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Bayesian equilibria of simultaneous auctions for individual items have been explored recently
[Christodoulou et al. 2008; Bhawalkar and Roughgarden 2011; Hassidim et al. 2011; Feldman et al. 2013]

as an alternative to the well-known complexity issues plaguing combinatorial auctions with incomplete in-
formation, and some strong positive results have been shown about their performance. We point out some
very serious complexity obstacles to this approach: Computing a Bayesian equilibrium in such auctions is
hard for PP — a complexity class between the polynomial hierarchy and PSPACE — and even finding
an approximate such equilibrium is as hard as NP, for some small approximation ratio (additive or mul-
tiplicative); therefore, the assumption that such equilibria will be arrived at by rational agents is quite
problematic. In fact, even recognizing a Bayesian Nash equilibrium is intractable. Furthermore, these re-
sults hold even if bidder valuations are quite benign: Only one bidder valuation in our construction is unit
demand or monotone submodular, while all others are additive. We also explore the possibility of favorable
price of anarchy results for no-regret dynamics of the Bayesian simultaneous auctions game, and identify
complexity obstacles there as well.

1. INTRODUCTION

Auction design has proven an extremely fertile arena for productive interplay and di-
alogue between ideas from economics and computational concepts. Even though novel
algorithmic techniques have occasionally helped advance the state of the art in im-
portant fronts [Cai et al. 2012, 2013; Papadimitriou and Pierrakos 2011], more often
computational complexity considerations have shown that the constraint of truthful-
ness mixes poorly with algorithmic efficiency [Papadimitriou et al. 2008; Dobzinski
and Vondrak 2012; Cai et al. 2013]. Roughly speaking, we now know that the auc-
tions of Vickrey and Myerson are isolated areas of light in a sea of dark, while the new
computationally efficient auctions discovered by computer scientists generally lack the
compelling simplicity of those archetypes. This revealed complexity of auction design
has prompted researchers to design auctions that are simple and only approximately
optimal [Hartline and Roughgarden 2009; Dhangwatnotai et al. 2010; Daskalakis and
Pierrakos 2011].

In recent years, one fruitful and much traveled such direction has been to approx-
imate combinatorial auctions through simultaneous independent auctions of single
items [Christodoulou et al. 2008; Bhawalkar and Roughgarden 2011; Hassidim et al.
2011; Feldman et al. 2013]. In a combinatorial auction bidders are interested in bun-
dles of items, and bidder valuations are no longer single numbers but functions from
the powerset of all items to the reals (presented either through an oracle, or by some
succinct representation). Because of this immediate complexity, combinatorial auctions
have played in algorithmic mechanism design a role akin to that enjoyed by the travel-
ing salesman problem in algorithmic combinatorial optimization: a paradigmatic hard
nut on which all new ideas must be tried. This new approach seeks to approximate
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the objective (revenue or welfare) by inviting the bidders to participate in independent
auctions for single items. By bidding to these different auctions for each of the items,
the bidders will try to assemble a good bundle. This defines a game — a Bayesian
game if, as it is common in auctions, priors of the bidder valuations are known — and
it has been shown that, once this simple process has converged to a Bayesian Nash
equilibrium, the objective is often approximated satisfactorily. This approach was first
used by Christodoulou et al. [Christodoulou et al. 2008], who showed that conducting
simultaneous Vickrey auctions for the items results in Bayesian Nash equilibria that
approximate the optimum welfare within a factor of two in the special case in which
the bidder valuations are fractionally subadditive (a special case of subadditive also
known as XOS valuations) and under the additional assumption of “no overbidding”
(needed to rule out some unnatural equilibria, see below) [Christodoulou et al. 2008].
Soon after that, Bhawalkar and Roughgarden showed that this ratio is optimal for
Bayesian Nash equilibria of simultaneous auctions, and becomes worse for more gen-
eral valuations [Bhawalkar and Roughgarden 2011], while Hassidim et al. [Hassidim
et al. 2011] showed a similar result for first-price simultaneous auctions with combina-
torial valuations. Finally, in STOC 2013 Feldman et al. [Feldman et al. 2013] showed
approximation ratios of four and two for all subadditive valuations, in the case of both
Vickrey and first-price auctions, respectively.

