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Note that these are sample solutions only; in many cases there were many acceptable
answers.

1 Reynolds Problem 10.1

1.1

1.2

Normal-order Reductions

(M. A f(fx)) (Ab. Ax. Ay. by x) (Az. Aw. z) =

(Ax. (Ab. AX . Ay. by X) (Ab. AX. Ay. by X') x)) (Az. Aw. z) =

(Ab. XX Ay. by x') (Ab. AX. Ay. by X') (Az. Aw. 2)) =

MY (A XX AY . by X7) (Az. Aw. 2)) y X = (canonical form)
X )\y (/\x” AY. (Az. dw.z) ¥y X" ) yx' =

MY (A (Az. dw. 2) y'y ) X' =

X )\y (/\z Aw. z) X'y =

AX . Ay. (/\W Xy =

XAy X =

TRUE

Eager Reductions

(Af. A f(fx)) (Ab. Ax. Ay. by x) (Az. Aw. z) =

(Ax. (Ab. AX . Ay. by X)) (Ab. AX. Ay. by X') x)) (Az. Aw. z) =

(Ab. Ax. Ay. by x) ((Ab. Ax. Ay. by x) (Az. Aw. z)) =

(Ab. Ax. Ay. by x) (Ax. Ay. (Az. Aw. z) yx) =

A Y. (AXAY. (Az. Aw. 2) y' X)) yx) = (canonical form)
AXAY. (AY. (Az. Aw. 2) y' y) x =

AX.Ay. (Az. Aw. z) xy =

AX Y. (Aw. x) y =

AX.AY. X =

TRUE



1.3 Proofs of Normal-order Evaluations

We use the indented proof style.

(M. A% (fx)) (Ab. Ax. Ay. by x) (Az. Aw. 2)
(Af. Ax. f(fx)) (Ab. Ax. Ay. byx)
M. f(fx) = Af. Ax. f (fx)
(Ax. (Ab. AX . Ay. by x) (Ab. AX'. Ay. by x') x)) = (Ax. (Ab. AX'. Ay. by x') ((Ab. AX'. Ay. by x') x))
= (A (Ab. AX . Ay. by X) (Ab. AX'. Ay. by x) x))
(Ab. AX'. Ay. by x') (Ab. AX'. Ay. by x') (Az. Aw. 2))
Ab. A Ay. by x = Ab. AX. A\y.byx
MY (Ab. AX" MY by X)) (Az. Aw. 2)) y X" = AX'. Ay. (Ab. AX". Ay’ by X") (Az. Aw. 2)) y X’
= XAy, (Ab. XX AY . by X)) (Az. Aw. z)) y X/
= MY (Ab. XX AY by X7) (Az. Aw. z)) y X/

1.4 Proofs of Eager Evaluations

We use the indented proof style.

(M. Ax. f(fx)) (Ab. Ax. Ay. by x) (Az. Aw. 2)
(Af. A f(fx)) (Ab. Ax. Ay. by x)
M (fx) = A Ax f(fx)
Ab. Ax. Ay. byx = Ab. Ax. Ay. byx
(Ax. (Ab. AX . Ay. by x) (Ab. AX'. Ay. by x') x)) = (Ax. (Ab. AX'. Ay. by x') ((Ab. AX'. Ay. by x') x))
= (Ax. (Ab. AX . Ay. by x') ((Ab. AX'. Ay. by x') x))
AZ.Aw.z = Az. Aw. z
(Ab. XX Ay. by x') (Ab. AX. Ay. by x') (Az. Aw. z))
Ab. AX . Ay. by x' = Ab. AX. Ay. by X
(Ab. AX'. Ay. by x') (Az. Aw. z)
Ab. A Ay.byx = Ab. AX. A\y.byx
AZ.AW.Z = Az Aw. z
M Ay, (Az. dw. z) yx' = AX. Ay, (Az. dw. z) y X/
= M Ay. (Az. Aw. z) y X

ACAY. (ALY (Azo Aw. 2) ¥ X)) yx) = Ax Ay, (AXL Y (Az. dw. 2) y' X)) y x)
= M. Ay. (AKX AY. (Az. Aw. z) y' X') y x)
= Ax. Ay. (AX Y. (Az. Aw. z) y' X') y x)



2 Reynolds Problem 10.2

Prove that, for any clased expression e and canonical form z, the expression e
evaluates eagerly to z if and only if there is a proof of e =g 2z from the inference
rules in Section 10.4.

2.1 Soundness

We first prove the if half of the proposition, which is that the rules for eager evaluation are
sound.

If the last line of the proof is obtained by the rule for termination, it has the form
Av. e = Av. e, which holds because Av. e is a canonical form.

