future, we need to find the
temporal operator associated with the post-condition. In
order to obtain the set of temporal operators assigned to a lit-
eral, we first transform the original specification to negation
normal form (NNF).
Then, for each predicate literal in the NNF, we group it

into its temporal atom, the formula connected to the literal by
only logical connectives. We traverse up the AST towards the
root in order to find the temporal operators associated with
this temporal atom. If the traversal encounters a operator,
we simply increment the count of operators we have seen
thus far and add a postcondition of the form count p into the
list of our post-conditions, where p is the predicate literal.
If we traverse upwards and find aU operator associated

with the temporal atom, we can divide it two cases, whether
the atom is on the left or the right of the operator. If it is
on the right-hand side, by the semantics of theU operator,
we know that a satisfying model must be able to produce

p, where p is a predicate. Similarly, if the temporal atom is
on the left hand side of the U operator, then the model will
need the property p → p as long as the right-hand side
of U operator is false. At this point, since p ≡ p ≡

p, we can exit the loop without reaching the root of the
AST since further traversals will not add complexity to the
temporal clauses associated with the predicate literal.

After we obtain the pre- and post-conditions, we generate
a powerset to obtain all possible boolean combinations. Since
temporal operators are associated with each postcondition,
the maximum time (i.e. a , or if none exists, the maximum
number of operators) of a postcondition is assigned as its
temporal operator. With these pre- and post-conditions, de-
composition can generate all necessary data transformation
obligations.
A formalized version of the procedure is available in Al-

gorithm 1.

4.2 Consistency Checking
In a reactive system, the environment may produce any
arbitrary data value within the domain as inputs. In a TSL-
MT specification, users write predicate terms on these inputs
to specify how the system should react to the environment.
However, not all predicate terms are satisfiable. Given a

background theory T , certain predicates or their conjunc-
tions may be unsatisfiable; the environment may be unable
to produce any values (models) that satisfy the predicate
term. For instance, consider the following TSL-MT formula:

(𝑥 < 𝑦 → [𝑚𝑢𝑡𝑒𝑥 ↢ 𝑥 ]) ∧
(𝑦 < 𝑥 → [𝑚𝑢𝑡𝑒𝑥 ↢ 𝑦 ])

Algorithm 1: Syntactic Decomposition
Input: TSL-MT Specification
Output: Data Transformation Obligations

1 predLiterals = all predicate literals in the TSL-MT
formula;

2 preconditions = predLiterals;
3 postconditions = {};
4 dtoList = {};

/* Traverse the AST backwards to collect temporal

operators */

5 foreach p in predLiterals do
6 numNext = 0;
7 temporalAtom = GET-TEMPORAL-ATOM(p);
8 while TRUE do
9 parent = PARENT-AST-NODE(temporalAtom);

/* Reached root of AST */

10 if parent == ∅ then
11 break;

/* Reached U */

12 else if parent.temporalOperator == U then
13 if parent.Right == temporalAtom then
14 postconditions.append( p);
15 else
16 postconditions.append( p);
17 end
18 break;

/* Reached */

19 else
20 ++numNext;
21 postconditions.append(( 𝑛𝑢𝑚𝑁𝑒𝑥𝑡 p));
22 temporalAtom = parent;
23 end
24 end
25 end

/* Form Data Transformation Obligations with the pre-

and post-conditions */

26 foreach 𝑝𝑝𝑟𝑒 in POWERSET(preconditions) do
27 foreach 𝑝𝑝𝑜𝑠𝑡 in POWERSET(postconditions) do
28 dtoList.append(𝑝𝑝𝑟𝑒 , 𝑝𝑝𝑜𝑠𝑡 );
29 end
30 end
31 return dtoList;

Intuitively, this specification states that 𝑚𝑢𝑡𝑒𝑥 is updated
with min(𝑥,𝑦). Even though the specification is realizable
in TSL-MT, reducing it to TSL without the semantics of
< renders it unrealizable. Since reactive synthesis has no
knowledge of arithmetic, it assumes the environment can
produce values of 𝑥 and 𝑦 that simultaneously satisfy 𝑥 < 𝑦

and 𝑦 < 𝑥 . As the system cannot update 𝑚𝑢𝑡𝑒𝑥 with two
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values at the same timestep, synthesis cannot produce a
model.

However, in a standard interpretation of < (e.g., Real Arith-
metic), (𝑥 < 𝑦) ∧ (𝑦 < 𝑥) is unsatisfiable. Therefore, the en-
vironment can never produce values of 𝑥 and 𝑦 that satisfy
the predicate terms simultaneously, and we need to add the
consistency assumption ¬(𝑥 < 𝑦 ∧𝑦 < 𝑥) to TSL. With this
assumption, reactive synthesis is able to produce a model.

In general, we can generate these consistency assumptions
by enumerating the powerset of all predicate literals in the
specification. Then, we check the satisfiability of these pred-
icates with an SMT solver, and add assumptions of the form
¬𝑝 for all unsatisfiable 𝑝 . In the worst case, this produces

O(2𝑛) satisfiability queries. While exponential, in practice
this process can be done quickly, as modern SMT solvers are
capable of solving queries with millions of constraints.

4.3 Syntax-Guided Synthesis
After we identify the data transformation obligations from
the TSL-MT specification, we can apply syntax-guided syn-
thesis to generate functions that implement the transforma-
tions. Depending on the temporal operator associated with
the post-condition, we have two different kinds of grammars
for SyGuS: one for sequential programs with fixed number
of executions, and one for looping programs with arbitrary
long length. We discuss the context-free grammar for each
kind of program, and explain the encoding to a TSL formula.

