ISWIM-like languages

ISWIM (If you See What I Mean) [Peter Landin, “The Next 700 Prog. Languages”]

— an eager functional language extended with references,
as a solution to the aliasing problem of Algol 60.

If imperative features are simply merged from the SIL
into the eager functional language, meaning is lost:

(Ax.x:=1)2 +— 2:=1

Even if parameter types are introduced to distinguish
between variable and value parameters,
the meaning of programs is far from obvious — one might expect that

mul_and_inc = Ax. Ay. (y:=y*x; x:=x+1; ())
mul_and_ind = Ax. Ay. (x:=x+1;y:=y*(x-1); ()
are equivalent, but
(mul and inczz, [z:0]) = (), [z:1])
(mul_and_inc’zz, [z:0]) = {((), [z:0])

References

Mathematical abstraction of memory address with the following signature:

component | specification (an implementation)
Rf a countably infinite set of references | N
R a set of subsets of Rf {Oton—1|n € N}
newref € R — Rf such that newref (Oton—1) =n
VR € R.newref R ¢ R
and RU {newref R} € R
> Urer(R — V) the set of states v

Extending the Eager Functional Language with References

Syntax:
exp =
mkref exp create an initialized reference
val exp derefence (obtain the current value of a reference)
exTp 1= exTp assign a new value to an existing reference
exp =g erp compare references for equality
Semantics:

B extend the set of values z to include the references r

(in addition to the canonical forms)
1 define an evaluation semantics on configurations of a state and an expression:

(o, €) = (z, o)

Evaluation Semantics of an EFL with References

(00,€) = (M.€, 01) (o1,€) = (,00) (o2, (/v = 2)) = (z,03)

<007 €€/> = <Z7 J3>

(o,€e) = (z,0")
(o, mkref e) = (r, [o/|r : z])

where r = newref (dom ¢”)

(o,e) = (r,o)
(o, vale) = (o' 7, o)

(o,e) = (r,d’)y (o, e) = (2 ")

(o, e:=¢€!) = (2, [o"|r : 2'])

(o,e) = (r,0) (o', e = (' o)
(o0, e =gre€)=(lr=1"], 0"

Note: It is harder to define small-step semantics
since references are not part of the language,

so e.g. the result of mkref e cannot be expressed as a term.

Continuation Semantics of References
Changes to the continuation semantics of the eager functional language:

1 the semantic function has a new argument for the state o € 2
1 the continuations also take the state as an argument

1 the predomain of values is extended with references

[—1 S exp — B — Vigpp — 2 — Vi

Vcont — V — Z — V>|<

Vi = (V4 {error, typeerror})| itnorm = Az € V.Xo € X. Ly (10 2)
err = Mo € X.1q (11 error)
tyerr = Ao € .14 (1o typeerror)
¢

v = A Vi Vg

Vien = V= Vet — 2 — Vi by = Y12 € Vi —V

vT@f = Ri Lfun — Y-l € Vref -V

Continuation Semantic Equations: The Pure Segment

A number of language constructs have no effect on the state,

it is passed to their continuation directly:

e.g. [[n|lnko
or equivalently [[[n]|]lnk

[-elln =

[vln =

[Av.e]lnk

K (’/int n) o

K (Lint n)

leln (An € Z. k (vint (=n))) int

where (=) € (Vi 2> —- Vi) -V - X — Vi

K (nv)

K (‘/fun (Az € V.AK' € Veopt- [ell[n]v @ 2] &)

Continuation Semantic Equations: References

Semantics of the constructs for operations on references:

[valelnso = [eln(Ar € ViAo' € Z. k(o' r) o) o
ie. [valenrk = [elln(Ar € V. Mo' € Z.k(o'r) U/)ref

[mkrefelns = [en(Az € V. o € .
(Ar € RE. k (tpepr) [o| 7 1 2]) (newref (dom o))

[valelns = [e]ln (A\r € Vief- Ao € .k (or) a)mf
[e:=e'Ilns = [e]n(\r € Vief- [elm(AzeV. e e . kzlo|r: 2])) ref
[e=relnk = [eln(Are Vief- [e'Tn (Ar' € Vief- K (Lhoor (1 = T/)))ref)ref

Note: It is not obvious that the references bound to r in the equations for val and :=

are in the domain of the state o.

