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Abstract

The family of random regular graphs is a classic topic in the realms of
graph theory, combinatorics and computer science. In this paper we study
the problem of learning random regular graphs from random paths. A
random regular graph is generated uniformly at random and in a standard
label-guided graph exploration setting, the edges incident from a node in
the graph have distinct local labels. The input data to the statistical query
oracle are path-vertex pairs (x, v) where x is a random uniform path (a
random sequence of edge labels) and v is the vertex of the graph reached
on the path x starting from a particular start vertex v0. We present
a comprehensive study and prove positive results on the convergence of
random walks on many types of random regular graphs. In addition to the
theoretical results, we generalize Angluin and Chen’s learning algorithm to
learning random regular graphs from uniform paths in the statistical query
model. Extensive experiments demonstrate the efficiency and accuracy of
the algorithm.

1 Introduction

Random walks on graphs have long served as a fundamental topic in the study of
Markov chains and also as an important tool in machine learning research. On
the other hand, regular graphs are widely studied in theoretical computer science
for their important role in computational graph models and their applications.
As most strong properties usually don’t hold for all regular graphs, it is natural
to ask whether we can pursue positive results for “almost all” regular graphs.
This is addressed by studying high-probability properties of uniformly generated
random regular graphs. In recent decades random regular graphs have gathered
more and more attention in computer science, combinatorics and graph theory
(see the related works section). Nevertheless, the study of random walks on
random regular graphs is relatively limited. This paper aims to fill this gap
with a comprehensive study of the varieties of random regular graphs listed
in Table 1. Detailed definitions of the random graph models are provided in
Section 2.1. The notations in Table 1 are used throughout this paper. Our
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main contributions are the positive results on the fast convergence of random
walks on random regular graphs, which fill the gap in the research on random
regular graphs. In addition to the theoretical results, we are able to generalize
Angluin and Chen’s algorithm [1] to learning random regular graphs (i.e., almost
all regular graphs) from random paths in the statistical query model.

Random out-regular multigraphs (RMG+(s)) are the most well-studied among
the family of random regular graphs, mainly because the freedom and indepen-
dence of the edge selections makes the analysis simple and direct. This is also
due to the important role of deterministic finite automaton (DFA) in com-
puter science, as the underlying automaton graph of a random DFA is exactly
a RMG+(s) ([1, 15, 27]). In the context of DFA learning, Angluin and Chen
[1] have proved the fast convergence of random walks on a RMG+(s). In our
paper, we first start with the slightly more restricted model, the random out-
regular simple graphs (RSG+(s)), with less freedom and independence of the
edges. Simple graphs are more natural in real-world applications like citation
graphs and k-nearest neighbors graphs where self-loops and parallel edges are
not allowed. We prove random walks on a RSG+(s) converge to the stationary
distribution polynomially fast with probability 1 − o(1). Based on the proofs
for out-regular models, we then show similar properties for in-regular models.
In-regular graphs are less popular and of limited interest in practice but their
properties are helpful to studying the random s-in s-out graph models, first
introduced by Fenner and Frieze [12], which can be viewed as the sum of a ran-
dom out-regular graph and a random in-regular graph. After that we study the
two classes of regular graphs in usual sense: regular digraphs and regular undi-
rected graphs. They are the most restricted graphs among these models but very
widely studied in the literature. Undirected sparse (s = O(1)) regular multi-
graphs are known as expander graphs. It is well known that expander graphs
have well-bounded Laplacian eigenvalues. In this paper RDG(s) and RG(s) are
simple, not necessarily sparse graphs. In addition, polynomially bounding the
Laplacian eigenvalues for RDG(s) and RG(s) is not hard and doesn’t involve
any randomness (including nonsparse cases, see Appendix C.2), but bounding
Laplacian eigenvalues is not sufficient for fast convergence. Most of our effort is
spent on the aperiodicity, where the randomness in the models is formally dealt
with. To the best of our knowledge, no work has been done on the ergodicity
and convergence rate of the random walks on RDG(s) and previous results for
RG(s) require s = blogC nc for some constant C ≥ 2, where n is the size of the
graph. We present a complete proof for fast convergence of random walks on
RDG(s) for s ≥ 2 and random walks on RG(s) for s ≥ 3 if n is odd and for
3 ≤ s = o(

√
n) or s > 1

2n if n is even.

Angluin and Chen [1] proposed a random-walk based algorithm for learning
random DFAs. Observing the connection between DFA learning and label-
guided graph exploration, along with the fast convergence results we prove in
this paper, we generalize Angluin and Chen’s algorithm to learning random
regular graphs of fixed out-degree s. The learning model we use is Kearns’
statistical query model [17], a weaker variant of Valiant’s PAC learning model.
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Random regular graph model Notation

Random out-regular multigraph RMG+(s)

Random out-regular simple graph RSG+(s)

Random in-regular multigraph RMG−(s)

Random in-regular simple graph RSG−(s)

Random s-in s-out multigraph RMG±(s)

Random s-in s-out simple graph RSG±(s)

Random regular digraph RDG(s)

Random regular undirected graph RG(s)

Table 1: Random regular graph models with fixed degree s

Learning graphs from exploration is a long studied theoretical learning problem
[3, 4], where the graphs are usually assumed out-regular. We follow [4]s settings
but in the passive learning scenario where blind agents passively explore the
graph on random paths. In a regular graph of out-degree s, the s edges incident
from a node are associated to s distinct port numbers in {1, 2, . . . , s} in a one-
to-one manner, which is a standard label-guided graph exploration setting ([4,
14, 22]). Each edge of a node is labeled with its local port number. The input
data to the statistical query oracle are of the form (x, v) where x is a random
uniform path (a sequence of edge labels) of a fixed length and v is the vertex of
the graph reached on the path x starting from a particular start vertex v0.

Related works

The study of random regular graphs started with the works of Bender [2], Bol-
lobás [5] and Wormald [28]. Their applications in computer science soon led to
a large volume of subsequent works in this area (see [29] for a survey). Most
of these contributions are on the topics of asymptotic enumeration, chromatic
number and Hamilton cycles. Nevertheless, research on random walks on ran-
dom regular graphs is very limited in the literature. Hildebrand [16] showed the
fast convergence of random walks on a RG(s) with the constraint s = Θ(logC n)
for some constant C > 2 and Cooper [10] studied the cover time with fixed
constant s = O(1) but no convergence result was presented. In the context of
DFA learning, Angluin and Chen [1] first proved the fast convergence of random
walks on a RMG+(s) for s ≥ 2.

The first known algorithm designed for graph exploration was introduced by
Shannon [25]. Since then, many subsequent works have studied the feasibility
of graph exploration in the port numbering setting. Rollik [23] gave a complete
proof of that no robot with a finite number of pebbles can explore all graphs.
The result holds even when restricted to planar 3-regular graphs. Without
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pebbles, it was proved [14] that a robot needs Θ(Diam · log s0) bits of memory
to explore all graphs of diameter Diam and maximum degree s0.

2 Random walks on random regular graphs

In this section, we describe our main theoretical result. Concepts and notation
used throughout this paper are described in Section 2.1. The main theorem is
presented in Section 2.2 with a sketch of the proof. The details of the complete
proof are deferred to the appendices.

2.1 Preliminaries

A graph is a tuple G = (V,E), where V is a (finite) set whose elements are
called vertices and E is a (finite) multiset of ordered pairs of V called edges.
We denote by n = |V |. A graph is undirected if the vertex pairs in E are
unordered, and is simple if it has no self-loops or parallel edges. If vertex v is
reachable from another vertex u, the distance d(u, v) from u to v is the minimum
length of the paths from u to v and d(u, u) = 0. The diameter of a graph is
max{d(u, v) | v = u or v is reachable from u}. A graph G is (cyclically) h-
partite if V can be partitioned into h subsets, V0, V1, . . . , Vh−1, in such a way
that all edges from Vi go to V(i+1) mod h. We say a vertex set V0 ⊆ V is closed
if for any u ∈ V0 and any v such that (u, v) ∈ E, we must have v ∈ V0. A
component V0 ⊂ V is isolated if for any u ∈ V0 and any v such that (u, v) ∈ E
or (v, u) ∈ E, we must have v ∈ V0.

In an undirected graph, the degree of a vertex u is the number of edges
incident to u. An undirected graph is regular if every vertex has the same
degree. In a digraph, for a directed edge (u, v) in E, we say that vertex u has
an out-neighbor v and vertex v has an in-neighbor u. The number of edges
incident to a vertex u is the in-degree of u, denoted by d−u , and the number of
edges incident from u is its out-degree, denoted by d+

u . Unless otherwise stated,
by default a neighbor refers to an out-neighbor and the degree of a vertex u
denoted by du means the out-degree. A graph G is out-regular if du = s for
∀u ∈ V ; and is in-regular if d−u = s for ∀u ∈ V . A digraph is regular if it is both
in-regular and out-regular.

A walk on a graph G is a sequence of vertices (v0, v1, . . . , v`) such that
(vi−1, vi) ∈ E for all 1 ≤ i ≤ `. A random walk on a graph G is defined by
a transition probability matrix P with P (u, v) = #{(u, v) ∈ E} · d−1

u denoting
the probability of moving from vertex u to vertex v, where #{(u, v) ∈ E} is
the number of edges from u to v in the graph. A vertex (or equivalently a
state of a random walk) u is aperiodic if gcd{t ≥ 1 | P t(u, u) > 0} = 1. A
graph G (or a random walk on G) is irreducible if for every u and v in V
there exist a directed cycle in G containing u and v, and is aperiodic if every
vertex is aperiodic. A distribution vector φ satisfying φP = φ is called a Perron
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vector of the walk. An irreducible and aperiodic random walk has a unique
Perron vector φ and limt→+∞ P t(u, ·) = φ (called the stationary distribution)
for any u ∈ V . In the study of rapidly mixing walks, the convergence rate in
the L2 distance ∆L2

(t) = maxu∈V ‖P t(u, ·) − φ‖2 is often used. A stronger
notion in L1 distance is measured by the total variation distance, given by
∆TV (t) = 1

2 maxu∈V
∑
v∈V |P t(u, v) − φ(v)|. Another notion of distance for

measuring convergence rate is the χ-square distance:

∆χ2(t) = max
u∈V

(∑
v∈V

(P t(u, v)− φ(v))
2

φ(v)

) 1
2

As the Cauchy-Schwarz inequality gives ∆L2
(t) ≤ 2∆TV (t) ≤ ∆χ2(t), a conver-

gence upper bound for ∆χ2(t) also bounds ∆L2
(t) and ∆TV (t).

In this paper we study the random graph models listed in Table 1. For each
model, an instance is drawn uniformly at random from the instance space of
the model. A random s-in s-out graph is generated as the sum of a random in-
regular graph and a random out-regular graph [12]. A RDG(s) has no parallel
edges but allows self-loops. A RG(s) is simple.

2.2 The main theorem

We prove positive results on the ergodicity and convergence rate of random
walks on random regular graphs, as stated in the following theorem.

Theorem 1 With probability 1 − o(1), a random walk on a random regular
graph has ∆χ2(t) ≤ e−k after t ≥ t0 steps, where

1. for RMG+(s) and RSG+(s): t0 = 2C(C + 1)sn1+C(log n+ k) · logs n for
some constant C > 0 when s ≥ 2;

2. for RDG(s): t0 = 2s(n− 1)(log n+ 2k) when s ≥ 2;

3. for RG(s): t0 = s(n − 1)(log n + 2k) when s ≥ 3 if n is odd; when
3 ≤ s = o(

√
n) or s > 1

2n if n is even;

4. for RMG−(s) and RSG−(s): t0 = 2C(C + 1)sCn1+C(log n + k) · logs n
for some constant C > 0 when the walk is restricted to the unique ir-
reducible component and there exists a constant C ′ ≥ 1 such that s =

Ω

([
logn

log logn

]1/C′)
.