4.3.1 Sequential Programs. We first examine synthesis
of sequential programs for data transformation obligations
with explicitly defined number of timesteps. The obligation
contains two parts: the pre-condition 𝑝𝑝𝑟𝑒 , and the post-
condition 𝑛 𝑝𝑝𝑜𝑠𝑡 . The predicate terms 𝑝𝑝𝑟𝑒 and 𝑝𝑝𝑜𝑠𝑡 define
the semantic constraints for our SyGuS problem. For the
syntactic constraint, we consider the case of building the
grammar for a function 𝑓𝑖 that transforms some signal term
𝑠𝑖 in the obligation. In order to construct the grammar, we
find the set of functions and signals F that can update the
value of 𝑠𝑖 . We can then construct our context-free grammar
for the function 𝑓𝑖 (𝑠1 · · · 𝑠𝑚) as follows:

S ::= F S | 𝑠𝑖

We can build a SyGuS query from the semantic and syn-
tactic constraints, and send it to a SyGuS solver. The solver
will produce a function that satisfies the constraints. How-
ever, it still remains to convert this into a meaningful form
for reactive synthesis. Therefore, we translate the resulting
function into a TSL assumption by “unrolling” each node
of the AST. We traverse the AST from the leaves up to the
root, transforming each node of the AST into an update term.
Since TSL can apply functions over multiple timesteps, we
prefix a number of temporal next operators to the update
terms that corresponds to its distance from the leaves. This

procedure results in a chain of update terms that we call𝑢𝑝𝑑 :
[𝑠1 ↢ 𝑓10 (𝑠1 · · · 𝑠𝑚) ] ∧ · · · [𝑠𝑚 ↢ 𝑓𝑚0 (𝑠1 · · · 𝑠𝑚) ]∧
([𝑠1 ↢ 𝑓11 (𝑠1 · · · 𝑠𝑚) ] ∧ · · · [𝑠𝑚 ↢ 𝑓𝑚1 (𝑠1 · · · 𝑠𝑚) ]) ∧ · · ·

𝑛−1 ( [𝑠1 ↢ 𝑓1𝑛 (𝑠1 · · · 𝑠𝑚) ] ∧ · · · [𝑠𝑚 ↢ 𝑓𝑚𝑛 (𝑠1 · · · 𝑠𝑚) ])
Here, 𝑓𝑖 𝑗 is the update term for the 𝑖th signal at time 𝑗 .
With our TSL encoding of the SyGuS function, we then

combine it with the pre- and post-conditions of the data
transformation obligation to produce a TSL assumption

(𝑝𝑝𝑟𝑒 ∧ 𝑢𝑝𝑑 → 𝑛 𝑝𝑝𝑜𝑠𝑡 )
We formalize the procedure in Algorithm 2, and prove its

correctness in Theorem 4.1.

Algorithm 2: Sequential Programs to TSL
Input: Function AST, 𝑝𝑝𝑟𝑒 , 𝑝𝑝𝑜𝑠𝑡
Output: TSL Assumption

1 assumption = “ 𝑝𝑝𝑟𝑒”;
2 timeSteps = 0;
3 astNode = leaf;
4 while astNode != root do
5 assumption += “ ∧ timeSteps astNode”;
6 astNode = astNode.parent;
7 ++timeSteps;
8 end
9 assumption += “ → timeSteps 𝑝𝑝𝑜𝑠𝑡 ”;

10 return assumption

Theorem 4.1 (Soundness of SyGuS-TSL Translation for Se-
quential Programs). Let 𝜑TSL-MT be a TSL-MT specification
and 𝜑𝑇𝑆𝐿 the TSL specification with assumptions generated
from the SyGuS-TSL translation procedure via Algorithm 2.
Then, for all models 𝑀TSL |= 𝜑𝑇𝑆𝐿 , there exists 𝑀TSL-MT such
that𝑀TSL-MT |= 𝜑TSL-MT.

Proof. Consider the generated assumption:
(𝑝𝑝𝑟𝑒 ∧ 𝑢𝑝𝑑 → 𝑛+1 𝑝𝑝𝑜𝑠𝑡 )

where 𝑝𝑝𝑟𝑒 is some predicate literal 𝑝1 (𝑠1 . . . 𝑠𝑚) and 𝑝𝑝𝑜𝑠𝑡
also some predicate literal 𝑝2 (𝑠1 . . . 𝑠𝑚). Then using the com-
putation function from [18], we can define the predicate
evaluation of 𝑝𝑝𝑜𝑠𝑡 at time 𝑡 + 𝑛 + 1 as follows:

𝜂 (𝜍, 𝜄, 𝑡 + 𝑛 + 1, 𝑝2 (𝑠1 · · · 𝑠𝑛)) =
⟨𝑝2⟩𝜂 (𝜍, 𝜄, 𝑡 + 𝑛 + 1, 𝑠1) · · ·𝜂 (𝜍, 𝜄, 𝑡 + 𝑛 + 1, 𝑠𝑛)

Without loss of generality, let us choose an arbitrary signal
𝑠𝑖 , and consider its evaluation at time 𝑡 + 𝑛 + 1:

𝜂 (𝜍, 𝜄, 𝑡 + 𝑛 + 1, 𝑠𝑖 ) =
𝜂 (𝜍, 𝜄, 𝑡 + 𝑛, 𝜍 (𝑡 + 𝑛) (𝑠𝑖 )) =
𝜂 (𝜍, 𝜄, 𝑡 + 𝑛 − 1, 𝜍 (𝑡 + 𝑛) (𝜍 (𝑡 + 𝑛 − 1) (𝑠𝑖 ))) =
· · ·
𝜂 (𝜍, 𝜄, 𝑡, 𝜍 (𝑡 + 𝑛) (𝜍 (𝑡 + 𝑛 − 1) (· · · 𝜍 (𝑡) (𝑠𝑖 ))))
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Therefore, the evaluation of the term 𝑠𝑖 at time 𝑡 + 𝑛 + 1 can
be defined as the chain of computations 𝜍 (𝑡) · · · 𝜍 (𝑡 + 𝑛) on
the term 𝑠1 at time 𝑡 .