In view of these impressive positive results, it is natural to ask: But is it reason-
able to assume that bidders will attain a Bayesian Nash equilibrium, for example in
simultaneous Vickrey auctions for which the bidders have combinatorial valuations?
This question is even more natural because Bayesian Nash equilibria are known to be
crawling with computational difficulty: Even telling whether a finite two-person game
has a pure Bayesian Nash equilibrium is NP-complete [Conitzer and Sandholm 2008]
(a task that is of course trivial in ordinary games). Finding a mixed Bayesian equilib-
rium in a Bayesian game is of course PPAD-hard [Daskalakis et al. 2009], but appears
to be even harder.

This is an important question for reasons that go beyond a complexity theorist’s
reflex. Here we have a situation in which an auction designer instead of a true auction
sets up a Bayesian game, and then waits for the players to eventually reach a Bayesian
Nash equilibrium — the inevitable solution concept for this kind of game, and for which
good things have been proved regarding the designer’s objectives. If finding such an
equilibrium were to be shown intractable, this approach would be cast in doubt.

In this paper we show some very strong intractability results for precisely this situ-
ation. We prove that finding a Bayesian Nash equilibrium in a simultaneous Vickrey
auction game in which the bidders have combinatorial valuations of a very simple
form, is hard for the class PP (the decision version of #P, far above NP, and in fact
hovering near PSPACE and over the polynomial hierarchy by Toda’s Theorem [Toda
1991]). Not just that, but even if we were hit in the head by a Bayesian Nash equilib-
rium of such a game, we would not be able to tell, because certifying best responses is
itself PP-hard. What is more, the valuations we need to establish all this are remark-
ably simple: All bidders have additive valuations, with the only exception of one bidder
who has unit demand valuation (arguably just the next step in complexity beyond the
additive valuations).

What is even more scary is, these are only the lower bounds on the complexity of the
problem that we have been able to establish. We only have triply exponential upper
bounds for an approximation of the problem, while we do not know of a proof that
exact Bayesian Nash equilibria for this game even exist (see the discussion in the end
of Section 2).

This strong form of intractability prevails when we require to find an ǫ-approximate
Bayesian Nash equilibrium (the players do not change their behavior for less than ǫ



additional utility) for an exponentially small ǫ. But even if we are willing to tolerate a
constant approximation in our equilibria, we still have a negative result: By a different
reduction we establish that it is NP-hard to find such an equilibrium — or to recognize
one. The bidder valuations needed are different here, but they still have a rather sim-
ple structure: one monotone submodular valuation among additive ones. The upper

bound on the problem’s complexity is now not very far: NPBPP.
Finally, in Section 4 we discuss the possibility of employing more relaxed solution

concepts for the simultaneous Bayesian auctions game, such as coarse correlated equi-
libria, as a possible way around the complexity obstacles proven here, and find reasons
for serious complexity concern there as well.

Definitions

Recall that in a game we have a finite set of players, and for each player i a finite set
Ai of actions or strategies, as well as a utility, a function mapping A =

∏

i Ai to the
reals. A pure Nash equilibrium is a tuple a ∈ A such that for all players i changing the
ith component of a does not increase i’s utility. An ǫ-Nash equilibrium is a distribution
on Ai for each player i such that the expected utility of i in the resulting distribution
over A does not improve by more than ǫ ≥ 0 by changing i’s distribution. A mixed Nash
equilibrium is a 0-Nash equilibrium; all games have one (this was shown by Nash in
1950).

Now in a Bayesian game every player has a set Ti of types, and each type of each
player has a different utility. There is also a known (possibly correlated) prior dis-
tribution over T =

∏

i Ti. A Bayesian (Nash) equilibrium is a distribution on Ai for
each type of each player i such that no type of a player can improve its expected utility
(expected over all other types and their mixed strategies) by changing its own distribu-
tion. A Bayesian game can be transformed into an ordinary game in which the action
space of player i is now all functions Ti 7→ Ai. Thus, a Bayesian equilibrium always
exists in finite games.

The definition of a game can be extended to the case in which Ai is infinite, or even a
compact set such as [0, 1]. All concepts carry over, but not Nash’s theorem. The games
we shall consider are of this form.

In a combinatorial auction we have a set of n items and a set of m bidders. Each
bidder i has a valuation vi mapping 2[n] to the reals — without loss of generality to [0, 1]
(in our proofs and constructions we shall feel free to use larger numbers as convenient).
In all combinatorial auctions constructed in our proofs, the valuations of the bidders
will be succinct and easy to describe. In a Bayesian auction, each bidder i has a set
of types Ti, and a distribution on those (we assume that the types of the bidders are
distributed independently).