5. for RMG±(s) and RSG±(s): t0 = 2C(C + 1)sCn1+C(log n + k) · logs n
for some constant C > 0 when there exists a constant C ′ ≥ 1 such that

s = Ω

([
logn

log logn

]1/C′)
.
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The constraints on s in the theorem are reasonable. The low connectivity
of 1-regular graphs makes them of little interest so we need at least s ≥ 2.
In the undirected case we have s ≥ 3 because when s = 2 a connected 2-
regular undirected graph (or component) can only be a simple cycle. That
is, a RG(2) must be a set of isolated simple cycle(s). This not only breaks the
irreducibility, but also violates the aperiodicity. The other constraint s = o(

√
n)

for even n comes from the study of enumeration on RG(s). In the cases (4) and
(5), a lower bound on s is needed because small in-degree s brings us large
maximum out-degree (with respect to s). Unlike other models, the irreducible
component in the in-regular cases in the theorem is not necessarily closed, and
the fast convergence property only holds when the walk is restricted to the
unique irreducible component. We present the main idea of the proof with most
details deferred to the appendices.

2.3 Fast convergence on RMG+(s) and RSG+(s)

Angluin and Chen [1] first proved that random walks on a random DFA converge
polynomially fast. Because the underlying graph of a random DFA exactly is a
RMG+(s), the RMG+(s) case in the main theorem is established immediately
by their work.

In Appendix A we present a complete proof for the RSG+(s) case. A stan-
dard proof of fast convergence consists of three parts: irreducibility, aperiodicity
and polynomial convergence rate. The irreducibility of RSG+(s) is built on that
of RMG+(s), thanks to the similarities they share. A RSG+(s) can be generated
from a RMG+(s) using a two-stage procedure. Stage 1: generate a RMG+(s).
Stage 2: for each vertex in the graph, check whether all its s neighbors are dis-
tinct nodes that are not itself. If not, keep choosing neighbors from V uniformly
at random until it has exactly s distinct neighbors excluding itself. Finally, re-
move self-loops and merge parallel edges to simple edges. Since a RMG+(s) can
be viewed as a RMG+(s) adding more edges after removing self-loops and merg-
ing parallel edges, together with the fact that a RMG+(s) has a large closed
and strongly connected component (Lemma 2), we achieve the irreducibility of
RSG+(s) (Lemma 3).

Let ph(n̄) be the probability of existence of an h-partite component of size
n̄, denoted by Ḡ = (V̄ , Ē), in a RSG+(s). Ḡ is h-partite if and only if V̄ can
be partitioned into h subsets, V̄0, V̄1, . . . , V̄h−1, such that all edges from V̄i go to
V̄(i+1) mod h. Algebra and combinatorics bounds give us

ph(n̄) ≤
(
n

n̄

)
·
(

1

h

)n̄
·
(

n̄

n− 1

)2n̄

and that ph(n̄) is exponentially small for any n̄ > 0.79n and h ≥ 2 so that the
probability of periodicity ≤

∑n
n̄=d0.79ne

∑n̄
h=2 ph(n̄) goes to 0 when n → +∞

(Lemma 4).
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The proof of the polynomial convergence rate is mainly done by showing that
a RSG+(s) has logarithmic diameter (of order Θ(logs n)) with high probability.
Similar to the proof of the same argument for RMG+(s) [27], we generate a
RSG+(s) in a “level-wise” order. Pick a vertex u0 ∈ V and let level 0 be {u0}.
Inductively, for each vertex in level i − 1 we choose its s neighbors uniformly
excluding itself without replacement. All the new chosen vertices form level i.
We call the set of vertices in level ≤ i the ball i. To accomplish the proof, we
divide the above spanning procedure into six stages (see the proof of Theorem
4 for details). We show that the size of the spanning ball keeps increasing in
the first 3 stages while the boundary of the ball starts shrinking in Stage 4 and
finally the spanning procedure halts with an empty new level. The number of
levels constructed in every stage is logarithmic, and so is the diameter of the
graph.

2.4 Fast convergence on RMG−(s), RSG−(s), RMG±(s)
and RSG±(s)

The conclusions drawn for random walks on random out-regular graphs can
be easily generalized to the in-regular cases. Let A be the adjacency matrix
of graph G. Denote by G> the transpose of G defined by adjacent matrix
A>. It is apparent to see that (1) G> has exactly the same irreducible com-
ponents as G; (2) The aperiodicity of G implies the aperiodicity of G>; (3)
Diam(G) = Diam(G>). These give irreducibility, aperiodicity and logarith-
mic diameter. Note that in these cases the irreducible component is usually
not closed. Hence, the fast convergence argument only holds when the walk is
restricted to the unique irreducible component. According to Theorem 3 (in Ap-
pendix A), it remains to bound the maximum out-degree s0 = arg maxu∈V du.
This requires the lower bound assumption on s as stated in the main theorem
because small in-degree s results in large maximum out-degree (with respect
to s). A random s-in s-out graph can be viewed as the sum of a random out-
regular graph and a random in-regular graph, generated independently of each
other. Thus logarithmic diameter is trivial. The original paper by Fenner and
Frieze [12] has already shown the strong connectivity of the random s-in s-out
graphs for s ≥ 2. As the entire graph is strongly connected, the connected
component is surely closed and unique. Their aperiodicity is established by the
fact that sum graph retains all directed cycles in the original graphs. Please
refer to Appendix B for the complete proof.

2.5 Fast convergence on RDG(s) and RG(s)

Among all the models in this paper, RDG(s) is the most constrained one, due
to the strong dependence and strict constraints on the edge selections (same in
the undirected model) and the lack of symmetry (while the undirected model
has symmetry). Unlike the previous cases, the proof is based on enumeration.
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Previous works have contributed the irreducibility. The proof of aperiodicity
starts with the asymptotic enumeration of regular digraphs. Note the bijection
between regular digraphs and binary square matrices with equal line sums. Let
N(n, s) be the number of s-regular digraphs of size n. We present an asymp-
totic formula for N(n, s), by unifying previous results on binary square matrices
with equal line sums (Lemma 8). We also observe the bijection between regu-
lar digraphs of size n and colored regular bipartite (undirected) graphs of size
2n. Let G = (V,E) be a regular digraph of fixed degree s. We construct a
regular bipartite graph G′ = (V ′, E′) where |V ′| = 2|V | as following. With-
out loss of generality, denote V = {v1, v2, . . . , vn} and V ′ = {v′1, v′2, . . . , v′2n}
with {v′1, v′2, . . . , v′n} of one color and {v′n+1, v

′
n+2, . . . , v

′
2n} of the other. Let

(v′i, v
′
n+j) ∈ E′ if and only if (vi, vj) ∈ E. We can see such a regular bipartite

graph G′ is unique for each regular digraph G and vice versa.

To show aperiodicity, we again need to exponentially upper-bound the prob-
ability of the graph being h-partite, denoted by ph. If V can be partitioned
into h subsets, V0, V1, . . . , Vh−1, such that all edges from Vi go to V(i+1) mod h,
because the graph is regular, we must have |V0| = |V1| = . . . = |Vh−1| = n

h and
h ≤ n

s . Notice that the number of possible edge combinations from Vi going to
V(i+1) mod h is exactly the number of colored s-regular bipartite (undirected)
graphs of size n

h , which is N(nh , s). This gives

ph ≤
1

h
·
(

n
n
h
n
h . . .

n
h

)
·
[
N
(
n
h , s
)]h

N(n, s)

With the asymptotic enumeration result we complete the proof (Lemma 9).

Unlike the previous cases where we prove fast convergence by proving loga-
rithmic diameter, for regular digraphs the polynomial convergence rate follows
from a lower bound on the first non-zero eigenvalue on the Laplacian matrix.
Note that the walk matrix P = 1

sA of a random walk on a RDG(s) is doubly
stochastic matrix, and so is 1

2 (P + P>). Also observe that the Perron vector of
any regular digraph is always the uniform distribution. Using a spectral lower
bound for doubly stochastic matrices due to Fiedler [13], we complete the proof.

Random regular undirected graphs are much more widely studied than di-
rected ones, mainly owing to the symmetry of undirected graphs. Previous
works have established connectivity and enumeration results. Because the only
periodic case for an undirected graph is being bipartite, we only need to bound
the probability p2. This is again done by enumeration. From the proof in the
preceding case we already know the number of bipartite s-regular undirected
graphs of size n is

(
n
n
2

)
· N(n2 , s). Denote by N ′(n, s) the number of s-regular

undirected graphs of size n. We have

p2 ≤
1

2

(
n
n
2

)
·
N(n2 , s)

N ′(n, s)

Using the same spectral lower bound for doubly stochastic matrices as in the
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preceding case, we have the polynomial convergence rate. Detailed algebra is
deferred to Appendices C and D.

3 Reconstructing random regular graphs from
random paths

The positive theoretical result in Section 2 establishes the generalization of
Angluin and Chen’s algorithm to learning random regular graphs. Because the
nature of the algorithm requires the graph to be out-regular, we only apply this
algorithm to the models with fixed out-degree s, namely RMG+(s), RSG+(s),
RDG(s) and RG(s).

3.1 Preliminaries

In a computational learning model, an algorithm is usually given access to an
oracle providing information about the target concept. Kearns [17] modified
Valiant’s model and introduced the statistical query oracle STAT. Kearns’ oracle
takes as input a statistical query of the form (χ, τ). Here χ is any mapping of
a labeled example to {0, 1} and τ ∈ [0, 1] is called the noise tolerance. Let c be
the target concept and D be the distribution over the instance space. Oracle
STAT (c,D) returns to the learner an estimate for the expectation IEχ, that is,
the probability that χ = 1 when the labeled example is drawn according to
D. A statistical query can have a condition, in which case IEχ is a conditional
probability. This estimate is accurate within additive error τ . Kearns [17]
proved that the statistical query model is weaker than the classic PAC model.
That is, PAC learnability from oracle STAT implies PAC learnability from the
classic example oracle, but not vice versa.

In this section we study the problem of learning regular graphs in the
statistical query model. In a typical label-guided graph exploration setting
([3, 4, 14, 22]), in a regular graph with fixed out-degree s, the s edges incident
from a node are associated to s distinct port numbers in Σ = {1, 2, . . . , s}, in
a one-to-one manner. Each edge of a node is labeled with the associated port
number. Port numbering is local, i.e., there is no relation between port numbers
at u and at v. In the undirected case RG(s), every undirected edge (u, v) has
two labels corresponding to its port numbers at u and at v respectively. A path
is a sequence of edge labels. The input data to the statistical query oracle are
of the form (x, v) where x ∈ Σt is a random uniform path and v is the vertex
of the graph reached on the path x starting from a particular start vertex v0.
Here t = poly(n, s) is the length of the example paths. The learner has access
to the oracle STAT and algorithms are designed to reconstruct the graph (or
the unique closed irreducible component for RMG+(s) and RSG+(s)).
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3.2 The learning algorithm

A uniform path x ∈ Σt corresponds to a random walk of length t on the graph
G starting from the start vertex v0. Since all these four types of random regular
graphs have been proved to have one unique closed irreducible component with
high probability and due to the main theorem, the walk will converge to the
stationary distribution pλ polynomially fast, with any start vertex. Define a
collection of n × n binary matrices Mσ indexed by labels σ ∈ Σ as follows.
For each pair of vertices (u, v), the element Mσ(u, v) is 1 if (u, v) ∈ E and is
labeled with σ at vertex u, and 0 otherwise. For a path y = y1y2 . . . ym of
length m, define My to be the matrix product My = My1

·My2
. . .Mym . Also

define the distribution vector py over V obtained by starting with the stationary
distribution pλ and walking along the path y on the graph. That is, py = pλMy.
Note that here we use notation y to distinguish a general path of length m from
the example paths x of length t. Let z be the i-th column of matrix Mσ, PA be
the sΘ(logs n) × n coefficient matrix whose rows are {py | y ∈ ΣΘ(logs n)} and b
be the vector consisting of {pyσ(i) | y ∈ ΣΘ(logs n)} corresponding to each y in
PA. The algorithm recovers the strongly connected component by solving the
linear equation system PAz = b for each column z in each matrix Mσ.