Now, we consider that 𝑢𝑝𝑑 was the chain of update terms,
𝑢10 ∧ · · ·𝑢𝑚0 ∧ (𝑢11 ∧ · · ·𝑢𝑚1) · · · 𝑛 (𝑢1𝑛 ∧ · · ·𝑢𝑚𝑛), gener-
ated by the step-by-step AST deconstruction from the func-
tion derived by the following program synthesis query:

∃𝑓1 · · · 𝑓𝑚 . ∀𝑠1 · · · 𝑠𝑚 .

𝑝𝑝𝑟𝑒 (𝑠1 · · · 𝑠𝑚) → 𝑝𝑝𝑜𝑠𝑡 (𝑓1 (𝑠1 · · · 𝑠𝑚) · · · 𝑓𝑚 (𝑠1 · · · 𝑠𝑚))
Since each step of the computation on signal 𝑠𝑖 at any

time 𝑗 corresponds to the update term 𝑢𝑖 𝑗 , we obtain that
the value of signal 𝑠𝑖 at time 𝑡 + 𝑛 + 1 is equivalent to the
value 𝑓𝑖 (𝑠1 · · · 𝑠𝑚) for the function 𝑓𝑖 synthesized by our Sy-
GuS query. This holds for all signals 𝑠𝑖 , and since we have
𝑓1 (𝑠1 · · · 𝑠𝑚) · · · 𝑓𝑚 (𝑠1 · · · 𝑠𝑚) |= 𝑝𝑝𝑜𝑠𝑡 , this implies that at
time 𝑡 +𝑛 + 1, 𝑠1 · · · 𝑠𝑚 |= 𝑝𝑝𝑜𝑠𝑡 . This is exactly the semantics
of 𝑛+1 𝑝𝑝𝑜𝑠𝑡 . □

Note that applying this process naïvely is insufficient to
satisfy the data transformation obligation. Apart from the se-
mantic and syntactic constraints, we have a third constraint,
the temporal constraint, that the post-condition must hold
after exactly 𝑛 timesteps. However, since we translate each
node of the AST into an update term, we can easily enforce
this constraint by restricting the height of the AST produced
by SyGuS. When we send our query to SyGuS, we stop its
search depth at depth 𝑛, and only consider the solutions that
have height 𝑛. This means that our search for sequential pro-
grams is always bound by two factors: its syntax and its AST
height, making our procedure computationally inexpensive.

We now present two examples to demonstrate the process.

Example 4.2. Consider the following specification TSLMod-
ulo Linear Integer Arithmetic (LIA):

( [𝑥 ↢ 𝑥 + 1] ∨ [𝑥 ↢ 𝑥 − 1]) ∧
(𝑥 = 0 → 𝑥 = 0)

From the specification, we can construct a data transfor-
mation obligation that takes 𝑥 = 0 as a pre-condition and

𝑥 = 0 as a post-condition. This produces the following
program synthesis problem:

∃𝑓 . 𝑓 (0) = 0

This search is bound in two ways. First, the possible syntax
of 𝑓 is restricted by the update terms that appear in the
specification. This constraint produces the following context-
free grammar for 𝑓 :

S ::= S + 1
| S − 1
| 𝑥

We also bound SyGuS with the restriction that the height of
the AST must be exactly 2, since our post-condition must

occur after exactly two timesteps. We can then run the query
with a SyGuS solver, which can produce two possible results:

1. 𝑓 (𝑥) = ((𝑥 + 1) − 1)
2. 𝑓 (𝑥) = ((𝑥 − 1) + 1)

While either of these results are valid, let us assume that
𝑓 (𝑥) = ((𝑥 + 1) − 1) was returned from the solver. From
this SyGuS result, we can encode the function into TSL and
combine it with the obligation to produce a TSL assumption

𝑥 = 0 ∧ [𝑥 ↢ 𝑥 + 1] ∧ [𝑥 ↢ 𝑥 − 1] → 𝑥 = 0

With this environment assumption, the original formula
becomes realizable in TSL synthesis.

Example 4.3. We consider the synthesis problem of plain
TSL formulas. In [18], the authors present a method of syn-
thesizing TSL formulas by underapproximating the specifi-
cation with Linear Temporal Logic (LTL). This is a sound,
but incomplete procedure as the synthesis problem of TSL
is undecidable while LTL synthesis is decidable. Therefore,
the TSL synthesis procedure adds refinements whenever the
approximation insufficiently captures the semantics of up-
date terms in TSL; however, this refinement loop required
significant effort to analyze counter-strategies and was never
implemented automatically and all refinements were done
manually.