There are certain classes of valuations worth mentioning. An additive valuation is
of the form v(S) =

∑

i∈S v(i) . A valuation is subadditive if for any subsets S1, S2 ⊆
[n], v(S1)+ v(S2) ≥ v(S1 ∪S2). Such valuations are considered well behaved; valuations
that are not subadditive are valuations with complements (consider items like left and
right boots, or cart and horse, etc.), and render the auction problem harder. An even
more benign class is the submodular valuations, for which S1 ⊆ S2 and a /∈ S2 implies
v(S1 ∪ {a}) − v(S1) ≥ v(S2 ∪ {a})− v(S2).

Given a Bayesian auction, it has been proposed in several recent works to construct
a Bayesian game (not a finite one), in which the players are the bidder types, the
action sets are Ai = [0, 1]n, and the utilities are calculated as follows: Given an action
profile a ∈ A = [0, 1]mn, we determine who among the bidders is the highest bidder for
each item, and then the utility of each bidder is the bidder’s valuation for the bundle



consisting of all items for which the bidder bid highest, minus the sum of the second-
highest bids on these items.

As is common and necessary in the analysis of Bayesian auctions, we restrict the
action space by disallowing overbidding, that is, by requiring that each type bid for
each item no more than its value for the item. This has the effect of removing spu-
rious equilibria in which certain types bid ridiculously high but have no incentive to
lower their bid because the second-price rule shields them from its consequences. The
above requirement is weaker than the requirement used in [Christodoulou et al. 2008;
Bhawalkar and Roughgarden 2011], and incomparable but far simpler and more nat-
ural than the in-expectation form of [Feldman et al. 2013]. We believe it is the most
natural such restriction — in any event, it makes little difference with our simple
valuations.

There is, of course, the complication of ties in the bids. There are two equally unsat-
isfactory (and equally inconsequential) ways to handle this: Flip a coin among winners,
or break ties in favor of lower-indexed bidders.

Either way, we are aware of no proof that a Bayesian equilibrium exists in these
games (see Theorem 2 of [Jackson and Swinkels 2005] for some very intricate results
showing existence in far simpler contexts than the present one). Our reductions es-
tablish that such equilibria, when they exist are hard to find. Of course we can find
an discretized Bayesian equilibrium by embedding in the action space [0, 1]n a discrete
net of Mn points. Now we have a finite game, and Nash’s theorem is restored. We
do not know, however, whether this equilibrium is in any sense an ǫ-Bayesian Nash
equilibrium of the original game.

2. THE COMPLEXITY OF EXACT EQUILIBRIA

In this section we show that finding an exact Bayesian equilibrium for simultaneous
Vickrey auctions is PP-hard, even when the bidders’ valuations are additive or unit
demand (in fact, additive functions with only one unit demand type). Since we are
not sure that a Bayesian equilibrium exists in each game, we use the surrogate of an
ǫ-equlibrium for an exponentially small ǫ > 0.

We first describe two easy and useful facts about the Vickrey auction game corre-
sponding to a combinatorial auction. Recall that, in a game, a dominant strategy for
a player (and type) is a strategy that is best response no matter what everybody else
(players and their types) is playing.

LEMMA 1. For all additive types, being truthful (that is, bidding the true valuation
of all items) is a dominant strategy.

PROOF. It is well known [Vickrey 1961] that in a single-item Vickrey auction, be-
ing truthful is a dominant strategy. For an additive type A, her utility in an n-item
simultaneous Vickrey auction is always the same as the sum of her utility in these n
independent single-item Vickrey auctions, one for each item1. The lemma follows.

LEMMA 2. Let A and B be two additive types of two different bidders i1 and i2
respectively, and assume that, for some item j, A({j}) = x > B({j}) = y. If i1 and i2 are
the only two bidders who are interested in j (that is, if vt

i({j}) = 0 for all i /∈ {i1, i2} and
all t ∈ Ti), then at any Bayesian equilibrium, type A will never bid lower than y.

PROOF. By contradiction. Assume A bid bi1j = z < y with non-zero probability.
Since being truthful is a dominant strategy for any additive type (Lemma 1), then B’s
strategy in any Bayesian equilibrium should be at least as good as bidding truthfully.