By setting k = log 2
τ in the main theorem, after t0 steps the random walk

converges to the stationary distribution pλ within χ-square distance τ
2 with high

probability. Observe that 2‖φt − φ‖TV ≤ ∆χ2(t), where φt is the distribution
vector over V after t steps of random walk. We can estimate the stationary
distribution for a vertex i by the fraction of examples (x, v) such that v =
i. In general, for any path y, we can estimate the value of py for a vertex
i as the ratio between the number of pairs (x, v) such that y is a suffix of x
and v = i and the number of examples (x, v) where y is a suffix of x. In
the statistical query model this is done with a conditional statistical query
χy,i(x, v) = 1{v = i | y is a suffix of x} at tolerance τ

2 , where 1 is the boolean
indicator function. Denote by vector p̂y the query result returned by oracle

STAT where p̂y(i) is the estimate IEχy,i, and by P̂A and b̂ the estimates for PA
and b respectively from oracle STAT. We have ‖py − p̂y‖∞ ≤ τ for any path y
[1]. The algorithm approximates z by solving the perturbed linear least squares

problem: minz ‖P̂Az− b̂‖2. Let vector ẑ be the solution. Then from [1] we have

Lemma 1 If PA has full rank with high probability, for all columns z in all
matrices Mσ, ‖z − ẑ‖∞ ≤ ‖z‖1‖|P †A|‖∞τ +O(τ2) with probability 1− o(1).

For RMG+(s), it is proved in [1] with high probability ‖z‖1 ≤ (1+ε) logns
log logns for

any constant ε > 0. We show this also holds for RSG+(s) (see Appendix E).
For RDG(s) and RG(s), we have ‖z‖1 = s.

Theorem 2 If PA has full rank with high probability,
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1. for RMG+(s) and RSG+(s), ‖z− ẑ‖∞ ≤ (1+ε) logns
log logns ‖|P

†
A|‖∞τ +O(τ2) for

any constant ε > 0

2. for RDG(s) and RG(s), ‖z − ẑ‖∞ ≤ s‖|P †A|‖∞τ +O(τ2)

holds for all columns z in all matrices Mσ with probability 1− o(1).

This further implies that if we set the tolerance τ = log logns

3‖|P †A|‖∞ logns
for

RMG+(s) and RSG+(s), and τ = 1

3s‖|P †A|‖∞
for RDG(s) and RG(s), the so-

lution error ‖z − ẑ‖∞ < 1
2 with high probability. Based on the prior knowledge

we have on z, we could refine ẑ by rounding up ẑ to a binary vector z̃, i.e., for
each 1 ≤ i ≤ n, z̃(i) = 1 if ẑ(i) > 1

2 and 0 otherwise, whereby we will have
z̃(v) = z(v) for any vertex v. We provide a toy example in Appendix G to
demonstrate how the learning algorithm works on a concrete regular graph.

3.3 Experiments and empirical results

In this section we present experimental results to study the empirical perfor-
mance of the learning algorithm, which was run in MATLAB on a workstation
built with Intel i5-2500 3.30GHz CPU and 8GB memory. To be more robust
against fluctuation from randomness, each test was run for 20 times and the
medians were taken. The graphs are generated uniformly at random as defined
and the algorithm solves the equation system {pyMσ = pyσ | y ∈ Σ≤dlogs ne}
using the built-in linear least squares function in MATLAB. We simulate the
statistical query oracle with uniform additive noise from [−τ, τ ]. Since Angluin
and Chen’s paper [1] already included experiments on learning a random DFA,
whose underlying graph is exactly RMG+(s), we don’t duplicate the experiments
for RMG+(s). As this is a theoretical paper, we defer all detailed experimental
results to Appendix H.

The generating procedure of a RSG+(s) is standard. Each node v ∈ V
independently chooses s neighbors without replacement uniformly at random.
However, to the best of our knowledge, there is no algorithm that efficiently
generates a RDG(s) or a RG(s). In our experiments, we use the celebrated
pairing model first introduced by Bollobás [5]. In a RG(s), each vertex has s
ports associated to its s edges. It is well known that the necessary and sufficient
conditions for an s-regular graph of order n to exist are that n ≥ s + 1 and
that ns is even. To generate a RG(s), we uniformly pick a perfect matching of
the ns ports into 1

2ns pairs. Adding an edge between each pair of ports gives a
(not necessarily simple) regular graph. Repeat this procedure until it produces
a simple graph. Likewise we generate a RDG(s) by uniformly matching ns
out-ports (corresponding to outgoing edges) with ns in-ports (corresponding
to incoming edges) until we get a regular digraph with no parallel edge. This
method is not efficient owing to the unbounded number of repetitions, especially
when s grows. Hence, with large s this generating method is extremely slow.
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Note that this limitation comes from the existing generating methods. Our
learning algorithm is efficient.

The experiments start with an empirical estimate for the norm ‖|P †A|‖∞. For
RSG+(s) we first vary the graph size n from 32 to 4300 with fixed out-degree

s = 2. Figure 2 shows the curve of ‖|P †A|‖∞ versus n with fixed s. Notice that
the threshold phenomenon in the plot comes from the ceiling operation in the
algorithm configuration. When n is much smaller than the threshold sdlogs ne,
the system is overdetermined with many extra equations. Thus it is robust to
perturbation and well-conditioned. When n approaches the threshold sdlogs ne,
the system has fewer extra equations and becomes relatively more sensitive to
perturbations, for which the condition number increases until the graph size
reaches n = si for the next integer i. One can avoid this threshold phenomenon
by making the size of the equation system grow smoothly as n increases. We
then fix n to be 256 and vary s from 2 to 75, as shown in Figure 3. Similarly
there is the threshold phenomenon resulting from the ceiling strategy. All peaks
where n = si are included and plotted. Meanwhile the rank of the coefficient
matrix PA is measured to support the full-rank assumption. Both figures suggest
an upper bound ns log s for ‖|P †A|‖∞ of RSG+(s). Figures 8 and 9 demonstrate
the experimental results for the maximum absolute error. Along with the error
curve a function is plotted to approximate the order of the decline rate of the
error. An empirical error bound is O(log−1 n) with fixed s and O(1/

√
s) with

fixed n.

Because generating a RDG(s) and generating a RG(s) are extremely slow
with large s, the range of s where we can efficiently conduct the experiments
is very limited. For RDG(s) we first vary n from 32 to 4300 with fixed s = 2
(Figure 4) as before but with fixed n = 256 we vary s from 2 to 6 (Figure 5).

The norm ‖|P †A|‖∞ of RDG(s) is bounded by n log3(ns) and an empirical error
bound is O(log−1 n) with fixed s (Figure 10) and O(1/s) with fixed n (Figure
11). For RG(s) we vary n from 26 to 3000 with fixed s = 3 (Figure 6) and
vary s from 3 to 8 with fixed n = 242 (Figure 7). As the existence of a regular
undirected graph requires even ns and s is fixed to be 3 when varying n, we only
run experiments with even n. For critical points where n = 3i, experiments are
run with n = 3i − 1 and n = 3i + 1. This explains why we start with n = 26
instead of n = 27 with fixed s = 3, and also why we fix n = 242 rather than
n = 243 when varying s. The norm ‖|P †A|‖∞ of RG(s) is bounded by sn1.6 and
an empirical error bound is O(log n/

√
n) with fixed s (Figure 12) and O(1/s)

with fixed n (Figure 13).

4 Other applications and discussion

With the broad applications of regular graphs in computer science and machine
learning, our theoretical results can be applied to other research areas such as
distributed networks and social network graphs. Performing random walks on
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distributed networks is an active area of research (see [7] for a survey). High
connectivity, bounded degree and low diameter are very common properties of
(well designed) distribution network models. Theorem 3 explicitly provides fast
convergence for random walks on these models. For instance, Pandurangan et
al. [21] proposed a protocol which ensures that the network is connected and
has logarithmic diameter with high probability, and has always bounded degree.
A simpler, fully decentralized model named SWAN was proposed by Bourassa
and Holt [6] based on random walks, which produces a random regular graph.
In another direction, random walks have proven to be a simple, yet powerful
mathematical tool for extracting information from large scale and complex social
networks (see [24] for a survey). Social network graphs also have the above
properties (high connectivity, small degree and low diameter) so that the random
walks shall converge fast as we proved. One application of fast convergence is
the capability of uniformly sampling the graph, which is very important in many
graph learning problems.

In this paper we have shown positive theoretical results on random walks
on random regular graphs, and generalized Angluin and Chen’s algorithm to
learning random regular graphs from random paths. One technical question on
the fast convergence result is whether it can be generalized to weighted random
walks on random regular graphs. An immediate benefit from this generalization
is the release from the requirement of uniform paths in the learning algorithm.
However, we conjecture this requires a polynomial lower bound on the edge
weights in the graph, to avoid exponentially small nonzero elements in the walk
matrix P . Another potential future work is to apply this algorithm to learning
a more general class of graphs. Note that any generalization of the algorithm
needs not only fast convergence, but also asymmetry of the target graph. The
class of permutation automata [26] is one example that has symmetric graph
structure and degenerate PA. Also, there is potential possibility of relaxing the
constraint on s in the RG(s) case if advances on the enumeration of regular
undirected graphs are made.

Appendix A Proof of Theorem 1 for RSG+(s)

In this section we prove the fast convergence of random walks on RSG+(s),
divided into three parts: irreducibility, aperiodicity and polynomial convergence
rate.

A.1 Irreducibility

Since RMG+(s) and RSG+(s) share many similarities, we can achieve the irre-
ducibility of RSG+(s) based on that of RMG+(s).

Lemma 2 ([15]) With probability 1− o(1), a RMG+(s) has a unique strongly
connected component, denote by G̃ = (Ṽ , Ẽ), of size ñ, and a) limn→+∞

ñ
n = C
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for some constant C > 0.7968 when s ≥ 2 or some C > 0.999 when s ≥ 7; b) Ṽ
is closed.

The irreducibility of RSG+(s) is proved in the following lemma.

Lemma 3 With probability 1−o(1), a RSG+(s) has a unique closed and strongly
connected component, denoted by G̃ = (Ṽ , Ẽ), of size ñ when n → +∞, and
limn→+∞

ñ
n ≥ C for some constant C > 0.7968 when s ≥ 2 or some C > 0.999

when s ≥ 7.

Proof Recall that the only difference of RSG+(s) from RMG+(s) is that the
s neighbors of each vertex are chosen without replacement so no self-loops or
parallel edges are allowed. We can consider the following two-stage procedure to
generate a RSG+(s) from a RMG+(s). Stage 1: generate a RMG+(s). Stage 2:
for each vertex in the graph, check whether all its s neighbors are distinct nodes
that are not itself. If not, keep choosing neighbors from V uniformly at random
until it has exactly s distinct neighbors excluding itself. Finally, remove self-
loops and merge parallel edges to simple edges. Because each v ∈ V \ {u} will
become u’s neighbor with equal probability, the result graph of this procedure
is a uniformly generated RSG+(s).

Thus a RMG+(s) can be viewed as a RMG+(s) adding more edges after
removing self-loops and merging parallel edges. This means the simple graph
model has better connectivity. The size of the strongly connected component
will only increase. After Stage 1 we have a RMG+(s), denoted by G1 = (V,E1)
and let Ṽ1 ⊆ V be the closed strongly component of G1 stated in Lemma 2.
To show the irreducible component in a RSG+(s) is also closed, note that for
any v 6∈ Ṽ1, there must exist at least one path from v to Ṽ1. Otherwise there
will be another strongly connected component in G1, which contradicts Lemma
2. Thus in Stage 2, every time when we add an edge from Ṽ1 to some u 6∈ Ṽ1,
there must be some directed path(s) from u heading back to the irreducible
component. All the vertices on this(these) path(s) are now strongly connected
with Ṽ1 and become new members of the irreducible component. Therefore, the
irreducible component in the final simple graph will also be closed. �

A.2 Aperiodicity

Lemma 4 With probability 1− o(1), G̃ in Lemma 3 is aperiodic.