However, since plain TSL specifications are just TSL mod-
ulo the Theory of Uninterpreted Functions, we can use our
SyGuS approach to easily automate the refinement loop. We
consider the modified example from [18]:

( [𝑦 ↢ 𝑦 ] ∨ [𝑦 ↢ 𝑥 ]) ∧
(𝑝 𝑥 → 𝑝 𝑦)

A possible model for this formula is to take the value of 𝑥
whenever 𝑝 𝑥 is true and save it 𝑦. However, if we produce
an underapproximation of the TSL specification to LTL

¬(y_to_y ∧ x_to_y) ∧
(y_to_y ∨ x_to_y) ∧
(p_x → p_y)

the formula loses the semantic meaning of update terms and
allows the spurious counter-strategy (p_x ∧ ¬p_y). This
counter-strategy is spurious because a model can update
the value of y by using the update term [𝑦 ↢ 𝑥 ], and
circumvent the possibility that p_x ∧ ¬p_y is always true.
TSL synthesis produces this counter-strategy because the
LTL underapproximation does not know how to complete
the data transformation obligation of 𝑝 𝑥 to 𝑝 𝑦. If we view
the problem in our TSL-MT framework, then we can create
a SyGuS query with the semantic constraint

∃𝑓 . ∀𝑥 . ∀𝑦. 𝑝 (𝑥) → 𝑝 (𝑓 (𝑦))

which captures our data transformation obligation task that
whenever 𝑝 (𝑥) is true, 𝑝 (𝑦) should be true in the next time
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step. For our function 𝑓 (𝑦), we have the grammar

S ::= 𝑥| 𝑦

Sending this to a SyGuS solver will return 𝑓 (𝑦) = 𝑥 , which
we can then translate into a TSL assumption:

(𝑝 𝑥 ∧ [𝑦 ↢ 𝑥 ] → 𝑝 𝑦)
With this assumption, the LTL underapproximation now
sufficiently captures the semantics of update terms for real-
izability.

4.3.2 Programs with Loops. It is also possible for a data
transformation obligation to have a post-condition with a
reachability property, with a eventually operator assigned
to it. For these obligations, it is still possible that sequential
programs can generate solutions, i.e. the example from the
introduction, but the grammarmay not always be sufficiently
expressive in certain cases. Therefore, we introduce the idea
of loops, or equivalently, recursion to our grammar. Let F𝑖 be
the update terms available in the specification for signal 𝑠𝑖 .
Then for each function 𝑓𝑖 that updates 𝑠𝑖 , we can construct a
context-free grammar for a recursive function 𝑓𝑖 (𝑠1 · · · 𝑠𝑚):

S ::= IF 𝑝𝑝𝑜𝑠𝑡 THEN 𝑠𝑖

ELSE S
| F𝑖 S

Intuitively, this is the grammar from Section 4.3.1 extended
with recursion. Accordingly, translating a synthesized recur-
sive function to TSL requires encoding of the loop property.
We achieve this by using the temporal operators weak until
W and eventually :

(𝑝𝑝𝑟𝑒 ∧ (𝑢𝑝𝑑W 𝑝𝑝𝑜𝑠𝑡 ) → 𝑝𝑝𝑜𝑠𝑡 )
Here,𝑢𝑝𝑑 is the “body” of the loop, and 𝑝𝑝𝑟𝑒 and 𝑝𝑝𝑜𝑠𝑡 are the
predicate literals of the pre- and post-condition. Intuitively,
this formula describes the property that applying 𝑢𝑝𝑑 an un-
known number of times will eventually lead to 𝑝𝑝𝑜𝑠𝑡 , which
corresponds to the semantics of our looping function.
In Algorithm 3, we formalize the procedure for encod-

ing looping programs to TSL. In Theorem 4.4 we prove the
soundness of the translation procedure for transforming the
result of the SyGuS solver into a TSL assumption.

Theorem 4.4 (Soundness of SyGuS-TSL Translation for Re-
cursive Programs). Let 𝜑TSL-MT be a TSL-MT specification and
𝜑𝑇𝑆𝐿 the TSL specification with assumptions generated from
the SyGuS-TSL translation procedure via Algorithm 3. Then,
for all models 𝑀TSL |= 𝜑𝑇𝑆𝐿 , there exists 𝑀TSL-MT such that
𝑀TSL-MT |= 𝜑TSL-MT.

Proof. Consider the TSL assumption that we obtain from the
translation procedure:

(𝑝𝑝𝑟𝑒 ∧ (𝑢𝑝𝑑W 𝑝𝑝𝑜𝑠𝑡 ) → 𝑝𝑝𝑜𝑠𝑡 )
Intuitively, this statement can be understood as “when

we are at predicate evaluation 𝑝𝑝𝑟𝑒 , we can apply update

Algorithm 3: Looping Programs to TSL
Input: Function AST, precond, postcond
Output: TSL Assumption

1 assumption = “ 𝑝𝑝𝑟𝑒”;
2 timeSteps = 0;
3 astNode = leaf;
4 while astNode != root do
5 assumption += “∧ timeSteps”;
6 if astNode.isLoop then
7 assumption += astNode.loopBody W

astNode.condition;
8 else
9 assumption += astNode;

10 end
11 astNode = astNode.parent;
12 ++timeSteps;
13 end
14 assumption += “→ 𝑝𝑝𝑜𝑠𝑡 ”;
15 return assumption

terms 𝑢𝑝𝑑 some finite amount of times to reach predicate
evaluation 𝑝𝑝𝑜𝑠𝑡 ”. Since 𝜑W𝜓 = (𝜑U𝜓 ) ∨ ( 𝜑), we can
have two cases:

1. 𝑝𝑝𝑟𝑒 ∧ (𝑢𝑝𝑑U 𝑝𝑝𝑜𝑠𝑡 ) → 𝑝𝑝𝑜𝑠𝑡
2. 𝑝𝑝𝑟𝑒 ∧ 𝑢𝑝𝑑 → 𝑝𝑝𝑜𝑠𝑡

Since 𝜑 = ⊤U 𝜑 , the first case is trivial, and we are only
interested in the second case.

