$$
\begin{aligned}
& \underline{A} \times \underline{B}=\{(x, y) \mid x \in A-y \in B\} \quad\left(a_{1}, b_{1}\right)=\left(a_{2}, b_{2}\right) \\
& A=\{a, b, c\} \quad B=\{1,2\} \\
& A \times B=\{(a, 1),(a, z),(b, 1),(b, z),(c, 1),(c,\}) \\
& B \times A=\{((1, a),(1, b),(1, c),(2, a),(2, b,(2, c)\} \\
& A \times B \times C=\{(x, y, z) \mid x \in A \cap y \in B \cap z \in C\} \quad C=\{z\} \\
& A \times B \times C=\{(a, 1, p),(a, z, z),(b, 1, z)(b, z, z),(c, 1, z),(c, z, z)\} \\
& A \times(B \times C)=\{(a,(1, z)), \ldots .\}
\end{aligned}
$$

$$
f=\{(x, f(x)) \mid x \in X\} \leqslant X \times Y
$$

Function: $f: X \rightarrow Y$ relates elements of X to elements of Y so that

1) f relates each eft of domain worth $\geqslant 1$ thing in co-domain
2) f relates exch et of domain with $s 1$ thing in co -domain exactly one thing

"for"
$f(x)$: the elf of Y that if associantis y with

$f(1)=b$
$f(1)=a$
$f(3)=b$
inverse image of $a=\{z\}$ of $b=\{1,3\}$
of $c=\{$
image of $\{1,3\}=\{b\}$
range of $f:\{y \in Y \mid \exists x \in X \quad f(x)=y\}$

$$
\begin{aligned}
& A \leq x \\
& \text { image of } A:\{y \in Y \mid \exists x \in A \quad f(x)=y\} \\
& f(A)
\end{aligned}
$$

inverse image of $y:\{x \in X \mid \quad f(x)=y\}$
Identity function: $f: x \rightarrow X$ defined by $f(x)=x \quad I_{x}(x)=x$
For fans $f: \underline{X} \rightarrow \underline{Y}$ and $g: \underline{X} \rightarrow \underline{Y}, \quad f=g$ means $\forall x \in X, f(x)=g(x)$

One-to-one (injective): $f: X \rightarrow Y$ is one-to-one if and only if

Suppose $x_{1}, x_{2} \in X$ with $x_{1} \neq x_{2}$ [wont: $h\left(x_{1}\right)$:
Suppose bode $h\left(x_{1}\right)=h\left(x_{2}\right)$
then $\frac{k}{2} x_{1}+Z=\frac{1}{n} x_{2}+\hbar$
and $x_{1}=x_{2} \Rightarrow t$

$$
\therefore h\left(x_{1}\right) \neq h\left(x_{2}\right)
$$

Onto (surjective): $f: X \rightarrow Y$ is onto if and only if

$$
\forall y \in Y \quad \exists x \in X \quad f(x)=y
$$

$$
f(x)=Y
$$

$h: \mathbb{R} \rightarrow \mathbb{R}$
$h(x)=\frac{1}{2} x+3$
-
Let $x=2 y-6$
ned
then $h(x)=\frac{1}{2}(2 y-6)+3$ $x=2 y-6$
does each hone lime intersect at least once

$$
y=e^{x}
$$

Inverse function: Let $f: X \rightarrow Y$ be $\left(-1\right.$ and onto then $f^{-1}: Y \rightarrow X$ defined by $f^{-1}(y)=$ the unique

$$
\begin{array}{rr}
h: \mathbb{R} \rightarrow \mathbb{R} \\
h(x)=\frac{1}{2} x+3 & h^{-1}(y)=x \text { sit. } \frac{h(x)}{}=y \\
\frac{1}{2} x+3=y \\
x=2 y-6
\end{array}
$$

f not $1-1$ what would $f^{-1}(a)$

f not onto what is $f^{-1}(b)$??

Let $f: X \rightarrow Y^{\prime}$ and $g: Y \rightarrow Z$ where $Y^{\prime} \leqslant Y$ then $g_{\odot} f: X \rightarrow Z$ is defined by $g \circ f(x)=g(f(x))$

$$
\begin{aligned}
& f: \mathbb{R} \rightarrow \mathbb{R} \\
& f(x)=5 x-2 \\
& f \circ f^{-1}=I_{Y} \\
& f^{-1} \circ f=I_{X}
\end{aligned}
$$

$$
\begin{gathered}
g: \mathbb{R} \rightarrow \mathbb{R} \\
g(x)=x^{2}
\end{gathered}
$$

$$
\text { Sof:m } \rightarrow \mathbb{R}
$$

$$
(g \circ f)(x)=g(f(x))
$$

$$
=g(5 x-2)
$$

$$
=(5 x-2)^{2}
$$

$$
(f \circ g)(x)=f(g(y))=f\left(x^{2}\right)
$$

$$
=5 x^{2}-2
$$

THM: Let $Y^{\prime} \leq Y, f: X \rightarrow Y^{\prime}$ and $g: Y \rightarrow Z$, and f, g both $1-1$
then oof is om-bo-ore then gof' is oue-to-one
Proof: Suppose $x_{1}, x_{2} \in X$ with $x_{1} \neq x_{2}$ [want $\left.(g \circ f)\left(x_{1}\right) \neq(g \circ f)\left(x_{2}\right)\right]$
Suppose $(g \circ f)\left(x_{1}\right)=(\operatorname{gof})\left(x_{2}\right)$
then $g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)$
and $f\left(x_{1}\right)=f\left(x_{2}\right) \quad b / c \quad g$ is $1-1$
so $\quad \underline{x_{1}}=x_{2} \Rightarrow \neq$ b/c f is li

$$
\therefore(g \circ f)\left(x_{1}\right) \neq(g \circ f)\left(x_{2}\right)
$$

THM: Suppose $f: X \rightarrow Y$ and $g: Y \rightarrow Z$, and f, g both onto
Proof: Let $z \in Z$. [want $x \in X$ sit. $(g \circ f)(x)=z$]
Than find $y \in Y$ sot. $g(y)=z \quad$ (can do b/c g onto) and find $x \in X$ sit, $f(x)=y \quad$ (can do b/c f ont)
Now $(g \circ f)(x)=g(f(x))=g(y)=z$