Proof Let ph(n̄) be the probability of existence of an h-partite component
of size n̄ in a RSG+(s). The proof is completed by showing ph(n̄) goes to 0
exponentially fast when n→ +∞ for any n̄ > 0.79n and h ≥ 2 so that combining
with Lemma 3 the probability of periodicity is ≤

∑n
n̄=d0.79ne

∑n̄
h=2 ph(n̄) and

goes to 0 when n→ +∞.
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Let Ḡ = (V̄ , Ē) be a fixed component of size n̄ in the graph. Ḡ is h-partite
if V̄ can be partitioned into h subsets, V̄0, V̄1, . . . , V̄h−1, such that all edges
from V̄i go to V̄(i+1) mod h. The number of such partitions is at most hn̄. The
probability of forming a particular partition V̄0, V̄1, . . . , V̄h−1 is

h−1∏
i=0

((|V̄(i+1) mod h|
s

)(
n−1
s

) )|V̄i|

=

h−1∏
i=0

(∏s−1
j=0

(
|V̄(i+1) mod h| − j

)∏s−1
j=0(n− 1− j)

)|V̄i|

≤
h−1∏
i=0

s−1∏
j=0

|V̄(i+1) mod h|
n− 1

|V̄i|

=

h−1∏
i=0

( |V̄(i+1) mod h|
n− 1

)s|V̄i|

≤
(

n̄

h(n− 1)

)sn̄
≤
(

n̄

h(n− 1)

)2n̄

This is because the product
∏h−1
i=0 x

xi

(i+1) mod h, given xi > 0 and
∑h−1
i=0 xi = n̄,

is maximized for xi = n̄/h, i = 0 . . . h− 1. Thus

ph(n̄) ≤
(
n

n̄

)
· hn̄ ·

(
n̄

h(n− 1)

)2n̄

=

(
n

n̄

)
·
(

1

h

)n̄
·
(

n̄

n− 1

)2n̄

≤
(
n

n̄

)
·
(

1

2

)n̄
·
(

n̄

n− 1

)2n̄

When n̄ = n, as limn→+∞

(
n
n−1

)2n

= e2, apparently ph(n) goes to 0 exponen-

tially fast.

16



When 0.79n < n̄ < n, we have

ph(n̄) ≤
(
n

n̄

)
·
(

1

2

)n̄
·
(

n̄

n− 1

)2n̄

=
n!

n̄!(n− n̄)!
·
(

1

2

)n̄
·
(

n̄

n− 1

)2n̄

≤
√

2πn · nn · en−n̄+ 1
12n · en̄√

2π(n− n̄) · en · (n− n̄)n−n̄ ·
√

2πn̄ · n̄n̄
·
(

1

2

)n̄
·
(

n̄

n− 1

)2n̄

=

√
n

2πn̄(n− n̄)
· e 1

12n ·
(
n̄2

2n2

)n̄
· nn

n̄n̄ · (n− n̄)n−n̄
·
(

n

n− 1

)2n̄

≤
√

n

2πn̄(n− n̄)
· e 1

12n ·
( n̄

2n

)n̄
· nn−n̄

(n− n̄)n−n̄
·
(

n

n− 1

)2n

=

√
n

2πn̄(n− n̄)
· e 1

12n ·
[( n̄

2n

) n̄
n

·
(

1− n̄

n

) n̄
n−1

]n
·
(

n

n− 1

)2n

Note that function f(x) = (1− x)x−1 ·
(
x
2

)x
< 0.7 for all 0.79 < x < 1. Hence,

the probability ph(n̄) is exponentially small, which completes the proof. �

A.3 Fast convergence

For a random walk P on a graph, Chung [9] defined the Laplacian matrix L

L = I − Φ
1
2PΦ−

1
2 + Φ−

1
2P>Φ

1
2

2

where Φ is an n× n diagonal matrix with entries Φ(u, u) = φ(u). Angluin and
Chen [1] proved the following theorem on convergence rate.

Theorem 3 ([1]) A random walk on a strongly connected and aperiodic di-
rected graph has convergence rate of order ∆χ2(t) ≤ e−k after t ≥ 2n ·Diam ·
s1+Diam

0 ((log(nsDiam0 ) + 2k)) or t ≥ 2λ−1
1 ((− log minu φ(u)) + 2k) steps, where

Diam is the diameter of the graph, s0 = maxu du and λ1 is the smallest nonzero
Laplacian eigenvalue.

To accomplish the fast convergence of random walk on a RSG+(s), we prove
the diameter of a RSG+(s) is logarithmic with high probability.

Theorem 4 With probability 1−o(1), the diameter of a RSG+(s) is Θ(logs n).

Proof The logarithmic lower bound is easy to prove. For a particular vertex
u ∈ V , denote by Si(u) the set of vertices in G such that for any v ∈ Si(u)
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the distance from u to v is i. We know S0(u) = {u} and n =
∑+∞
i=0 |Si(u)|.

According to the definition of diameter, |Si(u)| = 0 for all i > Diam. Also
notice that |Si+1(u)| ≤ s|Si(u)|, for which we have

n ≤ 1 + s+ s2 + . . .+ sDiam =
sDiam+1 − 1

s− 1

After some algebra, Diam ≥ logs(n(s − 1) + 1) − 1 ≥ logs(n(s − 1)) − 1 =
logs n+ logs(s− 1)− 1 ≥ logs n− 1 due to logs(s− 1) ≥ 0 for all s ≥ 2. Hence,
we have Diam = Ω(logs n). This lower bound holds for RMG+(s) as well.

However, the proof of the upper bound is lengthy. It is well known that a
RMG+(s) has logarithmic diameter with high probability [27]. Although the
proof for RMG+(s) doesn’t work for RSG+(s) due to the dependence between
its edge selections, our proof follows the framework of their proof.

Assume that we generate a RSG+(s) in a “level-wise” order. We pick a
vertex u0 ∈ V and let level 0 be the set {u0}. Then choose its s neighbors from
V \ {u0} uniformly at random without replacement. All the neighbors of u0

form level 1. Inductively, for each vertex in level i− 1 we choose its s neighbors
uniformly excluding itself without replacement. All the new chosen vertices
form level i. We call the set of vertices in level ≤ i the ball i. By intuition,
level i is the set of vertices to which the distance from u0 is i and ball i consists
of all vertices to which the distance from u0 is at most i. Obviously level i is
the boundary of ball i. The spanning procedure halts when no new vertex is
chosen as a neighbor of the boundary so the next level is empty. To completely
generate a RSG+(s), the final step is for each vertex not in the ball, uniformly
choosing s distinct vertices as its neighbors. Let Li be the size of level i and Bi
be the size of ball i. At any time, we say a vertex is occupied if it has non-zero
in-degree and unoccupied otherwise. During this process, determining a vertex
refers to choosing its s neighbors.

In short, to accomplish the proof, we divide the above spanning procedure
into six stages:

Stage 1 starts from the very beginning and ends at level `1 once B`1 ≥ n
1
6 .

Stage 2 begins immediately after Stage 1 and ends at level `2 once B`2 ≥ n
s4 .

Stage 3 begins immediately after Stage 2 and ends at level `3 once B`3 ≥
(1− 2−s)n.

Stage 4 begins immediately after Stage 3 and ends at level `4 once L`4 ≤
(log2 n)

2
.

Stage 5 begins immediately after Stage 4 and ends at level `5 once L`5 ≤
120 log2 n.

Stage 6 begins immediately after Stage 5 and ends at level `6 once L`6+1 = 0.
The spanning procedure halts.

Letting `0 be 0 and `′i = `i − `i−1, 1 ≤ i ≤ 6 be the number of new levels

created in Stage i, we complete the proof by showing
∑6
i=1 `

′
i = O(logs n).
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Now we start moving to the details. First we notice that the above level-wise
procedure can also be used to generate a RMG+(s) only if we choose neighbors
of a vertex with replacement and allow self-loops. To distinguish between the
multi-graph case and the simple graph case, let L̂i be the size of level i and B̂i
be the size of ball i in the multi-graph case so that we can make use of some
partial results in the multi-graph case by [27].

Consider a sequence of N Bernoulli trials with probability p for success
and 1 − p for failure. Let X(N, p) denote the random variable defined as the
number of successful outcomes in this sequence. [27] proved that for any p >
0, any natural number N and any pN < k ≤ N , Pr[X(N, p) ≥ k] < N ·
[k/(pN)](3+pN−k)/2. It’s easy to see the following facts:

Pr

[
X

(
ms,

n− w
n− s

)
≤ k

]
= Pr

[
X

(
ms,

(n− 1)− (w − 1)

(n− 1)− (s− 1)

)
≤ k

]
≤ Pr[Li+1 ≤ k | Li = m ∧Bi = w]

≤ Pr

[
X

(
ms,

(n− 1)− (w − 1)− (ms− 1)

(n− 1)− (s− 1)

)
≤ k

]
< Pr

[
X

(
ms,

n− w −ms
n

)
≤ k

]
and

Pr

[
X

(
ms,

n− w
n

)
≤ k

]
≤ Pr[L̂i+1 ≤ k | L̂i = m ∧ B̂i = w]

< Pr

[
X

(
ms,

n− w −ms
n

)
≤ k

]
Imagine we choose the edges one by one in the above described level-wise order.
Assuming the number of occupied nodes is t at the moment when we are choos-
ing the i-th edge of vertex v, then the probability of choosing an unoccupied
vertex as the destination (so that we have a new member of the next level) is
(n−1)−(t−1)

n−i = n−t
n−i under the simple graph model and is always n−t

n under the
multi-graph model. Therefore, under the same configuration, we will always
have higher probability to choose an unoccupied vertex under the simple graph
model than that under the multi-graph model. We can easily conclude:

Pr[Li+1 ≤ k | Li = m ∧Bi = w] < Pr[L̂i+1 ≤ k | L̂i = m ∧ B̂i = w]

Similarly, imagine we determine the vertex one by one in the above described
level-wise order and let B(r) be the number of occupied vertices exactly after

we have determined r vertices. Denote by B̂(r) the corresponding quantity in
the multi-graph case. From our analysis above it’s easy to see Pr[B(r) ≥ k] >

Pr[B̂(r) ≥ k] for any r ≥ 1. Below we will go through the six stages and show
the number of new levels constructed is small in every stage.

Stage 1 : For any level i ≤ d 1
6 logs ne − 1, we have Bi+1 ≤

∑j+1
j=0 s

j < si+2 ≤
s2n

1
6 . Thus the probability that an edge created on level i will point to an
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occupied vertex is less than s2n
1
6−1

n−1 < s2n−
5
6 . This means that the probability

that more than one edge on the first d 1
6 logs ne−1 levels will point to an occupied

vertex is less than
∑k
j=2 b(j, k, p) where k is the maximal possible number of

edges on the first d 1
6 logs ne−1 levels, p = s2n−

5
6 and b(j, k, p) is the probability

of j successful outcomes and k− j failures in k Bernoulli trials with probability
p for success. Obviously, k < s3n

1
6 . [27] proved that for sufficiently large n,∑k

j=2 b(j, k, p) < n−
8
7 .

Hence, when n→ +∞, with probability more than 1− n− 8
7 , `′1 ≤ d 1

6 logs ne
and L`1 ≥ (s− 1)n

1
6 /s ≥ n 1

6 /2.

Stage 2 : [27] proved that when L̂i−1 ≥ n
1
6 /2 and B̂i−1 < n/s4,

Pr

[
L̂i ≥

(
1− s+ 2

s4

)
sL̂i−1 | L̂i−1, B̂i−1

]
> 1− n−C

for any fixed C and sufficiently large n. We then have that when Li−1 ≥ n
1
6 /2

and Bi−1 < n/s4,

Pr

[
Li ≥

(
1− s+ 2

s4

)
sLi−1 | Li−1, Bi−1

]
>Pr

[
L̂i ≥

(
1− s+ 2

s4

)
sL̂i−1 | L̂i−1 = Li−1, B̂i−1 = Bi−1

]
>1− n−C

for any fixed C > 1 and sufficiently large n. Thus, with probability>
(
1− n−C

)`′2 >(
1− n−C

)n
> 1−n1−C , all the levels constructed at Stage 2 have growth factor

at least s(1−(s+2)/s4). With probability >
(

1− n− 8
7

) (
1− n1−C) ≥ 1−n− 9

8 ,

`2 < log(1−(s+2)/s4)s n =
1

1 + logs(1− (s+ 2)/s4)
logs n

and B`2 ≥ n/s4 and for any i ≤ `2, Bi >
((

1− (s+ 2)/s4
)
s
)i

.

