
The Mailman algorithm for matrix vector multiplication

Edo Liberty∗ Steven Zucker†

Abstract

Given an m×n matrix A we are interested in applying it to a real vector x ∈ Rn in less then the trivial

O(mn) time. Since we are interested in a deterministic exact computation we must, at the very least,

access all the entrees in A. This requires O(mn) operations and matches the running time of naively

applying A to x. However, we claim that if the matrix contains only a constant number of distinct

values, reading the matrix once in O(mn) steps is sufficient to preprocess it such that any subsequent

application to vectors requires O(mn/ log(max{m, n})). We show that a straight forward usage of our

algorithm can improve on recent results for dimensionality reduction algorithms.

Introduction

General matrix vector multiplication is clearly a very common an basic operation. An enormous amount of

effort was put into accelerating the application of special structured matrices. Such matrices include Fourier,

Walsh Hadamard, Toeplitz, Vandermonde, and many others. Each of which can be applied to vectors in

O(npolylog(n)). However, general matrix vector multiplication can be shown to require Ω(mn) operations

,Winograd [8], which matches the running time of the naive algorithm.

In light of this, some authors sought algorithms for other classes of limited matrices. Most of this effort

concentrated on binary matrix operations. These results include the historical Four Russians Algorithm [6]

and some improvements of it [5] which give a factor log improvement for matrix-matrix multiplication but

do not extend naturally to matrix vector operations.

Regarding matrix-vector operations, we cannot avoid accessing each and every entree of our matrix, A.

We therefore allow ourselves a preprocessing stage which takes Ω(mn) operations. After the preprocessing
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stage we are given x and produce the product Ax as fast as possible. Under this framework Williams [7]

showed that an n×n binary matrix can be preprocessed in time O(n2+ε) and subsequently applied to binary

vectors in O(n2/ε log2 n). Williams also extends his result to matrix operations over finite semirings. To the

best of the authors understanding his work cannot be extended to real vectors.

In this manuscript we claim that any m × n matrix over a finite alphabet1 can be preprocessed in time

O(mn) such that it can be applied to any real vector x ∈ Rn in O(mn/ log(max{m,n})) operations. Such

operations are common, for example, in spectral algorithms for unweighted graphs, nearest neighbor searches,

dimensionality reduction, and compressed sensing. Our algorithm also includes all previous results (excluding

that of Williams) while using a strikingly simple approach.

The Mailman algorithm

Intuitively, our algorithm multiplies A by x not unlike the local mailman distributes letters. Notice that

Ax =
∑n

i=1 A(i)x(i). Each column A(i) can, metaphorically, indicate one address or house and each x(i)

a letter addressed to it. We imagine computing and adding the term A(i)x(i) to the sum as the effort

of walking to house A(i) and delivering x(i). The naive algorithm delivers each letter individually to it’s

address regardless to how far the walk is or if other letters are addressed to the same house. Whereas actual

mailmen know much better. First, they arrange their letters according to the shortest route (which includes

all houses) while staying put. Then, they walk the route, visiting each house regardless of how many letters

should be delivered there (possibly non). Our algorithm decomposes A into two matrices P and U such that

A = UP . P is the ”address-letter” correspondence matrix. Applying P to x is like arranging the letters.

U is matrix containing all possible columns in A. Applying U to (Px) is like walking the route. Hance, we

name our algorithm after the age old wisdom of the men and women of the postal service.

Our idea can be easily explained for an m × n matrix A where m = log2(n) (w.l.o.g assume log2(n)

integer) and A(i, j) ∈ {0, 1}. Later we modify it to include other sizes and possible entrees. Consider the

different columns of the matrix A. There are only 2m = n such possible columns since each of the m column

entrees can only be either 0 or 1. Let us define the matrix Un as the matrix containing all possible columns

over {0, 1} of length log(n). By definition Un contains all the columns that appear in A. More precisely,

for any column A(j) there exists an index 1 ≤ i ≤ n such that A(j) = U
(i)
n . We can therefore define a

n× n matrix, P , such that A = UP . In particular the matrix P contains one 1 entree per column such that
1A(i, j) ∈ Σ, and |Σ| is a finite constant.
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P (i, j) = 1 if A(j) = U
(i)
m .

We claim that the decomposition of any matrix A into U and P as described above can be achieved in

O(mn) steps. Moreover, we show below that applying both P and U requires only O(n) operation. Note

that although A is of size log(n)×n it can be applied in linear time (O(n)), and thus a log(n) factor is gained.

If the number of rows, m, in A is more then log(n) we can section A into at most dm/ log(n)e matrices each

of size at most log(n) × n. Since each of the sections can be applied in O(n) operations, the entire matrix

can be applied in O(mn/ log(n)) operations.

