Addition Rule: for finite disjoint sets X_{1}, \ldots, X_{m}

$$
n\left(\bigcup_{i=1}^{m} x_{i}\right)=\sum_{i=1}^{m} n\left(x_{i}\right)
$$

$$
\begin{array}{r}
x_{i n} x_{j}=\varnothing \\
\text { chan } 1 \neq j \\
\text { and } \\
x_{i} \neq \varnothing
\end{array}
$$

P (roll a total of ≤ 4 with 2 fair 6-sided dice)

$$
\begin{aligned}
& n(E)=n\left(E_{1}\right)+n\left(E_{2}\right)+n\left(E_{3}\right) \\
& \text { total } \stackrel{E}{2}_{=2}+\text { total) } 3+2+3=6 \\
& 1+2+3=6
\end{aligned}
$$

outiomis w/ hotel 4

1) chooser list die

$$
E=\{(x, y) \mid x+y=4 \wedge 1 \leq x, y \leq 6\}
$$

2) choose $4-19$ dk $\frac{1}{3.1}$

$$
\begin{aligned}
& U=A \cup A^{c} \quad A \cap A^{c}=\varnothing \\
& \begin{array}{l}
U(U)=n(A)+n\left(A^{c}\right) \\
n\left(A^{c}\right)=n(U)-n(A)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { if } k=10 \\
& B_{1}=\{(1,2),(1,3),(1,4), \cdots, \cdots,(1,0)\} B_{1}=\{(a, b) \in B \mid a=1\} \\
& n\left(B_{1}\right)=9 \quad B_{2}=\{(a, b) \in B \mid a=2\} \quad B=\bigcup_{i=1}^{k} B_{i} \\
& \text { for general } k, n\left(B_{1}\right)=k=1 \\
& n\left(B_{2}\right)=k-2 \quad B_{k}=\{(a, b) \in B \mid a=k\} \\
& n\left(B_{k}\right)=0 \quad n(B)=\sum_{i=1}^{k} n\left(B_{i}\right)=\sum_{i=1}^{k} k-i=\sum_{i=1}^{k} k-\sum_{i=1}^{k} i \\
& k^{2}-\frac{k(k+1)}{2} \\
& =\frac{k(k-1)}{2}
\end{aligned}
$$

Subtraction Rule

$$
\begin{aligned}
n(\text { total } \neq 7) & =\text { total outcomes }-n(\text { total }=9) \\
& =36-6=30
\end{aligned}
$$

$$
\begin{aligned}
A \cup B & =(A-B) \cup(B-A) \cup(A \wedge B) \\
A & =(A-B) \cup(A \cap B)
\end{aligned}
$$

$$
\begin{gathered}
B=(B-A) \cup(B \cap A) \\
n(A)=n(A-B)+n(A \cap B) \\
n(B)=n(B-A)+n(A \cap B) \\
n(A)+n(B)=n(A-B)+n(B-A)+n(A \cap B)+n(A \cap B) \\
n(A)+n(B)=n(A \cup B)+n(A \cap B) \\
n(A \cup B)=n(A)+n(B)-n(A \cap B)
\end{gathered}
$$

$$
\begin{aligned}
n(A \cup B \cup C)= & \frac{n(A)}{}+n(B(B)+n(C) \\
& =n(A \cap B)+n(A \cap C) \\
& +n(A \cap B \cap C)
\end{aligned}
$$

total people
like Oriole
lite Ravens
like both Oriole ohioans
like O^{\prime} 's or Ravines
like both R and W
1.1. A. ce $D<\ln t=1+W) \quad \cap(A \cap B)-C)=3$

$$
\begin{aligned}
& n(U)=40 \\
& n(A)=17 \\
& n(B)=21 \\
& n(A \cap C)=4 \\
& n(A \cup B)=32 \\
& n(B \cap C)=12 \\
& n(A \cap B)-C)=3
\end{aligned}
$$

$$
\begin{aligned}
n(A, B)= & n(A)+n(B)-n(A \cap B) \\
32= & 17+21-n(A \cap B) \\
& n(A n B)=6
\end{aligned}
$$

We surveyed 40 people about what sports teams they follow. 17 follow at least the Orioles. 21 follow at least the Ravens. 4 follow at least both the Orioles and Wizards. 32 follow either the Ravens or Orioles. 12 follow at least both the Ravens and Wizards. 3 follow the Orioles and Ravens but not the Wizards. 4 follow none of the three teams. How many follow only the Wizards?

To solve the problem, we can use the principle of inclusion-exclusion (PIE) to count the number of people who follow only the Wizard.
Let's define the following sets:

- $A=$ people who follow at least the Orioles
- $\mathrm{B}=$ people who follow at least the Ravens
- C = people who follow at least the Wizards

Using the given information, we can create a Venn diagram to represent the relationships between
cssCopy code

$|(B \cap C)-A| \mid(A \cup B \cup C)$
| $(A \cap B)-C| | \mid \cdots-\cdots-\quad$ | (empty)
From the diagram, we can see that:

- $A=(A \cap B \cap C)+(A \cap B)+(A \cap C)+(A \cap!B \cap C)$
- $B=(A \cap B \cap C)+(A \cap B)+(B \cap C)+(!A \cap B \cap!C$
- $\mathrm{C}=(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})+(\mathrm{A} \cap \mathrm{C})+(\mathrm{B} \cap \mathrm{C})+(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})$
- $(A \cup B \cup C)=A+B+C-(A \cap B)-(A \cap C)-(B \cap C)+(A \cap B \cap C)$
- $(A \cup B \cup C)^{\prime}=$ number of people who do not follow any of the three teams

We are given the values of $A, B, C,(A \cup B \cup C)$ ', and we can find $(A \cap B \cap C)$ as well:

- $\mathrm{A}=17$
- $\mathrm{B}=21$
- $\mathrm{C}=$?
- $(A \cup B \cup C)^{\prime}=4$
$(A \cap B \cap C)=3$
To find C, we can use the equation for B
$B=(A \cap B \cap C)+(A \cap B)+(B \cap C)+(!A \cap B \cap!C)$
$21=3+(A \cap B)+(B \cap C)+(1 A \cap B \cap(C)$
$21=3+(A \cap B)+(B \cap C)+(!A \cap B \cap!C)$
(A
$(B \cap C)+(A \cap B \cap C)$
$32=17+2$
Simplifying and rearranging:
go on
Continuing from the previous message:
$32=41+C-(A \cap B)-(B \cap C)$
$(A \cap B)+(B \cap C)=9$
We can use this equation to eliminate ($\mathrm{A} \cap \mathrm{B}$) from the equation for B
$21=3+(A \cap B)+(B \cap C)+(!A \cap B \cap!C) 21=3+9+(!A \cap B \cap!C)(!A \cap B \cap!C)=9$
Now we can use the equation for A to eliminate $(A \cap B \cap!C)$:
$\mathrm{A}=17=(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})+(\mathrm{A} \cap \mathrm{B})+(\mathrm{A} \cap \mathrm{C})+(\mathrm{A} \cap \mathrm{B} \cap!\mathrm{C}) 17=3+(\mathrm{A} \cap \mathrm{B})+(\mathrm{A} \cap \mathrm{C})+0(\mathrm{~A} \cap \mathrm{~B})+(\mathrm{A} \cap \mathrm{C})=14$ Substituting these values back into the equation for $(A \cup B \cup C)$:
$32=17+21+C-(A \cap B)-(A \cap C)-(B \cap C)+(A \cap B \cap C) 32=38+C-9-14-(B \cap C)+3(B \cap C)=6$
Finally, we can use the equation for C to find the number of people who follow only the Wizards:
$C=(A \cap B \cap C)+(A \cap C)+(B \cap C)+(!A \cap!\cap C) C=3+14+6+4=27$
Therefore, 27 people follow only the Wizards.
From https://chat.openai.com/chat

How many 5 -card hands from $5 z$-card deck?
order doesnit matter $\quad 3 C \quad 4 H \quad 9 C \quad J 5 \quad K D$
KD 9 ${ }^{11}$ JJ 4H BC
r-combination of n things $=$ size-r subset of n things \downarrow how many 5 -card substis of 52 cards?
\# of r-combos of $n \not n$ things $=\binom{n}{r}$ chook $r^{\prime \prime}\binom{52}{5} \quad$ " 52 choose 5 "

Building an r-permutation: 3-perm of abode
and
a
ed
$\begin{array}{ll}\text { 1) choose } 1^{\text {st }} & n \\ \text { 2) choose } 2^{\text {nd }} & n-1\end{array}$
$\binom{n}{r}$

1) choose r inreperm $\{a, d, e\}$
$r!$
2) permute them $1^{s t}, 3^{r a}, 2^{\text {nd }}$
r) Chook $r^{\text {th }} n-r+1$

$$
\begin{aligned}
\text { \#r-permutations } & =n \cdot(n-1) \cdot \cdots \cdot(n-r+1) \\
\text { of } n \text { items } & \left(\begin{array}{l}
n! \\
(n-r)!
\end{array} \quad\binom{n}{r} \cdot r!\right. \\
& \binom{n}{r}=\frac{n!}{(n-r)!\cdot r!} \\
& \binom{n}{n-r}=\binom{n}{r} \\
\binom{n}{1}= & n \\
\binom{n}{0}= & 1
\end{aligned}
$$

2) peek sur or lase cara 7

$$
13 \cdot\binom{4}{3} \cdot\binom{12}{2} \cdot 4 \cdot 4
$$

10 digit digital lock, 8 digit codes

Yahtzee small straight (bat not large straight)

Pascals triangle

$$
\{1, \ldots, n\}
$$

1) include l
2) include $k-1$ of other

$$
\text { \# size-k subsets }=\binom{n}{k}
$$

nan, $n, n\}$

$$
\begin{aligned}
& =\text { size } k \text { ssbsitsw/1 }+ \text { sin }-k \text { suv } \\
& =\binom{n-1}{k-1}+\binom{n-1}{k}
\end{aligned}
$$

$$
Z^{n}=\sum_{k=0}^{n}\binom{n}{k}
$$

Binomial coefficients

$$
(x+y)^{2}=
$$

$$
(x+y)^{>}=
$$

$$
(x+y)^{6}=(x+y)(x+y)(x+y)(x+y)(x+y)(x+y)
$$

$$
(x+1)^{n}=
$$

$$
\rightarrow \mid 1001
$$

stings of ∂_{s} is

no
repetition
yes