Otherwise, suppose the last line of the proof is obtained by the rule for beta-evaluation.
Then it has the form e¢’ = z, and there are shorter proofs of the premisses e = Av. é,
¢ =g 2 and (é/v — 2') = z, which by the induction hypothesis must be true. From the
first premiss, there is an eager reduction sequence

€— - — AV. €

where the last term is the first canonical form. For the second premiss, there is an eager
reduction sequence

6,_>..._)2/

where the last term is the first canonical form. In other words, This implies that

ee — ... — ()\V é)e,—> R ()\V é)Z,

is a reduction sequence where each term is contracted on the leftmost redex that’s not a
subexpression of a canonical form.

Now we can complete this sequence with a beta-contraction and the sequence whose
existence is asserted by the third premiss:

e == (A é)e == (W) = (Efv—2)— =2

This is an eager reduction sequence in which z is the first canonical form; thus ee’ =g z.

2.2 Completeness

Next, we prove the only if half of the proposition, which is that the eager evaluation rules
are complete. Here we assume that we have a eager reduction sequence e — .-+ — 2z in
which only the last term is a canonical form, and we show, by induction on the length of the
reduction sequence, the existence of the corresponding prooof of e =g z.

If the reduction sequence begins with an abstraction, it must consist of the single term
Av. e, whithout any constractions, and the rcorresponding proof is a single use of the rule
for termination.



Otherwise, if the reduction sequence begins with an application, let n > 0 be the index
of the first term in this reduction sequence that is not an application whose left subterm is
also an application. (Such a term must exist since z does not have this form.) Then the
reduction sequence has the form

/

’I”L—l—>“'

eoey — 1t — €p_1€

where e, ..., e,_1 are all applications, and therefore, by Proposition 10.5, contain redices.
Moreover, the fact that this reduction sequence is eager implies that it has the form

/ / /
€0y — > Ep_1€) — €€y > ...

where

€p = - 7 €Ep—1 — €

is also an eager reduction sequence. This is because eager reduction always contracts the
leftmost redex that’s not a subexpression of a canonical form.

Further more, since e, ¢’ becomes an application, let m > 0 be the index of the second term
in this reduction sequence that is an application whose right subterm is not an application.
(Such a term must exist since z does not have this form.) Then the reduction sequence has
the form

/ /
CoEy — > €€y —> 1 — el

where

/ / /
€p =7 T Ep1 T 6y

is also an eager reduction sequence. This is because e, is already in canonical form, and
eager evaluation may only contracts the right term after n steps.

Since e, = Av. é, and €/, = 2/, the term e,e! is a redex, and the rest of the original
reduction sequence must have the form

(Av. &)z — (éJv —2') -+ — 2

where only the last term is a canonical form. Then the induction hypothesis implies that
there is a proof of ee/ = z.

Finally, from the proofs of eg =g Av. é,e[ =g 2/, and (é/v — 2’) =g z, one can use the
rule for beta evaluation to construct a proof of epef, =g 2.



3 Reynolds Problem 10.5
Given ((ab f) x) y = f <x,y>, and a continuous function f from P x P’ to P”

1. Prove (ab f) x is a continuous function from P’ to P”.

2. Prove ab f is a continuation function from P to P’ — P”

3.1

We can rewrite the function (ab f) x as

(ab f)x=f-g

where g y =<z, y>

We'll first show that ¢ is a continuous function, and then by by Proposition 2.3 Part (c),
(ab f)x is continuous.

3.1.1 ¢ is monotone

For any y; C yo € P', we have g y; =<x,y1>C<x,y2>= g y2 due to the ordering on the
product of pre-domain P x P'.

3.1.2 ¢ is continuous

For any interesting chain y; € P’, we have

g(| v) =<a,| Jym=| | <v.v>=| |*(g w)
=0 =0 =0 =0

Therefore by Proposition 2.3 Part (c), (ab f) x = f - ¢ is a continuous function from P’
to P".



3.2

3.2.1 ab f is monotone

For any 1 C 25 € P, let hy = (ab f) x; and hy = (ab f) z3. We want to show hy C ho, i.e.,
forall y € P, hy y C hsy v.

This is true because hy y = f <z1,y>C f <x9,y>= hy y due to the ordering on the
product of pre-domain P x P’; and the continuity of f. Therefore (ab f) z1 C (ab f) x5 and
ab f is monotone.

3.2.2 ab f is continuous

for any interesting chain x; € P, and any y € P’, then F; = (ab f)z; also forms a chain of
functions in the pre-domain P’ — P”.
Because we have proved that ((ab f)x) is continuous, by Proposition 2.2 we have:

(L~ =7y

1=0

Or in another word

(LI~ (tab iy = L' (((ab Haay) = L' (F <aip>) |_| <zi,y>)

because f is continuous. Furthermore

f(|_|X <w,y>)=f <|_| x5, y>= (ab f)(|_| )y
i=0 i=0 i=0

So we have effective proved that for any y € P’

(ab f)( |i| |_|ﬂ (ab f)z:))y
=0

Therefore

(@b D) = L~ ((ab 1))

and ab f is continuous.



