DEF: For an integer n, n is prime means $n>1$ and $\forall d \in \mathbb{Z}, d>0 n d / n \rightarrow d=1 \vee d=n$
only posidive divisors are 1 and n
n is composite mans $n>\mid$ and $\exists s, t \in \mathbb{Z}$ sit. $s \neq\left.\right|_{\wedge} \notin \neq 1 n n=s \cdot t$
1,3
1,37
3 is prime 37 is prime T
6
$1,2,3,6$ composite T
111 is composite $T \quad O$ is composite F

$$
1,3,37,111
$$

$$
\text { (not }=1 \text {) }
$$

(is neither prime nor composite
(also not > 1)
THM: For any prime p, and $a \in \mathbb{Z}$, if $p \mid a$, then $p \nmid a+1$.
Proof: Suppun p is prim and $a \in \mathbb{Z}$ and p / a. Cant $p+a+1$

Suppose $p \mid a+1$
$a+\underline{b}=a+(-b)$

We have $p \mid-a$ (pres the with $c=-1$)
and so $p \mid(a+1)+-a$ i.o.w (prev the $a|b \wedge a| c \rightarrow a \mid b+c$) (prev the $a, b>0 \quad a \mid b \rightarrow a \leq b$)
$\operatorname{but}(p>1 \quad \Rightarrow E$ (def pane)
So $p \mid a+1 \rightarrow c$
$\therefore p+a+1$
(contradiction role)

THM: For all integers $n \geq 2$, there is some pare p sot. $p \mid n$

$$
n|10 \quad 10| 3300
$$

THM: There are an infinite number of primes Every finite list of panes is $\frac{\text { incochplete }}{\text { sech that there is a prime not on the list. }}$
Proof: Suppose $P_{1}, P_{2}, \ldots, P_{k}$ is a finite list of all primes. (reed: a prime not on that list]

Let $a=p_{1} \cdot p_{2} \cdot \cdots \cdot p_{k}$
Note $p_{i} \mid a \operatorname{for}$ all $\mid \epsilon_{i} \leqslant k \quad a=p_{i} \cdot \underbrace{\left(p_{1} \cdot \cdots \cdot p_{i-1} \cdot p_{i+1} \cdot \cdots \cdot p_{k}\right)}_{\text {intones } b / d \text { all } p_{i} \in \mathbb{Z}}$ and \mathbb{Z} closed under $)$
So pi p_{a+1} for all $1 \leqslant i \leqslant k$ (prev. the)
$a+1 \geq 2$ so there is a pave p sit. $p \mid a+1$ (prev tho) $p \neq p_{i}$ for all $1 \leq i \leq k \quad b / c \quad p \mid a+1$ and $p_{i} \times a+1$ So p is prime not on list p_{1}, \cdots, p_{k}

(3) (11)

$$
\begin{aligned}
3300 & =2 \cdot 5 \cdot 330 \\
& =2300
\end{aligned}=2 \cdot 2 \cdot 3 \cdot 5 \cdot 5 \cdot 111
$$

Unique prime factorization (Fundamental The of Anthmetic)
THM: For all integers $n \geqslant 2$, there is some list of primes p_{1}, \ldots, p_{k} s.t. $n=p_{1} \cdot p_{2} \cdot \cdots \circ p_{k}$ and $p_{1} \leqslant p_{2} \leqslant \cdots \leqslant p_{k}$ and that list is unique.
a is congruent h modulo $n \quad-(a-b)=b-a$
DEF: For any integer $n \geq z, \quad a \equiv b(\bmod n)$ means $n \mid a-b$

$$
\text { and any } a, b \in \mathbb{C} \text { " } \frac{a-\infty \text { con co "modulus" } 1467 \text { s have same }}{27}
$$

10) $1643729+150 \quad 16437294167 \equiv \frac{17^{9}}{}(\bmod 10)$ remainders when divided by models
11) 16437294170
$\begin{array}{llll}n 13 \text { even } & n \equiv 0(\bmod 2 \\ n 13 \text { odd } & n \equiv 1(\bmod 2) & 21 n-0 & 580 \\ 21 n-1 & 101^{8} & -43=-45+2=-15 \cdot 3+2\end{array}$
THM: For any integer $n \geq 2$ and any integer $m, m \equiv 0(\bmod n)$ iff
QRT for $\equiv(\bmod n)$
THM: For any integer $n \geq 2$ and any integer m, there is a unique integer r such that $\begin{aligned} & m \equiv r(\bmod n) \\ & \text { and } \quad 0 \leqslant r<n\end{aligned}$