Now, consider our program synthesis query:

∃𝑓1 · · · 𝑓𝑚 . ∀𝑠1 · · · 𝑠𝑚 .

𝑝𝑝𝑟𝑒 (𝑠1 · · · 𝑠𝑚) → 𝑝𝑝𝑜𝑠𝑡 (𝑓1 (𝑠1 · · · 𝑠𝑚) · · · 𝑓𝑚 (𝑠1 · · · 𝑠𝑚))

For all 𝑖 , this results in the following function:

𝑓 (𝑠1 · · · 𝑠𝑛) = IF 𝑝𝑝𝑜𝑠𝑡 THEN 𝑠𝑖

ELSE 𝑓1 (𝑢𝑝𝑑1 (𝑠1 · · · 𝑠𝑚) · · ·𝑢𝑝𝑑𝑚 (𝑠1 · · · 𝑠𝑚))

As this function was a solution to our SyGuS query, this is
correct by construction, with respect to the SyGuS solver. In
particular, it shows that 1) the recursive function terminates
and 2) that when it terminates, the resulting value from the
functions satisfy 𝑝𝑝𝑜𝑠𝑡 . These combined show that (𝑝𝑝𝑟𝑒 ∧
𝑢𝑝𝑑W 𝑝𝑝𝑜𝑠𝑡 → 𝑝𝑝𝑜𝑠𝑡 ) is a valid assumption, concluding
the proof. □

Note that while we require synthesis of recursive func-
tions, most SyGuS solvers do not yet support this feature. In
our experimental evaluation in Section 5, we built a wrap-
per around CVC4 [6] to synthesize recursive functions (cf.
Section 5.1).
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Example 4.5. Consider the following specification:

[𝑥 ↢ 𝑥 + 1] ∨ [𝑥 ↢ 𝑥 − 1] ∧
0 < 𝑥 → 𝑥 = 0

Sequential programs alone cannot solve the obligation with
pre-condition 𝑥 < 0 and post-condition 𝑥 = 0, as SyGuS
will produce a different each AST for each value of 𝑥 . There-
fore, we introduce a grammar with recursion:

S ::= IF 𝑥 = 0 THEN 𝑥

ELSE S
| F

F ::= F + 1
| F − 1
| 𝑥

A SyGuS solver can then produce the solution

𝑓 (𝑥) = IF 𝑥 = 0 THEN 0 ELSE 𝑓 (𝑥 + 1)

Now, we can encode the function into TSL and combine it
with the obligation to produce the TSL assumption

(𝑥 < 0 ∧ ([𝑥 ↢ 𝑥 + 1]W 𝑥 = 0) → 𝑥 = 0)

4.4 Reactive Synthesis
After we obtain assumptions from consistency checking
and syntax-guided synthesis, we combine them with the
TSL specification to run reactive synthesis. In many cases,
syntax-guided synthesis will provide reactive synthesis with
sufficient knowledge to synthesize our goal, a program that
reasons both about control and data.

However, in certain cases, it is still possible for TSL synthe-
sis to return unrealizable even though the original TSL-MT
formula is realizable. This happens because when we find
the chain of update terms 𝑢𝑝𝑑 satisfying the obligation, re-
strictions from the reactive control may not allow it to occur
when the pre-condition 𝑝𝑝𝑟𝑒 is true. This causes the assump-
tion of the form 𝑝𝑝𝑟𝑒 ∧ 𝑢𝑝𝑑 → 𝑝𝑝𝑜𝑠𝑡 or 𝑝𝑝𝑟𝑒 ∧ 𝑢𝑝𝑑 →
𝑛 𝑝𝑝𝑜𝑠𝑡 to be “unhelpful”, since the system has no way to

“execute” these data transformations.
To resolve this issue, we present a refinement loop that

generates different programs for the same data transforma-
tion obligation. We first find which assumption is “unhelpful”
by translating the assumption into a guarantee of the form
(𝑝𝑝𝑟𝑒 → 𝑢𝑝𝑑). If adding the guarantee makes the specifi-

cation unsatisfiable, this implies that the system can never
update values with 𝑢𝑝𝑑 whenever 𝑝𝑝𝑟𝑒 is true. Therefore,
we need to find a different chain of update terms 𝑢𝑝𝑑 for
the given obligation. We re-execute SyGuS synthesis for the
same pre-condition and post-condition pair and force it pro-
duce a different function from our previous result. This result
can then also be encoded into a TSL assumption, with which
we can rerun synthesis.

The refinement loop is formally presented in Algorithm 4.