Stage 3 : [27] proved that for sufficiently large n,

(1−2−s)n∏
r=n/s5

Pr
[
B̂(r) ≥ r + Csn

]
> 1− n−C

for a constant C > 0 and another constant Cs only depending on s. We then
know

(1−2−s)n∏
r=n/s5

Pr [B(r) ≥ r + Csn] >

(1−2−s)n∏
r=n/s5

Pr
[
B̂(r) ≥ r + Csn

]
> 1− n−C
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for a constant C > 0 and another constant Cs only depending on s. This means
that all the levels constructed at Stage 3 have at least Csn vertices with high
probability. Formally, when n → +∞, with probability greater than 1 − n−C ,
`′3 <

n
Csn

= 1
Cs

.

So far, after Stage 3, there are only n/2s unoccupied vertices in the graph. If

s ≥ log2 n− log2(C ′ logs n) for some constant C ′ > 0, we have n
2s ≤ C′n logs n

n =
O(logs n). That is, the number of unoccupied vertices is O(logs n). No matter
what will happen in Stage 4 to 6, in the worst case, the diameter of the graph
will be at most `′1 + `′2 + `′3 +O(logs n) = O(logs n) and we are done.

However, if s < log2 n − log2(C ′ logs n), we have to move on to the later
stages.

Stage 4 : We prove the boundary of the spanning ball starts shrinking in
Stage 4.

Pr

[
Li ≤

1.5s

2s
Li−1 | Li−1, Bi−1

]
≥ Pr

[
X

(
sLi−1,

n−Bi−1

n− s

)
≤ 1.5s

2s
Li−1

]
≥ Pr

[
X

(
sLi−1,

n

(n− s)2s

)
≤ 1.5s

2s
Li−1

]
= 1− Pr

[
X

(
sLi−1,

n

(n− s)2s

)
>

1.5s

2s
Li−1

]

≥ 1− sLi−1 ·
(
n− s
n
· 1.5

)( n
n−s−1.5)

(
sLi−1

2s+1

)
+ 3

2

Because s < log2 n− log2(C ′ logs n) and Li−1 > (log2 n)2, it follows that when
n → +∞, the above probability is at least 1 − n−C for some constant C >
1. Formally, with probability at least

(
1− n−C

)n
> 1 − n1−C , all the levels

constructed at Stage 4 have growth factor at most 1.5s
2s and

`′4 < log2s/(1.5s) n =
log2 s

s− log2(1.5s)
logs n

Stage 5 : We show the growth factor at this stage is at most 2/3. Using
the fact that s ≥ 2, Li−1 > 120 log2 n and s < log2 n − log2(C ′ logs n), for
sufficiently large n,

Pr

[
Li ≤

2

3
Li−1 | Li−1, Bi−1

]
≥ 1− Pr

[
X

(
sLi−1,

n

(n− s)2s

)
>

2

3
Li−1

]

≥ 1− sLi−1 ·
(

(n− s)2s+1

3ns

)(
ns

(n−s)2s+1− 1
3

)
Li+1+ 3

2

> 1− sLi−1 · 21− 1
30Li−1

> 1− sLi−1 · 21−4 log2 n

> 1− n−3
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This implies that all levels constructed at Stage 5 have growth at most 2/3
and `′5 < log 3

2
(log2 n)2 < (4 log2 s) logs log2 n with probability greater than(

1− n−3
)n
> 1− n−2.

Stage 6 : We construct a logarithmic upper bound for the number of new
vertices occupied at Stage 6. For some constant C > 0,

Pr

[
B`6 −B`5 >

C log2 n

s

]
≤Pr

[
Li >

C log2 n

s
| Li−1 = 120 log2 n+

C log2 n

s
,Bi−1

]
≤Pr

[
X

(
120s log2 n+ C log2 n,

n

(n− s)2s

)
>
C log2 n

s

]
≤(120s+ C) log2 n ·

(
C(n− s)2s

ns(120s+ C)

)((120s+C)2−s−C
s ) log2

√
n+ 3

2

≤(120s+ C) log2 n · 2(s+log2
C(n−s)

ns(120s+C) )((120s+C)2−s−C
s ) log2

√
n+ 3

2 (s+log2
C(n−s)

ns(120s+C) )

Simple algebra gives(
s+ log2

C(n− s)
ns(120s+ C)

)(
120s+ C

2s
− C

s

)
=− C +

120s+ C

2s
log2

C(n− s)
ns(120s+ C)

− C

s
log2

C(n− s)
ns(120s+ C)

+
120s2 + Cs

2s

For any s < log2 n − log2(C ′ logs n), all the addends expect the first item ap-
proach zero as s increases. Therefore, there exists some constant C0 such that

when n → +∞, Pr
[
B`6 −B`5 >

C0 log2 n
s

]
< n−2. Formally, with probability

greater than 1− n−2,

`′6 ≤ B`6 −B`5 ≤
C0 log2 n

s
=
C0 log2 s

s
logs n

Conclusion: With probability greater than 1−n− 10
9 , the diameter of a RSG+(s)

is at most
∑6
i=1 `

′
i = O(logs n). �

With Theorem 3 and 4, we reach the fast convergence argument on the
RSG+(s) model.

Appendix B Proof of Theorem 1 for random in-
regular graphs and random s-in s-
out graphs

The conclusions drawn on random walk on a random out-regular graph can be
easily generalized to the in-regular cases. Let A be the adjacency matrix of
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graph G. Denote by G> the transpose of G defined by adjacency matrix A>.
The following facts are immediate observations from the definitions.

Fact 1 For any u, v ∈ V , u and v are strongly connected in G if and only if
they are strongly connected in G>.

Fact 2 Graph G is h-partite if and only if graph G> is h-partite.

Fact 3 The distance from u ∈ V to v ∈ V in G is equal to the distance from v
to u in G>.

Fact 1 tells us G> has exactly the same irreducible components as G and
Fact 2 shows the equivalence of the aperiodicity of G and G>. Fact 3 leads
to Diam(G) = Diam(G>). Because a random in-regular graph can be created
by transposing a corresponding random out-regular graph, we can conclude the
following statements.

Corollary 1 With probability 1 − o(1), a RMG−(s) has a strongly connected
component, denoted by G̃ = (Ṽ , Ẽ), of size ñ when n→ +∞, and a) limn→+∞

ñ
n =

C for some constant C > 0.7968 when s ≥ 2 or some C > 0.999 when s ≥ 7; b)
a random walk on G̃ is aperiodic.

Corollary 2 With probability 1−o(1), the diameter of a RMG−(s) is Θ(logs n).

Corollary 3 With probability 1 − o(1), a RSG−(s) has a strongly connected
component, denoted by G̃ = (Ṽ , Ẽ), of size ñ when n→ +∞, and a) limn→+∞

ñ
n ≥

C for some constant C > 0.7968 when s ≥ 2 or some C > 0.999 when s ≥ 7; b)
a random walk on G̃ is aperiodic.

Corollary 4 With probability 1−o(1), the diameter of a RSG−(s) is Θ(logs n).

Note that in these cases the irreducible component is usually not closed.
Hence, the fast convergence argument only holds when the walk is restricted
to the unique irreducible component. According to Theorem 3, to bound the
convergence rate we still need the maximum out-degree s0 = arg maxu∈V du. To
achieve fast convergence, we need a lower-bound assumption on the in-degree
s.

Lemma 5 Let s0 = arg maxu∈V du be the maximum out-degree of a RMG−(s)

with s = Ω

([
logn

log logn

]1/C′)
for some constant C ′ ≥ 1. With probability 1−o(1),

s0 = O(sC
′+ε) for any constant ε > 0.
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Proof According to the properties of a RMG−(s), the probability of s0 > ns
is 0 and Pr[s0 = ns] ≤ n · n−ns is exponentially small. For any k < ns,

Pr[s0 ≥ k] ≤ n · Pr[a particular vertex has out-degree at least k]

≤n ·
(
ns

k

)(
1

n

)k
≤

√
2πns

(
ns
e

)ns
e

1
12ns

√
2πk

(
k
e

)k
e

1
12k+1 ·

√
2π(ns− k)

(
ns−k
e

)ns−k
e

1
12(ns−k)+1

· n
(

1

n

)k

≤

√
n3s

2πk(ns− k)
· e

1
12ns (ns)ns

(nk)k(ns− k)ns−k

≤
√

1

2π
· elogn+ns log(ns)−k log k−(ns−k) log(ns−k)−k logn+ 1

12ns

We only need to choose a k such that the exponent goes to −∞ when n→ +∞,
which is equal to

log n+ k
(

1− ns

k

)
log

(
1− k

ns

)
+ k log s− k log k +

1

12ns

Let k = sc where c = C ′ + ε. If k ≥ ns then Pr[s0 ≥ k] is exponentially
small as discussed above. Otherwise we have

(
1− ns

k

)
log
(
1− k

ns

)
≤ 1 in our

case. Also notice that 1
12ns ≤ 1. The exponent is then upper bounded by

log n+ sc − sc(c− 1) log s+ 1. Letting log n ≤ sc(c− 1− 0.5ε) log s gives

s ≥

 c log n

(c− 1− 0.5ε)W
(

c logn
c−1−0.5ε

)
 1

c

= o

([
log n

log log n

] 1
C′
)

where W (x) is the Lambert W -function. �

Combining Lemma 5 with Theorem 3, we reach the fast convergence of a

random walk on a RMG−(s) with s = Ω

([
logn

log logn

]1/C′)
.

The same convergence property holds on a RSG−(s).

Lemma 6 Let s0 = arg maxu∈V du be the maximum out-degree of a RSG−(s)

with s = Ω

([
logn

log logn

]1/C′)
for some constant C ′ ≥ 1. With probability 1−o(1),

s0 = O(sC
′+ε) for any constant ε > 0.

Proof From the definition of a RSG−(s), the probability of s0 ≥ n is 0. If
we have large s = Θ(n), then the argument automatically holds because s0 ≤
n−1 = O(s). Otherwise s = o(n), Pr[s0 = n−1] ≤ n·

(
s

n−1

)n−1

is exponentially
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small. For any k < n− 1, using the union bound,

Pr[s0 ≥ k] ≤ n · Pr[a particular vertex has at least k neighbors]

≤n ·
(
n− 1

k

)[(1
1

)(
n−2
s−1

)(
n−1
s

) ]k

=n ·
(
n− 1

k

)[
s

n− 1

]k
≤

n ·
√

2π(n− 1)
(
n−1
e

)n−1
e

1
12(n−1)

√
2πk

(
k
e

)k
e

1
12k+1 ·

√
2π(n− k − 1)

(
n−k−1

e

)n−k−1
e

1
12(n−k−1)+1

(
s

n− 1

)k

≤

√
n2(n− 1)

2πk(n− k − 1)
· e

1
12(n−1) (n− 1)n−k−1sk

kk(n− k − 1)n−k−1

≤
√

1

2π
· elogn+ 1

12(n−1)
+(n−k−1) log(n−1)+k log s−k log k−(n−k−1) log(n−k−1)

Again we are supposed to set a proper value of k such that the exponent in the
last expression goes to −∞. The exponent can be reshaped as

log n+
1

12(n− 1)
+ k

(
1− n− 1

k

)
log

(
1− k

n− 1

)
+ k log s− k log k

Because 1
12(n−1) and

(
1− n−1

k

)
log
(

1− k
n−1

)
are both at most 1 in our case,

letting c = C ′ + ε and k = sc gives us

log n+ 1− sc(c− 1) log s+ sc

For s = Ω

([
logn

log logn

]1/C′)
, the expression goes to −∞ and completes the proof.

�

Thus we have proved the RSG−(s) case in the main theorem.