Proof: Let $n \geq Z, m \in \mathbb{Z}$.
By QRT, there is a unique qr sot, $m=q \cdot n+r$
and $0 \leqslant r<n$
That r is the vaigue r sit: $m \equiv r(\bmod n)$
THM: For any integer $n \geq 2$ and any integers a, b, c, d, if $a \equiv b(\bmod n)$
and $c E d(\bmod n)$
then $a+c \equiv b+d \operatorname{(mod} n)$

$$
\text { and } a \cdot c \equiv b \cdot d(\bmod n)
$$

Suppose $n \geq 2$ and $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$.
Then $n \mid a-b$ and $n \mid c-d$ by def of \equiv (want $n \mid a+c$
and so $n \mid(a-b)+(c-d)$ by thu why $(a-b) f(-d)=(a+c)-(b+d)$ and $n \mid(a+c)-(b+d)$ by sub and by def $\equiv a+c \equiv b+d(\bmod n)$
Find k st. $467+96001948+(-99) \equiv k(\bmod 10)$

$$
\begin{aligned}
& 467 \equiv 2(\bmod 10)>8+(-9) \equiv k(\bmod 10) \\
& 96001948 \equiv \underline{8}(\bmod 10) \quad 6 \equiv k(\bmod 10) \\
& -99 \equiv-9(\bmod 10) \\
& 6=k \\
& \begin{array}{ll}
10 \mid(-99-(-1)) & 10 \mid(-99-1) \\
10)-90 & 10 \mid-100
\end{array} \\
& 18 \equiv 3(\bmod 5)^{5118-3} \quad 18^{12}=3^{12}(\bmod 5) \\
& 3^{12}=3^{4} \cdot 3^{4} \cdot 3^{4} \\
& \equiv 1(\bmod 5) \\
& 3^{4}=81 \\
& 18 \geq 3(\bmod 5)
\end{aligned}
$$

$$
\begin{aligned}
& 18 \leq 3 \quad(\bmod 5) \\
& 18^{12} \equiv 3^{12}(\bmod 5)
\end{aligned}
$$

THM: For any integer n, if if $n^{n^{2}} \equiv 0(\bmod 2)$ erin then $n \equiv 0^{n}(\bmod 2)$

$$
\begin{aligned}
3 & =81 \\
81 & \equiv 1 \\
81 & =1 \\
81 & =1
\end{aligned}(\bmod 5)
$$

THM : For any integer n, if $n^{2} \equiv 0(\bmod 3)$ then $n \equiv 0(\bmod 3)$

DEF: For integers a, b not both 0 , the greatest common divisor of a and b is the lascest positive d sit. $\left.d\right|_{a}$ and $d \mid b$

$$
\begin{aligned}
& \operatorname{gcd}(6,21)=3 \\
& \operatorname{gcd}(28,144)=4 \\
& \operatorname{gcd}(24616,15678)=2 \\
& 2.2 \cdot 2.17 .181 \quad 11 \\
& \operatorname{gcd}(1040279,1034273)=
\end{aligned}
$$

$$
1009 \cdot 1031
$$

THM: For any integers a, b, q, r, if $b \neq 0$ and $a=b \cdot q+r$,

$$
\begin{aligned}
& \text { it } b z 0 \text { and } a=b \cdot(+r, \\
& \text { then } \operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)
\end{aligned}
$$

gives Euclidean algonthm for computing $\operatorname{ged}(a, b)$:
compute $q=a \operatorname{div} b$
$r=a \bmod b$
repent with new $a=b$, nu $b=r$ until numb $b=r=0$

Proof: Let a, b, q, r be integers such that $b \neq 0$ and $a=b \cdot q+r$. We show a) to come Feb 140
and b)

$$
\begin{aligned}
& \operatorname{gcd}(24616,15678)=\operatorname{gcd}(15678,8938)=246) 6=1 \cdot 15678+8938 \\
& =\operatorname{gcd}(8938,6740) \quad 15678=1.8938+6740 \\
& =\operatorname{ged}(6740,2198) \quad 8938=1.6740+2198 \\
& =\operatorname{scd}(2198,146) \quad 6740=3.2198+146 \\
& =\operatorname{ged}(146,8) \quad 2198=15.146+8 \\
& =\operatorname{gcd}(8,2) \quad 146=18 \cdot 8+2 \\
& =\operatorname{ged}(2,0) \quad 8=4.2+0
\end{aligned}
$$

and therefore $\operatorname{gcd}(a, b)=\operatorname{gcd}(q, r)$