Algorithm 4: Reactive Synthesis and Refinement
Loop
Input: formula, the TSL specification with

assumptions
while TRUE do

isRealizable, model =
REACTIVE-SYNTHESIS(formula);

if isRealizable then
return model;

end
foreach assumption in ASSUMPTIONS(formula) do

𝑝𝑝𝑟𝑒 , 𝑢𝑝𝑑, 𝑝𝑝𝑜𝑠𝑡 = assumption;
guarantee = (𝑝𝑝𝑟𝑒 → 𝑢𝑝𝑑);
isSAT = CHECK-SAT(guarantee + formula);
/* Found the “unhelpful” assumption */

if ! isSAT then
newAssumption = SyGuS(𝑝𝑝𝑟𝑒 , 𝑝𝑝𝑜𝑠𝑡 ,
notValidSolution=𝑢𝑝𝑑);
formula = formula + newAssumption;
break;

end
end

end

Example 4.6. Consider the following TSL-MT specification
in Linear Integer Arithmetic (LIA):

[𝑥 ↢ 𝑥 + 1] → [𝑥 ↢ 𝑥 ] ∧
𝑥 = 0 → 𝑥 = 2

With 𝑥 = 0 as the pre-condition and 𝑥 = 2 as the post-
condition, our process will produce the following assump-
tion:

(𝑥 = 0 ∧ [𝑥 ↢ 𝑥 + 1] ∧ [𝑥 ↢ 𝑥 + 1] → 2 𝑥 = 2)

However, due to the specification [𝑥 ↢ 𝑥 + 1] → [𝑥 ↢
𝑥 ], the system cannot “follow” the data transformation pro-
gram to go from 𝑥 = 0 to 𝑥 = 2. We can check this by
considering the satisfiability of the specification

𝑥 = 0 → [𝑥 ↢ 𝑥 + 1] ∧ [𝑥 ↢ 𝑥 + 1] ∧
[𝑥 ↢ 𝑥 + 1] → [𝑥 ↢ 𝑥 ] ∧
𝑥 = 0 → 𝑥 = 2

which produces UNSAT. This implies that we need another
function for ∃𝑓 .∀𝑥 . 𝑥 = 2. 𝑓 (𝑥) = 2. We rerun synthesis for
the data transformation obligation, ignore the result 𝑓 (𝑥) =
((𝑥 + 1) + 1), and generate the assumption

𝑥 = 0 ∧ [𝑥 ↢ 𝑥 + 1] ∧
[𝑥 ↢ 𝑥 ] ∧ 2 [𝑥 ↢ 𝑥 + 1] → 3 𝑥 = 2

Adding this assumption and running TSL synthesis returns
realizable, completing the refinement.
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4.5 Limitations
While our approach to TSL-MT synthesis is sound (cf. The-
orems 4.1 and 4.4), it suffers from two sources of undecid-
ability: the undecidability of TSL synthesis [18] and the un-
decidability of syntax-guided synthesis [? ]. This renders
any approach to TSL-MT synthesis undecidable and hence
incomplete. Moreover, while there is recent work in prov-
ing unrealizability for SyGuS [23], currently most exisiting
SyGuS solvers do not halt on unrealizable inputs, mean-
ing that our approach of combining reactive synthesis and
SyGuS solvers will generally fail to return unrealizability re-
sults. There are some decidable fragments of TSL-MT (e.g. a
empty first-order theory without any functions or predicates
would reduce TSL-MT to Linear Temporal Logic (LTL)) that
could have complete synthesis procedures; further research
is needed to explore these fragments.

A third source of undecidability stems from the grammars
used in our encoding of TSL-MT to SyGuS. As an example,
consider an example where the model’s behavior depends
on uncontrollable inputs. We modify Example 4.5 by adding
an additional constraint that updating 𝑥 must depend on an
environment variable 𝑦 that is true infinitely often:

(¬𝑦 → [𝑥 ↢ 𝑥 ]) ∧ 𝑦

In this case, the correct function to be synthesized would be

𝑓 (𝑥) = IF 𝑥 = 0 THEN 0 ELSE (IF 𝑦 THEN [𝑥 ↢ 𝑥 ]
ELSE 𝑥)

However, this function is not synthesizable according our Sy-
GuS grammar as defined in Section 4.3.2. This is due to a gap
in our grammar where we do not allow nested conditionals.
Future work is necessary to explore relative completeness –
assuming we have a complete oracle for TSL and a complete
oracle for SyGuS synthesis, can we construct a complete
synthesis procedure for TSL-MT?

5 Evaluation
5.1 Implementation
We implemented a tool, temos for synthesizing TSL-MT spec-
ifications. The tool is written in Rust, on top of CVC4 [6] as
our SyGuS backend and tsltools [17] and Strix [33] for
TSL synthesis.

We use CVC4 for the SyGuS synthesis subproblems, as it
achieves state-of-the-art performance for most SyGuS bench-
marks [2]. However, as most SyGuS solvers do not yet sup-
port synthesis of recursive functions, we added a wrapper
around CVC4 to synthesize looping functions. Whenever we
have a universally quantified pre-condition, we instantiate
a few models that satisfy the condition. We can then set
up independent data transformation obligations with these
models as pre-conditions, and synthesize them as sequen-
tial programs. This produces different functions and AST’s
for each pre-condition value. For each AST, we try to find

repeated fragments in the tree and compare each to find
the “loop body” of the recursive function. Since we already
know the base case condition, this is sufficient to synthesize
a recursive function.

We use tsltools to transform TSL specifications into the
standard tlsf [26] format. We then use Strix, a state-of-the-
art tool for LTL synthesis [27], to synthesize an AIGER [25]
circuit. We then use tsltools to convert the AIGER circuit
into a Control Flow Model (CFM) [18] and generate program
code. tsltools supports many different targets for code
generation, including high-level languages like Haskell and
JavaScript and hardware description languages like C𝜆aSH,
yosys, or nextpnr [4, 38].
Thanks to our procedure’s modularity, we can leverage

state-of-the-art tools in both program synthesis and reactive
synthesis. As we use the standardized SyGuS and TLSF for-
mats, future advancements (both in theory and engineering)
can be directly integrated into our tool.