Applying U requires linear time

Let us denote by Un the log2(n)×n matrix containing all possible strings over {0, 1} of length log(n). Notice

the simple fact that Un can be constructed using Un/2 as such

U1 = ( 0 1 ) , Un =




0, . . . , 0 1, . . . , 1

U/2 Un/2




Applying Un to any vector z requires less then 2n operations. This can be seen by dividing z into its first

and second halves z1 and z2 and computing the product Unz recursively.

Unz =




0, . . . , 0 1, . . . , 1

Un/2 Un/2







z1

z2


 =




∑
z2

Un/2(z1 + z2)




Since computing z1 + z2 and
∑

z2 requires n operations (the length of z is n) we get the recurrence relation

T (2) = 2, T (n) = T (n/2) + n ⇒ T (n) ≤ 2n

Constructing P efficiently

Since U is applied implicitly (not stored) we are only concerned with constructing P . We set an entree

P (i, j) to 1 if A(j) = U
(i)
n . Notice that by our construction of Un its i’th column encodes the binary value of

the index i. Thus, if a column of A contains the binary representation of the value i it is equal to U (i). We

therefore construct P by reading A and setting P (i, j) to 1 if A(j) represents the value i. This, clearly can

be done in time O(mn), the size of A. Since P contains only n nonzeros (one for each column of A) it can

trivially be applied in n steps.
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Generalizations

”Tall and skinny” matrices

Notice that if n ≤ m we can section A horizontally to sections of size m×dlog(m)e and argue very similarly

that PT UT can be applied in linear time. Thus a log(m) saving factor in running time is achieved.

Constant sized alphabet

The definition of Um can be changed such that it encodes all possible strings over a larger alphabet Σ =

{σ1, . . . , σ|Σ|}. Under the mapping σ` → `−1 there is a one to one mapping between strings and the integers

they represent in base |Σ|.

Um =




σ1, . . . , σ1 . . . σ`, . . . , σ`

Um−1 . . . Um−1




The matrix Um of size m× |Σ|m encodes all possible strings of length m over Σ and can be applied in linear

time if |Σ|m = O(n). In this case we must divide our matrix into sections of size log|Σ|(n) × n. The total

running time therefore becomes O(mn log(|Σ|)/ log(max{m,n}).

Matrix operations over semirings

Suppose we supply Σ with and associative and commutative addition operation (+), and a multiplication

operation (·) that distributes over (+). If both A and x are chosen from Σ the matrix vector multiplication

over the semiring {Σ,+, ·} can be performed using the exact same algorithm. This is, of course, not a new

result. However, it includes all other log-factor-saving results.

Applications

We claim that multiplying constant sized alphabet matrices to real vectors is not uncommon. We do not

claim to cover even a small fraction of possible applications but rather give a few examples.

Graph Laplacian Eigensystems

The graph Laplacian L of an unweighted graph G(V, E) is an n×n matrix (|V | = n) such that L(i, j) = −1

if {i, j} ∈ E and zero else. Also, L(i, i) = −∑
j 6=i L(i, j). The simplest method for finding the largest
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eigenvector of the Graph Laplacian matrix is the power method. A more complicated but extremely common

method is the Lanczos method. Both methods require multiplying L by a (possibly large) number of real

vectors.

Assuming the method of choice requires s steps to converge2 the trivial algorithm requires O(sn2) oper-

ations. Clearly, the matrix L can be decomposed into L = D − A where D is diagonal (and therefore can

be applied in O(n) operations) and A is a {0, 1} matrix. Applying the mailman algorithm for applying A

reduces the running time to O(n2 + sn2/log(n)) (The n2 term is requires for preprocessing A). This beats

the naive method for any s > 1.

Dimensionality reduction

Assume we are given p points {x1, . . . , xp} in Rn and are asked to embed them into Rm such all distances

between points are preserved up to distortion ε. A classic result by Johnson and Lindenstrauss [4] shows that

this is possible for m = Θ(log(p)/ε2). The algorithm first chooses a random m×n matrix, A, from a special

distribution. Then, each of the vectors (points) {x1, . . . , xp} ∈ Rn are multiplied by A. The embedding

xi → Axi can be shown to have the desired property with some constant probability.

Clearly a naive application of A to each vector requires O(mn) operations. Recently, by Ailon and

Liberty [3] showed that a simple modification to the work of Ailon and Chazelle [2] allows A to be applied

in O(n log(m)) operations. We claim however that in some situations an older result by Achlioptas can

by trivially modified to out preform this result. Achlioptas [1] showed that the entries of A can be chosen

i.i.d from {−1, 0, 1} with some constant probabilities. Using our method and Achlioptas’s matrix, one can

apply A to each vector in O(n log(p)/ log(n)ε2) operations (remainder m = O(log(p)/ε2)). Therefore, for a

constant ε, if p is polynomial in n, applying A to xi requires only O(n) operation which outperforms the

best known O(n log(m)) and matches the lower bound.
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