The model of random s-in s-out graphs is a random graph model first intro-
duced by Fenner and Frieze [12], which can be viewed as the sum of a random
out-regular graph and a random in-regular graph, generated independently of
each other. We provide a brief proof for RMG±(s) by simply combining the
previously proved arguments for RMG+(s) and RMG−(s). The same result for
RSG±(s) can be similarly achieved based on the arguments for RSG+(s) and
RSG−(s).

The original paper by Fenner and Frieze [12] has already proved the strong
connectivity of the random s-in s-out graphs for s ≥ 2. As the entire graph is
strongly connected, the connected component is surely closed and unique. As
for aperiodicity, since Ṽ is strongly connected, we only need to show one of
the v ∈ Ṽ is aperiodic. Without loss of generality, let v ∈ Ṽ + and then v is
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aperiodic in the RMG+(s) with high probability [1], which means that there
exists a sufficiently large `0 such that for all ` ≥ `0, there is a directed cycle of
length ` over v. Because we only add edges onto the graph when generating the
RMG−(s), the sum graph RMG±(s) still retains such cycles and v is aperiodic.
The logarithmic diameter of RMG±(s) is due to

Diam(G1 +G2) ≤ Diam(G1) +Diam(G2)

for any graphs G1 and G2.

Again, combining with Theorem 3 we reach the fast convergence property
stated in the main theorem, and the same argument holds on a RSG±(s).

Appendix C Proof of Theorem 1 for random reg-
ular digraphs

In this section we continue showing positive results and study the random walks
on RDG(s). Because the edges in this case are no longer chosen independently,
the proof is done mainly by enumeration.

C.1 Irreducibility and aperiodicity

Previous works have shown the irreducibility [29].

Lemma 7 With probability 1− o(1), a RDG(s) is strongly connected when s ≥
2.

Now we prove aperiodicity, starting with the asymptotic enumeration of
regular digraphs.

Lemma 8 Let N(n, s) be the number of s-regular digraphs of size n.

N(n, s) =


(ns)!
(s!)2n exp

[
− (s−1)2

2 +O
(
s3

n

)]
if 1 ≤ s ≤ n

2

N(n, n− s) if n2 < s < n
1 if s = n

N(n, s) is also the number of colored s-regular bipartite (undirected) graphs of
size 2n.

Proof We first show the bijection between regular digraphs of size n and
colored regular bipartite (undirected) graphs of size 2n. Let G = (V,E) be
a regular digraph of fixed degree s. We construct a regular bipartite graph
G′ = (V ′, E′) where |V ′| = 2|V | as following. Without loss of generality, de-
note V = {v1, v2, . . . , vn} and V ′ = {v′1, v′2, . . . , v′2n} with {v′1, v′2, . . . , v′n} of one
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color and {v′n+1, v
′
n+2, . . . , v

′
2n} of the other. Let (v′i, v

′
n+j) ∈ E′ if and only

if (vi, vj) ∈ E. We can see such a regular bipartite graph G′ is unique for
each regular digraph G and vice versa. Note that this bijection is connectivity-
preserving. To see this, consider that for a directed graph there are two cases
of being disconnected. The first case is that there exist nonempty V1 ⊂ V and
V2 ⊂ V with only edges going from V1 to V2 and no edge going back. This
is impossible in a regular digraph because the in-degree of V1 must be equal
to its out-degree. The other case is no edge between V1 and V2, where the
corresponding bipartite graph G′ is also disconnected.

In order to prove the aperiodicity of a RDG(s), we first need to do enumer-
ation for regular digraphs. It’s easy to see another bijection: the one between
regular digraphs and binary square matrices with equal line sums. Although
little previous work has been done on the enumeration of regular digraphs, we
are fortunate to have asymptotic results on the enumeration of binary square
matrices with equal line sums. Let N(n, s) be the number of regular digraphs
with n vertices of fixed in-degree and out-degree equal to s, which is also the
number of n × n binary matrices with equal line sums s and the number of
regular bipartite graphs. McKay [19] proved that for 1 ≤ s < 1

6n,

N(n, s) =
(ns)!

(s!)2n
exp

[
− (s− 1)2

2
+O

(
s3

n

)]
(1)

and Canfield and McKay [8] showed for s ≤ 1
2n and s = Θ(n),

N(n, s) =

(
n
s

)2n(
n2

ns

) (1− 1

n

)n−1

exp

(
1

2
+ o(1)

)
(2)

We are able to unify these two asymptotic results and show that the latter case
also satisfies the former formula. For s ≤ 1

2n and s = Θ(n),

N(n, s) =

(
n
s

)2n(
n2

ns

) (1− 1

n

)n−1

exp

(
1

2
+ o(1)

)

=

(
n!

s!(n−s)!

)2n

(n2)!
(ns)!(n2−ns)!

exp

(
o(1)− 1

2

)

=
(ns)!

(s!)2n
·

(
n!

(n−s)!

)2n

(n2)!
(n2−ns)!

exp (O(1))

=
(ns)!

(s!)2n
·

( √
2πn·nn·en−s

en·
√

2π(n−s)·(n−s)n−s

)2n

√
2πn2·n2n2 ·en2−ns

en2 ·
√

2π(n2−ns)·(n2−ns)n2−ns

exp (O(1))

=
(ns)!

(s!)2n
· n

2n2

ens(n2 − ns)n2−ns

e2ns(n− s)2n(n−s)n2n2 ·
(

n

n− s

)n− 1
2

exp (O(1))
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=
(ns)!

(s!)2n
· nn

2−ns(n− s)n2−nsnn−
1
2

ens(n− s)2n(n−s)(n− s)n− 1
2

exp (O(1))

=
(ns)!

(s!)2n
· nn

2−(s−1)n− 1
2

ens(n− s)n2−(s−1)n− 1
2

exp (O(1))

=
(ns)!

(s!)2n
·
(

1− s

n

)(s−1)n+ 1
2−n

2

exp (O(1)− ns)

Let C = s
n ≤

1
2 . Since s = Θ(n),

N(n, s) =
(ns)!

(s!)2n
exp

(
log(1− C) ·

(
(s− 1)n+

1

2
− n2

)
+O(1)− ns

)
=

(ns)!

(s!)2n
exp

(
(C − 1)n2 log(1− C)− n log(1− C) +O(1)− ns

)
=

(ns)!

(s!)2n
exp

[
− (s− 1)2

2
+O

(
s3

n

)]
Using complement graphs, it is apparent that N(n, s) = N(n, n − s) for

n
2 ≤ s < n. When s = n, the only possible regular digraph in this case is the
complete graph so N(n, n) = 1. Combining all the above cases completes the
proof. �

Lemma 9 With probability 1− o(1), a RDG(s) is aperiodic.

Proof A regular digraph G = (V,E) is h-partite if V can be partitioned into h
subsets, V0, V1, . . . , Vh−1, such that all edges from Vi go to V(i+1) mod h. Because
the graph is regular, we must have |V0| = |V1| = . . . = |Vh−1| = n

h and h ≤ n
s .

Also we notice that the number of possible edge combinations from Vi going to
V(i+1) mod h is exactly the number of colored s-regular bipartite (undirected)
graphs of size n

h , which is N(nh , s). Denote by ph the probability of a RDG(s)
being h-partite. The proof is done by showing ph goes to 0 exponentially fast
for all 2 ≤ h ≤ n

s . The case where s > n
2 is trivial. Thus below we only consider

s ≤ n
2 . We first prove the argument holds when s = o(n). For 2 ≤ h ≤ n

2s ,

ph ≤
1

h
·
(

n
n
h
n
h . . .

n
h

)
·
[
N
(
n
h , s
)]h

N(n, s)

According to Lemma 8,

N(n, s) =
(ns)!

(s!)2n
exp

[
− (s− 1)2

2
+O

(
s3

n

)]
=

√
2πns(ns)nse2ns

ens
[√

2πs · ss
]2n exp

[
− (s− 1)2

2
+O

(
s3

n

)]
=

√
ns

sn(2π)n−
1
2

·
(en
s

)ns
exp

[
− (s− 1)2

2
+O

(
s3

n

)]
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and

[
N
(n
h
, s
)]h

=

[ √
snh

s
n
h (2π)

n
h−

1
2

·
(en
hs

)sn
h

exp

[
− (s− 1)2

2
+O

(
s3h

n

)]]h

=

(
ns
h

) 1
2h

sn(2π)n−
h
2

·
(en
hs

)ns
exp

[
−h(s− 1)2

2
+O

(
s3h2

n

)]
Also, (

n
n
h
n
h . . .

n
h

)
=

n!(
n
h !
)h ≤

√
2πn · nnen+ 1

12n

en
(√

2π nh
(
n
h

)n
h

)h
=

√
2πn · hne 1

12n(
2πn
h

) 1
2h

= (2πn)
1
2 (1−h) · hn+ 1

2h · e 1
12n

We then have

ph ≤
hn+ 1

2h−1

(2πn)
1
2 (h−1)

·
(
ns
h

) 1
2h sn(2π)n−

1
2

sn(2π)n−
1
2h
√
ns
·
(

1

h

)ns
· exp

[
(s− 1)2

2
− h(s− 1)2

2
+O

(
s3h2

n

)]
=

hn+ 1
2h−1

(2πn)
1
2 (h−1)

· (2πns)
1
2 (h−1)

h
1
2h

·
(

1

h

)ns
· exp

[
− (h− 1)(s− 1)2

2
+O

(
s3h2

n

)]
=
s

1
2 (h−1)

hns−n+1
exp

[
− (h− 1)(s− 1)2

2
+O

(
s3h2

n

)]
= exp

{
−1

2
(h− 1)[(s− 1)2 − log s]− (ns− n+ 1) log h+O

(
s3h2

n

)}

For s ≥ 2, we have (s − 1)2 − log s > 0. When h = O(1), O
(
s3h2

n

)
=

O
(
s3

n

)
= o(ns) since s = o(n). When h = ω(1), as h < n

s , O
(
s3h2

n

)
=

O(ns) = o(ns log h). Hence, ph goes to 0 exponentially fast.
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For n
2s < h < n

s , surely h = ω(1) as s = o(n). Also,
(
n
h − s

)3
< s3 since

n
2h < s < n

h . Then we have

[
N
(n
h
,
n

h
− s
)]h

=

[ √
n
h

(
n
h − s

)
(
n
h − s

)n
h (2π)

n
h−

1
2

·

(
en

h
(
n
h − s

))n
h (n

h−s)

· exp

[
−
(
n
h − s− 1

)2
2

+O

((
n
h − s

)3
h

n

)]]h

=

(
n
h

(
n
h − s

)) 1
2h(

n
h − s

)n
(2π)n−

h
2

·

(
en

h
(
n
h − s

))n(n
h−s)

· exp

[
−
h
(
n
h − s− 1

)2
2

+O

(
s3h2

n

)]

so that

ph ≤
1

h
·
(

n
n
h
n
h . . .

n
h

)
·
[
N(nh ,

n
h − s)

]h
N(n, s)

=
hn+ 1

2h−1

(2πn)
1
2 (h−1)

·
(
n
h

(
n
h − s

)) 1
2h sn(2π)n−

1
2(

n
h − s

)n
(2π)n−

1
2h
√
ns
·

(
en

h
(
n
h − s

))n(n
h−s)

·
(en
s

)−ns
· exp

[
(s− 1)2

2
−
h
(
n
h − s− 1

)2
2

+O

(
s3h2

n

)]

Notice that function
(
ey
x

)x
with constraint 0 < x ≤ 1

2y reaches its maximum
at x = 1

2y, which implies (
en

h
(
n
h − s

))n
h−s

≤ (2e)
n
2h
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and

ph ≤hn+ 1
2h−1 ·

√
2πn√
ns

( n

2πhn

) 1
2h · (2π)

1
2 (h−1)(

n
h − s

)n− 1
2h
· sn ·

(
2s

n

)ns

· (2e)n2

2h−ns · exp

[
(s− 1)2

2
−
h
(
n
h − s− 1

)2
2

+O

(
s3h2

n

)]

=sn−
1
2

(n
h
− s
) 1

2h−n · hn−1(2e)
n2

2h−ns
(

2s

n

)ns
· exp

[
(s− 1)2

2
−
h
(
n
h − s− 1

)2
2

+O

(
s3h2

n

)]

=s−
1
2h−1

(n
h
− s
) 1

2h−n · (2e)n2

2h−ns · exp

[
n log s+ n log h+ ns log 2 + ns log s

− ns log n− n2

2h
− hs2

2
− hs− h

2
+ ns+ n+

1

2
s2 − s+O

(
s3h2

n

)]

=s−
1
2h−1

(n
h
− s
) 1

2h−n · (2e)n2

2h−ns · exp

[
n log s+ ns log 2 + ns log s

−
(

1− log h

s log n

)
ns log n− n2

2h
− hs2

2
− hs− h

2
+ ns+ n+

1

2
s2 − s+O

(
s3h2

n

)]

Notice that O
(
s3h2

n

)
= O(ns) for h < n

s and n2

2h − ns < 0 for s > n
2h . Also,

1− log h
s logn > 0 for any s ≥ 2, we have ph going to 0 exponentially fast.