5.2 Experimental Results
We evaluated our tool on four classes of benchmarks1 from
adapted from [11, 18] and present the results in Table 1.
We ran this experiment on a machine with an Intel Xeon
E-2286M 2.40GHz CPU and 32GB of RAM within a Docker
image.

We note that despite the large number of assumptions that
we may generate, the synthesis time does not grow exponen-
tially. Generally, the reactive synthesis time dominates the
time taken for synthesis. This suggests while our TSL-MT
synthesis procedure may add assumptions that are unneeded
for realizability, it is possible that it is faster than a lazy ap-
proach. A lazy approach runs reactive synthesis multiple
times and only adds the necessary assumptions for synthesis
to complete. While a lazy approach will generate only the
necessary environment assumptions synthesis, it needs to
run reactive synthesis multiple times. Since our results show
that a single reactive synthesis procedure takes longer than
many Syntax-guided Synthesis problems, it is likely that a
lazy approach will take significantly longer than our eager
procedure.
To evaluate the overhead incurred by our approach, we

also compared our results to that of an oracle, presented in
Figure 4. We have chosen to compare our results against
oracle as the synthesis problem of TSL-MT is a new problem;
a comparison with other procedures is not possible because
there are no alternative tools synthesizing TSL-MT formulas.
Instead, we compare our evaluation results against an oracle
that represents the best possible scenario.
We assume that the oracle is capable of constructing the

TSL with assumptionsminimum realizability core [13] from a
TSL-MT formula. We construct this oracle formula by taking

1Full listing available at https://github.com/Barnard-PL-Labs/temos/tree/art-
eval-pldi22/benchmarks

https://github.com/Barnard-PL-Labs/temos/tree/art-eval-pldi22/benchmarks
https://github.com/Barnard-PL-Labs/temos/tree/art-eval-pldi22/benchmarks
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Table 1. Experimental Results. 𝜑 refers to the original specification, and P and F refer to the number of unique predicate and
update terms in the specification.𝜓 refers to the assumptions generated by the algorithm. LoC refers to lines of code.

Benchmark (𝜑) | 𝜑 | | P | | F | | 𝜓 | 𝜓 Generation (s) TSL Synthesis (s) Sum (s) Synthesized LoC
Music Synthesizer
Vibrato 10 2 2 21 0.431 0.914 1.345 206
Modulation 33 4 4 41 2.012 3.983 5.995 1352
Intertwined 58 4 4 41 2.157 3.178 5.335 1366
Multi-effect 27 6 6 45 3.145 81.470 84.615 1463
Pong
Single-Player 27 1 1 5 0.043 0.571 0.614 169
Two-Player 49 2 2 12 0.181 0.625 0.806 195
Bouncing 27 3 2 25 0.418 0.808 1.226 169
Automatic 27 5 2 54 0.541 0.988 1.529 214
Escalator
Simple 29 1 2 2 0.011 0.434 0.445 166
Counting 57 2 2 8 0.100 0.592 0.692 241
Bidirectional 57 5 11 9 0.340 2.291 1.121 279
Smart 65 8 2 34 3.034 0.935 3.969 179
CPU Scheduler
Round Robin 21 2 4 16 0.149 0.740 0.889 252
Load Balancer 39 3 4 12 0.531 2.128 1.345 208
Preemptive 54 4 4 12 0.548 0.765 1.313 356
CFS 81 8 5 12 0.533 2.443 2.976 2825

the TSL with assumptions formula we generate from our pro-
cedure, and then running it through the minimum realizabil-
ity core feature of tsltools. This removes all unnecessary
assumptions from the TSL with assumptions formula, which
reduces the complexity of the reactive synthesis procedure.
Therefore, synthesis from an oracle represents a theoretical
best possible runtime by 1) incurring no overhead in assump-
tion generation (generated via SyGuS in our procedure) and
2) not adding superfluous environment assumptions that
increase the synthesis run time. Overall, we found that while
our algorithm takes at worst more than twice the time of
the oracle, it is not prohibitively expensive. This is thanks to
Strix lazily building reachable states on demand, avoiding
the overhead that may incur from superfluous environment
assumptions.

5.3 Case Study: Music Synthesizer
For a case study, we synthesized a music synthesizer in
JavaScript as a real-world example of TSL-MT synthesis.
The synthesized tool applies music effects, such as vibrato
(LFO) and FM synthesis, depending on which notes the user
plays. The synthesized system changes the frequencies ran-
domly, but abides by liveness guarantees that these effects
must occur infinitely often. As an example of a concrete
TSL-MT specification, we show the formula for the vibrato
functionality of the synthesizer in Fig. 5. We present a demo
playing the popular Jazz tune Autmun Leaves, available at
https://vimeo.com/647965386. The demo takes in a TSL-MT

specification and transforms it into JavaScript code that
immediately runs on top of the standard audio libraries
WebAudio and WebMIDI. Afterwards, the synthesized system
responds to the environment – the keyboard player – and
applies music effects accordingly.

5.4 Case Study: Linux Kernel Scheduler
We used our procedure described in Section 4 and the CFS
specification from Section 2 to synthesize a scheduler for
the Linux v4.15 kernel. We added our synthesized code
as an additional scheduler sched_class as defined in the
kernel source /kernel/sched/sched.h. The code listing
is available online at https://github.com/Barnard-PL-Labs/
temos/blob/art-eval-pldi22/examples/cfs.c.

