Overview

Transition Semantics

1 Configurations and the transition relation
1 Executions and computation

1 Inference rules for small-step structural operational semantics for

the simple imperative language
1 Transition semantics of failure
1 Labeled transition semantics of input and output

1 Relationship with (direct) denotational semantics



Operational (or Transition) Semantics

Idea: Define the execution of a program as a sequence vg, V1, - - -
of configurations v; € I'.

Configurations are either terminal or nonterminal:

F:FTUFN I‘TﬂI'Nz{}
e.g. for the SIL

[ = 2 [ v = comm X 2_
[z :42] e T (x:=x+1, [z : 41]) e T

Define a transition relation — from I 5y to I

informally, v — ~' if v/ is obtained “in one step” from ~, e.g.

(x:=x+1, [x : 41]) — [z : 42]



Executions and Computation

An execution is a (finite or infinite) sequence of configurations g, 1, ...

such that v; — v;41 whenever v; and ;4 ;1 are in the sequence.

The relation of computation —*

is the reflexive and transitive closure of —

v —* ~/ if there is a finite execution starting with v and ending with ~’.

For the SIL we will define — which is a total function from [ 5 to I,
= for every v € I there is a longest execution starting with ~;
if it is infinite, then v diverges: v T;

otherwise there is a unique 7/ € " such that v —* +/.



Plotkin Style Small-Step Structural Operational Semantics
for the SIL

We define the relation — in terms of inference rules.

y
BKIP) kip, o) o o

(assgn) (vi=e, o) — o |v lel intexpa]

(Seq S) <CO ; C1, O'> — <C/O c1, O'/>
Example:
b
by (seq ) (by (assgn)) (x:=x+1, [x: 4|y :6])— [x:5|y: 6]
(by (seq s)) (x:=x+1;y:=y+x, [x : 4|y :6]) — (y:=y+x, [x: 5]y : 6])

(x:=x+1;y:=y+x; skip, [x: 4|y : 6]) — (y:=y+x; skip, [x: 5]y : 6])



More SOS Rules

dt h
(cond ) (if bthen celse ¢/, o) — (c, o) R

df h
(cond 1) (if bthen celse ¢/, o) — (c/, o) e

[0]

[0]

boolexpP — true

boolexp® — false

(while t) when [b] yyp1e0p0 = true

(while b do ¢, o) — {(c; whilebdo ¢, o)

(while f) when [[b]l jpperpo = false

(whilebdoc, o) — o

However the naive rule for variable declaration

(newvar v:=einc, o) — (c;v:=n, [o|v  [e]linterpo]

exposes the local variable name in the result,
which becomes a problem when we extend the language.

> where n = o v



SOS Rule for Local Variable Declaration

Idea: Use the declaration to reflect changes in the value of the variable.

(c, [o|v: ﬂeﬂinteprD — o'

(decl t) :
(newvar v:=einc, o) — [0/ |v : o v]
(decl s) (¢, [o]|v: [[eﬂmtexpab — <C/, 0'/>
(newvar v:=einc, o) — (newvar v:=c’vind, [0/ |v : ov])
(assgn)
(seq (x:=x+1, [x: 24 |y : 10]) — [x : 25|y : 10]
el s q (x:=x+1;y:=x+2, [x: 24|y : 10]) — (y:=x+2, [x : 25|y : 10])

(newvar x:=x+3 in x:=x+1; y:=x+2, [x : 21|y : 10])
— (newvar x:=25iny:=x+2, [x : 21|y : 10])



Inference Rules for the Computation

The reflexive and transitive closure of — can also be defined

using inference rules:

>
(incl) ——
v

(refl)

~y ¥ ,y/ ,y/ ¥ ,y//
~ —s X ,.y//

(trans)



Meaning of Commands

— € [y — [ (total function)

= Vv € [ there is a longest execution starting from +,

either infinite or ending witha+' € M = .

el a:{L’ if (¢, o) 1

o, if {(c,o0)—" 0o



Transition Semantics of Failure

Define ' = > U ({abort} x 3). Then

(fail)

(fail, o) — (abort, o)

Propagation of failure:

(cp, o) — (abort, o)

(seq %)

(cg; c1, o) — (abort, o’)

(c, [o]v: [[eﬂintea:pO'D — (abort, o)

(decl x)

(newvar v:=ein ¢, o) — (abort, [¢/|v : o v])

The semantics of commands becomes

1, if {c, o)1
Tcll commo = { o, if {c, o) —* o’
(abort o’), if (c, o) —* (abort o)



Labeled Transition Semantics of Input and Output

Informally: Write labels on transitions to show input or output.

Rules:

(output) ™ when n = [[e]linteapo

(le, o) — o

(input) 5

(?v, o) = [o|v : n]
Formally, the transition “relation” becomes ternary:

— C 'y X A X T, where
N={e}U{m|neZ}U{ln|n e Z} (e issilent )

and (c, o) 2, v stands for ({c, o), A, 7) € .



Labeled Transition Semantics cont’d

The other rules are generalized to propagate the labels, e.g.

(co, 0) 2 o

(seq t)

<CO;Cla <Cla 0>

o)
<007 > 'A) <C()7 >
(seq s)
(o c1, o) 2 (ch 5 e1, o)
(co, O) 2, (abort, o)

(seq x)
(co; c1, o) > (abort, o)



Properties of the Labeled Transition Semantics

If v = (¢, o) € I y, then exactly one of these holds:

1 3!y € I such that v — ~/ (silent transition)
|
1 314 €M, n € Zsuch that v ¥ ~/
1 (NEA|Y EMand v 4y = {?n|ncZ}
Hence for every v € I there is a longest sequence of silent transitions which is either
B infinite
8 endswitha~/ € '

1 ends witha~/ € Iy such that 31y € [, n € Z such that 7/ % "

?
1 endswithar/ € My suchthatVn € Z.3v" € .4 & 4.



Relationship with the Denotational Semantics

So, for every v € I there is a longest sequence of silent transitions which is either
B infinite
1 endswitha~/ € My

I
1 ends with a+’ € My such that 314" € ", n € Z such that 7/ — ~"

?
1 endswitha~' € My suchthatVn € Z.37" € T4/ &= 4.

fQE2(E+(ZxQ+[Z— Q)| and F € [T — ] is the least solution of

L if v1
Lterm O, if v—* o
F~ = { tabort o', if v —* (abort, o)
lout <n7 FfY//)) if 3’7/’7 — ¥ f)/’ and ,y/ |Ii?’> ,Y//
?

then [[C]] commO = F <C, O'>