The case where h = n
s is deferred to the end of this proof.

Now we study the case when s = Θ(n) < 1
2n and n

h − s = Θ(n). In this case
we have εn ≤ s ≤

(
1
h − ε

)
n for some positive constant ε > 0 and 2 ≤ h < n

s
is surely O(1). Let C = s

n < 1
2 so 0 < ε ≤ limn→+∞ C ≤ 1

h − ε <
1
2 . When

2 ≤ h ≤ n
2s , we have s = Θ(n) = Θ(nh ).

ph ≤
1

h
·
(

n
n
h
n
h . . .

n
h

)
·
[
N
(
n
h , s
)]h

N(n, s)

According to Lemma 8,

N(n, s) =
(ns)!

(s!)2n
exp

(
(C − 1)n2 log(1− C)− n log(1− C) +O(1)− ns

)
=

√
2πns(ns)nse2ns

ens
[√

2πs · ss
]2n exp

(
(C − 1)n2 log(1− C)− n log(1− C) +O(1)− ns

)
=

√
ns

sn(2π)n−
1
2

·
(n
s

)ns
exp

(
(C − 1)n2 log(1− C)− n log(1− C) +O(1)

)
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and

[
N
(n
h
, s
)]h

=

[ √
snh

s
n
h (2π)

n
h−

1
2

·
( n
hs

)sn
h

exp

(
(hC − 1)

(n
h

)2

log(1− hC)− log(1− hC) · n
h

+O(1)

)]h

=

(
ns
h

) 1
2h

sn(2π)n−
h
2

·
( n
hs

)ns
exp

(
(hC − 1)

n2

h
log(1− hC)− n log(1− hC) +O(h)

)
so that

ph ≤
hn+ 1

2h−1

(2πn)
1
2 (h−1)

·
(
ns
h

) 1
2h sn(2π)n−

1
2

sn(2π)n−
1
2h
√
ns
·
(

1

h

)ns
· exp

[
(hC − 1)

n2

h
log(1− hC)

− n log(1− hC) +O(h)− (C − 1)n2 log(1− C) + n log(1− C)−O(1)

]

=
hn+ 1

2h−1

(2πn)
1
2 (h−1)

· (2πns)
1
2 (h−1)

h
1
2h

·
(

1

h

)ns
· exp

[((
C − 1

h

)
log(1− hC)− (C − 1) log(1− C)

)
n2

+ (log(1− C)− log(1− hC))n+O(h)

]

=
s

1
2 (h−1)

hns−n+1
· exp

[((
C − 1

h

)
log(1− hC)− (C − 1) log(1− C)

)
n2

+ (log(1− C)− log(1− hC))n+O(h)

]

Notice that function
(
y − 1

x

)
log(1− xy) with constraints xy ≤ 1

2 and x ≥ 2
reaches its maximum at x = 2. Thus(

C − 1

h

)
log(1− hC) ≤

(
C − 1

2

)
log(1− 2C)

Also note that function f(x) = (1− x) log(1− x) +
(
x− 1

2

)
log(1− 2x) < 0

for any 0 < x < 1
2 . Therefore, ph goes to 0 exponentially fast.
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When n
2s < h < n

s , as n
h − s = Θ(n) = Θ(nh ),

[
N
(n
h
,
n

h
− s
)]h

=

[ √
n
h

(
n
h − s

)
(
n
h − s

)n
h (2π)

n
h−

1
2

·

(
n

h
(
n
h − s

))n
h (n

h−s)

· exp

(
O(1)

+ (1− hC − 1)
(n
h

)2

log(1− (1− hC))− n

h
log(1− (1− hC))

)]h

=

(
n
h

(
n
h − s

)) 1
2h(

n
h − s

)n
(2π)n−

h
2

·

(
n

h
(
n
h − s

))n(n
h−s)

· exp

(
− Cn2 log(hC)− n log(hC) +O(h)

)

and

ph ≤
1

h
·
(

n
n
h
n
h . . .

n
h

)
·
[
N(nh ,

n
h − s)

]h
N(n, s)

=
hn+ 1

2h−1

(2πn)
1
2 (h−1)

·
(
n
h

(
n
h − s

)) 1
2h sn(2π)n−

1
2(

n
h − s

)n
(2π)n−

1
2h
√
ns
·

(
n

h
(
n
h − s

))n(n
h−s)

·
(n
s

)−ns
· exp

(
− Cn2 log(hC)− n log(hC) +O(h)

− (C − 1)n2 log(1− C) + n log(1− C)−O(1)

)

=hn−1sn−
1
2 ·
(n
h
− s
) 1

2h−n · (1− hC)(
C− 1

h )n2

· CCn
2

exp

(
(−C log(hC)− (C − 1) log(1− C))n2 + (log(1− C)− log(hC))n+O(h)

)

=
hn−1

√
s
·
(n
h
− s
) 1

2h−n · exp

(((
C − 1

h

)
log (1− hC) + C logC

− C log(hC)− (C − 1) log(1− C)

)
n2 + n log n+ (log(1− C)− log h)n+O(h)

)

where (
C − 1

h

)
log (1− hC) + C logC − C log(hC)− (C − 1) log(1− C)

=

(
C − 1

h

)
log (1− hC)− C log h− (C − 1) log(1− C)
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Notice that

∂

∂h

[(
C − 1

h

)
log (1− hC)− C log h

]
=

log(1− Ch)

h2
< 0

as 0 < Ch = sh
n < 1. Due to 1

2C = n
2s < h < n

s = 1
C ,(

C − 1

h

)
log (1− hC) + C logC − C log(hC)− (C − 1) log(1− C)

≤ (C − 2C) log

(
1− C 1

2C

)
− C log

1

2C
− (C − 1) log(1− C)

=C log 2 + C log(2C)− (C − 1) log(1− C)

=C log(4C)− (C − 1) log(1− C) < 0

for any 0 < ε ≤ C ≤ 1
2 − ε < 1

2 . Therefore, we again have ph going to 0
exponentially fast.

When s = Θ(n) < n
2 and n

h − s = o(n), let C = s
n <

1
h but limn→+∞ C = 1

h .
In this case 2 ≤ h < n

s is O(1) and surely n
2s < h < n

s . Otherwise, h ≤ n
2s implies

n
h − s ≥

n
2h = Θ(n). Also, due to n

h − s = o(n) and h = O(1), O

(
(n

h−s)
3
h2

n

)
=

o(n2).

ph ≤
1

h
·
(

n
n
h
n
h . . .

n
h

)
·
[
N(nh ,

n
h − s)

]h
N(n, s)

=
hn+ 1

2h−1

(2πn)
1
2 (h−1)

·
(
n
h

(
n
h − s

)) 1
2h sn(2π)n−

1
2(

n
h − s

)n
(2π)n−

1
2h
√
ns
·

(
en

h
(
n
h − s

))n(n
h−s)

·
(n
s

)−ns
· exp

(
−
h
(
n
h − s− 1

)2
2

+O

((
n
h − s

)3
h2

n

)

− (C − 1)n2 log(1− C) + n log(1− C)−O(1)

)

=hn−1sn−
1
2 ·
(n
h
− s
) 1

2h−n ·
(

1− hC
e

)(C− 1
h )n2

· CCn
2

exp

(
− n2

2h
− hs2

2

− hs− h

2
+ ns+ n− (C − 1)n2 log(1− C) + n log(1− C) + o(n2)

)

=
hn−1

√
s
·
(n
h
− s
) 1

2h−n · exp

(((
1

h
− C

)
−
(

1

h
− C

)
log (1− hC)

+ C logC − (C − 1) log(1− C)− 1

2h
− hC2

2
+ C

)
n2 + o(n2)

)
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where limn→+∞ C = 1
h and(

1

h
− C

)
−
(

1

h
− C

)
log (1− hC) + C logC − (C − 1) log(1− C)− 1

2h
− hC2

2
+ C

=0 + 0− 1

h
log h−

(
1− 1

h

)
log

(
h

h− 1

)
− 1

2h
− 1

2h
+

1

h

=− 1

h
log h−

(
1− 1

h

)
log

(
h

h− 1

)
< 0

for which ph goes to 0 exponentially fast.

There are still two cases to be addressed, where h = n
s or s = 1

2n. Notice
that when s = 1

2n, the only possible h is 2 = n
s so we can handle both by

handling the former. In this case, we have

pn
s
≤ s

n

(
n

s s . . . s

)
· 1

N(n, s)

where (
n

s s . . . s

)
=

n!

(s!)
n
s
≤
√

2πn · nnen+ 1
12n

en(
√

2πs · ss)n
s

=

√
2πn

(2πs)
n
2s

(n
s

)n
e

1
12n

For s = o(n),

pn
s
≤
√

2πn

(2πs)
n
2s

(n
s

)n−1

e
1

12n · s
n(2π)n−

1
2

√
ns

(en
s

)−ns
exp

(
(s− 1)2

2

)
=

(2π)n√
s(2πs)

n
2s

( s
n

)ns−n+1

exp

(
n log s− ns+

(s− 1)2

2
+

1

12n

)
≤ 1√

s(2πs)
n
2s

(
2πs

n

)n+1

exp

(
n log s− ns+

(s− 1)2

2
+

1

12n

)
which goes to 0 exponentially fast.

For s = Θ(n) and s ≤ 1
2n,

pn
s
≤
√

2πn

(2πs)
n
2s

(n
s

)n−1

e
1

12n · s
n(2π)n−

1
2

√
ns

·
(n
s

)−ns
exp(−(C − 1)n2 log(1− C) + n log(1− C)−O(1))

=
(2π)n√
s(2πs)

n
2s

( s
n

)ns−n+1

exp
(
− (C − 1)n2 log(1− C)

+ n log n+ (log(1− C) + logC)n+ o(1)
)

which goes to 0 exponentially fast as well. Combining all the above cases com-
pletes the proof. �
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C.2 Fast convergence

According to Theorem 3, the proof of fast convergence can be done by either
bounding the diameter of the graph or directly bounding the first non-zero eigen-
value of the Laplacian matrix. In this section we present the fast convergence
of random walks on RSG+(s) via the spectral method.

First note that the walk matrix P of a random walk on a RDG(s) is doubly
stochastic matrix, so is 1

2 (P + P>). Fiedler [13] proved a very useful theorem:

Theorem 5 Let Q be a doubly stochastic n × n matrix (n ≥ 2) and λ 6= 1 be
any non-stochastic eigenvalue of Q.

|1− λ| ≥ ϕn[µ(Q)]

where
µ(Q) = min

∅6=M⊂[n]

∑
i∈M,j 6∈M

Qij

and

ϕn(x) =

{
2
(
1− cos πn

)
x if 0 ≤ x ≤ 1

2
1− 2(1− x) cos πn − (2x− 1) cos 2π

n if 1
2 < x ≤ 1

The same paper also presented the following lemma.

Lemma 10 For any doubly stochastic matrix Q, 0 ≤ µ(Q) ≤ 1. Q is reducible
if and only if µ(Q) = 0.