The reactive predicates enqueue and dequeue of the spec-
ification coincide with the semantics of the enqueue_task
and dequeue_task of the sched_class struct. Since the syn-
thesized code needs to update the virtual runtimes of each
task periodically, we link the result this to the task_tick
function of the kernel, which is a timer interrupt that hap-
pens periodically to update the runtime statistics of the each
task. Note that with this case study we are tackling a dif-
ferent type of scheduling problem than is encountered with
device drivers [8] - here we are generating program code
that manages high level data abstractions in the kernel such
as a task.

https://vimeo.com/647965386
https://github.com/Barnard-PL-Labs/temos/blob/art-eval-pldi22/examples/cfs.c
https://github.com/Barnard-PL-Labs/temos/blob/art-eval-pldi22/examples/cfs.c
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Figure 4. Comparison of synthesis times with an oracle. Crossed lines signify Reactive Synthesis, and dotted bars signify the
assumption generation with Syntax-Guided Synthesis. The oracle synthesis time is shown to the right.

6 Related Work
The key issue we address with this work is synthesizing pro-
grams that have both control-dominated and data-dominated
components. While our approach is to combine reactive syn-
thesis and SyGuS, there are other approaches to tackling the
synthesis of systems with both a control and a data compo-
nent that focus on using exclusively either reactive synthesis
or SyGuS.

Temporal Stream Logic (TSL) [18] was presented as a logic
to separate the concerns of control and data, but only offered
support for synthesis on the reactive side of the problem.
Synthesizing programs (rather than models) with LTL has
been explored, but without TSL-MT’s interface between con-
trol and data, this work was limited to synthesizing programs
over Boolean values [31]. Some systems handle synthesis
problems with both a reactive and data component, such as
Abstraction Based Controller Synthesis [22], but again this
approach but the full burden of synthesis on the reactive
synthesis engine by framing the entirety of the problem as

a reactive system. Other temporal logics combine data and
reactivity, such as Signal Temporal Logic (STL) [32] or Met-
ric Temporal Logic [28]. However synthesis procedures for
logics such as STL [36] must fully rely on reactive synthesis
techniques, as the logic does not have the same clean separa-
tion of control and data that TSL provides through functions
and update terms. From the SyGuS perspective, prior work
has encoded the fully control-dominated problem of reactive
motion planning in SyGuS, but lacks a data-transformation
focused component [10]. In contrast, our approach leverages
TSL-MT to allow reactive synthesis and SyGuS to play to
their respective strengths of control and data.

Our approach to synthesizing TSL-MT specifications is to
eagerly add assumptions to approximate the TSL-MT spec-
ification into a TSL specification. This mirrors the eager
approach to solving SMT queries [5] that translate SMT prob-
lems into classic satisfiability (SAT) problems, i.e. bit-blasting
[20] or the UCLID SMT Solver [29]. While a lazy approach
– such as one using a Counter-example Guided Abstraction
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1 / / #RA#
2 a lways gua r an t e e {
3 G F [ l f o <− True ( ) ] ;
4 G F [ l f o <− F a l s e ( ) ] ;
5

6 l t e l f o F r e q c10 ( ) −> [ l f o <− F a l s e ( ) ]
7 U gt l f o F r e q c10 ( ) ;
8 g t l f o F r e q c10 ( ) −> [ l f o <− True ( ) ]
9 U l t e l f o F r e q c10 ( ) ;
10 [ l f o <− F a l s e ( ) ] −>
11 [ l f o F r e q <− add l f o F r e q c1 ( ) ] ;
12 [ l f o <− True ( ) ] −>
13 [ l f o F r e q <− sub l f o F r e q c1 ( ) ] ;
14 }

Figure 5. The TSL-MT benchmark specification for Music
Synthesizer: Vibrato. The LFO should be off until the LFO
frequency is greater than the constant 10 (c10()), and on
until it is less than 10. The frequency should increase by 1
when turned off, and decrease by 1 when turned on. The
#RA# annotation indicates that this specification uses the
Real Arithmetic theory extension of TSL-MT.

Refinement [14] may be faster – may be more efficient, an
eager approach allows us to easily leverage off-the-shelf SMT
solvers in an extensible manner.
In our implementation, we timeout unbounded SyGuS

queries because our backends do not have support for un-
realizability. Recently, there has been work translating Sy-
GuS problems as reachability analysis or Constrainted Horn
Clauses (CHC) [23, 24], which are capable of showing un-
realizability for SyGuS queries. This work could be used to
improve the running times of our tool.

In our motivating example and case study, we synthesize
a Linux kernel process scheduler. Applying synthesis to gen-
erate low-level systems code, particularly for scheduling,
has seen a variety of research. This includes work such as
synthesizing schedulers for synchronization [8], synchro-
nization of GPU kernels [3], and regression-free synthesis
for concurrency [9].

7 Conclusions
We have introduced a method for combining syntax-guided
synthesis and reactive synthesis to synthesize a program
with both reactive control and data transformations. We
present Temporal Stream Logic Modulo Theories as a frame-
work to combine the two different synthesis frameworks,
and provide a tool, temos, to implement the procedure. We
demonstrate the practicality of our approach by an experi-
mental evaluation and two case studies where we synthesize
a JavaScriptmusic keyboard synthesizer, as well as a Linux
process scheduler.
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