Now we show the fast convergence of random walks on RDG(s).

Theorem 6 With probability 1−o(1), a random walk on a RDG(s) has ∆χ2(t) ≤
e−k after at most t ≥ 2s(n− 1)(log n+ 2k) steps.

Proof As P has been shown irreducible with probability 1− o(1), so is 1
2 (P +

P>). Then for Lemma 10 0 < µ( 1
2 (P + P>)) ≤ 1. The fact that any non-zero

entry in P is at least 1
s gives µ( 1

2 (P + P>)) ≥ 1
2s . For Theorem 5,∣∣∣1− λ 1

2 (P+P>)

∣∣∣ ≥ 2
(

1− cos
π

n

) 1

2s
>

1

s(n− 1)

for all non-stochastic eigenvalues λ 1
2 (P+P>) 6= 1 of matrix 1

2 (P + P>), due to

the fact cosx < 1 − x
π−x for all x ∈

(
0, π2

)
. Also observing that the station-

ary distribution on a RDG(s) is always the uniform distribution, we have the
Laplacian matrix

L = I − Φ
1
2PΦ−

1
2 + Φ−

1
2P>Φ

1
2

2
= I − 1

2
(P + P>)
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and |λ1(L)| ≥
∣∣∣1− λ 1

2 (P+P>)

∣∣∣ > 1
s(n−1) where λ1(L) is the smallest nonzero

eigenvalue of L. Combining with φ(u) = 1
n for any u ∈ V we complete the

proof. �

Appendix D Proof of Theorem 1 for random reg-
ular undirected graphs

Random regular undirected graphs are much more widely studied than directed
ones, mainly because of the symmetry of undirected graphs. However, the study
of the convergence of random walks on RG(s) is still very limited. Hildebrand
[16] proved fast convergence with constraint s = blogC nc for some constant
C ≥ 2. Cooper and Frieze [10] studied the cover time of RG(s) with fixed
constant s = O(1) but no convergence result was provided. In this section
we present a more general result with constraint 3 ≤ s = o(

√
n) or s > 1

2n.
This constraint comes from the enumeration of RG(s) and the proof could be
generalized if we have better results on the enumeration problem in the future.

Cooper et al. [11] and Krivelevich et al. [18] together proved the connectivity
of RG(s) for s ≥ 3.

Lemma 11 With probability 1− o(1), a RG(s) is connected when s ≥ 3.

Now we prove the aperiodicity as below.

Lemma 12 With probability 1− o(1), a RG(s) is aperiodic when s ≥ 3 for odd
n; 3 ≤ s = o(

√
n) or s > 1

2n for even n.

Proof When n is odd, the graph is surely aperiodic because for undirected
graphs the only periodic case is being bipartite and for regular undirected graphs
the only bipartite partition is an even partition. Also, the aperiodicity is trivial
when s > 1

2n. Below we will prove the nontrivial case where n is even and
3 ≤ s ≤ 1

2n. Denote by N ′(n, s) the number of s-regular undirected graphs of
size n. McKay and Wormald [20] proved an enumeration result for s = o(

√
n)

that

N ′(n, s) =
(sn)!(

1
2sn

)
! · 2 1

2ns(s!)n
exp

[
1− s2

4
− s3

12n
+O

(
s2

n

)]
Since s = o(

√
n) < 1

4n, the probability of a RG(s) being periodic p2 is
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bounded by

p2 ≤
1

2

(
n
n
2

)
·
N(n2 , s)

N ′(n, s)

=
1

2

n!(
n
2 !
)2 ·

(
ns
2

)
!
(
ns
2

)
! · 2ns

2 (s!)n

(s!)n · (ns)!
exp

[
− (s− 1)2

2
+O

(
s3

n

)
+
s2

4
− 1

4

]

=

√
2πn · nnen

2 · enπn
(
n
2

)n · [(ns2 )!]2 · 2ns
2

(ns)!
exp

[
−1

4
s2 + s+O

(
s3

n

)
− 3

4

]
=

2n+ 1
2ns

√
2πn

·
πns ·

(
1
2ns

)ns
ens

ens(ns)ns
√

2πns
exp

[
−1

4
s2 + s+O

(
s3

n

)
− 3

4

]
=2−

1
2ns+n−1 ·

√
s · exp

[
−1

4
s2 + s+O

(
s3

n

)
− 3

4

]

When s = ω(1) and s = o(
√
n), p2 goes to 0 exponentially fast because

O
(
s3

n

)
= o(s). When s = O(1) and s ≥ 3, − 1

2s + 1 < 0 and p2 goes to 0

exponentially fast as well, which completes the proof. �

The fast convergence argument for RG(s) can be proved using the same proof
for RDG(s). The only difference is P being symmetric and 1

2 (P + P>) = P so
|λ1(L)| ≥ |1− λP | > 2

s(n−1) .

Appendix E Proof of Theorem 2 for RSG+(s)

Lemma 13 With probability 1 − o(1), a RSG+(s) has ‖z‖1 ≤ (1+ε) logns
log logns for

any constant ε > 0.

Proof The RMG+(s) case has been proved in [1] and the RSG+(s) case can
be proved in a similar way too. Here we provide a quick proof based on [1]’s
proof to bypass the long algebra.

Let θ be the largest 1-norm of the columns in Mσ. According to the prop-
erties of a RSG+(s), the probability of θ > n − 1 is 0 and Pr[θ = n] ≤
n · (n− 1)−(n−1) is exponentially small. For any k < n− 1,

Pr[θ ≥ k] ≤ n · Pr[a particular column has 1-norm at least k]

≤n ·
(
n− 1

k

)(
1

n− 1

)k
≤ 2(n− 1) ·

(
n− 1

k

)(
1

n− 1

)k

Angluin and Chen [1] proved when k = (1+ε) logns
log logns , n ·

(
n
k

) (
1
n

)k
= 1

s · o(1).

Thus, in our case when k = (1+ε) log(n−1)s
log log(n−1)s ≤ (1+ε) logns

log logns , we have (n − 1) ·
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(
n−1
k

) (
1

n−1

)k
= 1

s · o(1) so that Pr[θ ≥ k] ≤ 1
s · o(1). There are in total s

matrices {Mσ | σ ∈ Σ}. Using a union bound we have ‖z‖1 ≤ (1+ε) logns
log logns for all

columns in all Mσ with probability 1− o(1). �

Appendix F Undirected connectivity

For strongly connected graphs such as RDG(s) and RG(s), the algorithm re-
constructs the whole graph. If the target graph is not irreducible on the entire
graph, e.g., RMG+(s) and RSG+(s), it recovers only the irreducible component
of the graph because it relies on the convergence of the random walk and any
vertex not in the irreducible component will have zero probability after conver-
gence. We have no information for reconstructing the disconnected part. Here
we prove that all random regular graphs in Table 1 have undirected connectivity
on the entire graph with high probability. This positive fact could be helpful for
future works on recovering the entire graph (perhaps with different techniques
or given data).

Lemma 14 With probability 1 − o(1), a random regular graph has no isolated
component, i.e., the underlying undirected graph is connected, where s ≥ 3 for
RG(s) and s ≥ 2 for the other models in Table 1.

Proof The undirected connectivity is obvious for RMG±(s), RSG±(s), RDG(s)
and RG(s) as they are all strongly connected on the entire graph with high
probability. Since the in-regular models are transpose of the out-regular models
and RSG+(s) can be generated from RMG+(s) using the two-stage procedure
described in the proof of Lemma 3, it only remains to show the undirected
connectivity of RMG+(s).

As we can always find a small constant ε > 0 such that logn

(
1+ε
s−1 log2 n

)
<

s−1
2s−1 , we pick a value c such that logn

(
1+ε
s−1 log2 n

)
≤ c ≤ s−1

2s−1 . Denoted by

piso(m) the probability of existence of an isolated component of size m in the
graph. Without loss of generality, we assume m ≤ n

2 because once the graph is
undirected disconnected, there must be at least one isolated component of size
≤ n

2 . By union bound the probability of undirected disconnectivity is upper
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Figure 1: A 2-regular digraph with 4 vertices

bounded by the sum
∑n/2
m=1 piso(m). For a particular integer 1 ≤ m ≤ n

2 ,

piso(m) ≤
(
n

m

)(m
n

)sm(n−m
n

)s(n−m)

≤
(en
m

)m (m
n

)sm (
exp

(
−m
n

))s(n−m)

≤
(en
m

)m (m
n

)sm (
exp

(
−m
n

))2(n−n
2 )

= em
(m
n

)(s−1)m (
exp

(
−m
n

))n
=
(m
n

)(s−1)m

When m = 1, it’s easy to see piso(1) ≤ n1−s.

When 2 ≤ m ≤ nc, piso(m) ≤
(
nc

n

)2(s−1)
= n2(c−1)(s−1).

When nc ≤ m ≤ n/2, piso(m) ≤
(
n/2
n

)(s−1)nc

= 2(1−s)nc

.

Hence,
∑n/2
m=1 piso(m) ≤ n1−s + (nc − 1)n2(c−1)(s−1) + (n/2− nc)2(1−s)nc

=

O(n1−s) +O(n−ε) for logn

(
1+ε
s−1 log2 n

)
≤ c ≤ s−1

2s−1 and we have the undirected

connectivity. �

Appendix G A toy example

Suppose we consider the 2-regular digraph in Figure 1 whose transition matrices
are
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M0 =


0 1 0 0
1 0 0 0
0 0 0 1
0 1 0 0

 and M1 =


0 0 0 1
0 0 1 0
1 0 0 0
0 0 1 0


For any regular digraph, the stationary distribution pλ is always the uniform

distribution. As logs n = log2 4 = 2, the coefficient matrix PA is

PA =


p00

p01

p10

p11

 =


0.5 0.5 0 0
0 0 0.75 0.25
0 0.5 0 0.5

0.5 0 0.25 0.25


Denote by z = (M0(1, 1),M0(2, 1),M0(3, 1),M0(4, 1))> the the first column

of matrixM0. Let vector b be (p000(1), p010(1), p100(1), p110(1))> = (0.5, 0, 0.5, 0)>

as defined in the algorithm. The algorithm recovers z by solving the equation
system PAz = b, that is, solving


0.5M0(1, 1) + 0.5M0(2, 1) + 0M0(3, 1) + 0M0(4, 1) = 0.5

0M0(1, 1) + 0M0(2, 1) + 0.75M0(3, 1) + 0.25M0(4, 1) = 0
0M0(1, 1) + 0.5M0(2, 1) + 0M0(3, 1) + 0.5M0(4, 1) = 0.5

0.5M0(1, 1) + 0M0(2, 1) + 0.25M0(3, 1) + 0.25M0(4, 1) = 0

Similarly the algorithm recovers all columns in M0 and M1 and reconstructs
the target graph. Note that in the statistical query model the above equation
system is perturbed but we showed the algorithm is robust to statistical query
noise.
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Appendix H Experimental results

H.1 Estimate of ‖|P †A|‖∞

Figure 2: ‖|P †A|‖∞ of RSG+(s), versus n with fixed s = 2

Figure 3: ‖|P †A|‖∞ of RSG+(s), versus s with fixed n = 256
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Figure 4: ‖|P †A|‖∞ of RDG(s), versus n with fixed s = 2

Figure 5: ‖|P †A|‖∞ of RDG(s), versus s with fixed n = 256
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Figure 6: ‖|P †A|‖∞ of RG(s), versus n with fixed s = 3

Figure 7: ‖|P †A|‖∞ of RG(s), versus s with fixed n = 242

H.2 Maximum absolute error
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Figure 8: Maximum absolute error for learning RSG+(s), versus n with fixed
s = 2

Figure 9: Maximum absolute error for learning RSG+(s), versus s with fixed
n = 256
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Figure 10: Maximum absolute error for learning RDG(s), versus n with fixed
s = 2

Figure 11: Maximum absolute error for learning RDG(s), versus s with fixed
n = 256
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Figure 12: Maximum absolute error for learning RG(s), versus n with fixed
s = 3

Figure 13: Maximum absolute error for learning RG(s), versus s with fixed
n = 242
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