1Note that this does not hold for non-additive types.



That means B should be getting item j always. However, bidding z for item j is no
longer a best response, because A can strictly increase her utility by changing her bid
for j to x. Hence, in any Bayesian equilibrium A should bid no less than y.

We now state the main results of the section:

THEOREM 3. Finding a Bayesian equilibrium in the simultaneous Vickrey combi-
natorial auction when there is a unit-demand type and all other types are additive, and
with a tie breaking rule that favors the unit demand bidder is PP-hard.

We postpone the proof to Appendix. This result requires the auction to have a par-
ticular tie breaking rule, we show next a result in which there is no tie-breaking rule,
but the unit demand type is replaced with a slightly more complicated valuation.

THEOREM 4. Finding a Bayesian equilibrium in the simultaneous Vickrey combi-
natorial auction with monotone submodular bidders is PP-hard.

PROOF. We start from the standard PP-complete problem.
MAJSAT: Given a Boolean formula Φ is the number of satisfying truth assignments
greater than the number of non-satisfying truth assignments?

Given an instance Φ of MAJSAT with n variables, we construct a combinatorial auc-
tion with n + 1 items and n + 2 bidders. Next, we describe the bidder valuations.

— For i = 1, 2, . . . , n, Bidder i is only interested in the i-th item and has uniform valua-
tion distribution for it over {1, 3}.

— Define v(S) = 2|S|−( |S|
n+1 )2. Bidder n+1 is only interested in the n+1-st item, and has

value D − (2n − 1)δ, where D = 1
2n

∑

S∈2[n] (v(S ∪ {n + 1})− v(S)) and δ = 1
2n+2(n+1)2 .

— Finally, Bidder 0 has three types, each with probability 1/3. The first two types are
additive. In the first type, her value for each of the first n items is 3− δ and D− (2n −
1/2)δ for item n + 1. In the second type, she has the same value for item n + 1, but
has value 1 − δ for items 1, 2, . . . , n.

— The third type of Bidder 0, denoted vΦ, encodes the instance Φ of MAJSAT. To define
vΦ(S) for a set S ⊆ {1, . . . , n + 1}, first define xS as the truth assignment (x1, . . . , xn)
such that xi is true if i ∈ S and false otherwise. Now, if n + 1 ∈ S and xS satisfies Φ,
then vΦ(S) = v(S) − 2n+1 · δ, otherwise vΦ(S) = v(S).

LEMMA 5. vΦ(·) is a monotone submodular function.

PROOF. We first prove it is monotone. Let S and T be two subsets of [n + 1], where
T ⊂ S. Then

vΦ(S) − vΦ(T ) ≥ 2(|S| + 1) − (
|S| + 1

n + 1
)2 − 2n+1 · δ − (2|T | − (

|T |

n + 1
)2)

≥ 2(|S| + 1) − (
|S| + 1

n + 1
)2 − 2n+1 · δ − (2|S| − (

|S|

n + 1
)2)

≥ 2 − 2n+1 · δ −
(2|S| + 1)

(n + 1)2
≥ 0.

Next, we prove it is submodular. Take any i ∈ [n + 1], without loss of generality we can
assume i /∈ S. Then

vΦ(S ∪ {i})− vΦ(S) ≤ 2 + 2n+1 · δ −
(2|S| + 1)

(n + 1)2
,



and

vΦ(T ∪ {i})− vΦ(T ) ≥ 2 − 2n+1 · δ −
(2|T |+ 1)

(n + 1)2
.

Since 1/(n + 1)2 ≥ 2n+1 · δ,

vΦ(S ∪ {i})− vΦ(S) ≤ vΦ(T ∪ {i}) − vΦ(T ).

We now turn to the auction. Since all bidders except 0 are additive, we expect that
their strategies are “close” to truthful in any Bayesian equilibrium. The following
Proposition proves that this is exactly the case.

PROPOSITION 6. In any Bayesian equilibrium of the above auction, for all i ∈
{1, . . . , n}, bidder i will bid 0 on every item except item i, and will bid between 3 − δ
and 3 with probability 1/2 and bid between 1 − δ and 1 with probability 1/2 for item i.
For bidder n + 1, she will always bid between D − (2n − 1/2)δ and D − (2n − 1)δ.

PROOF. It is clear that everyone will bid 0 on anything they are not interested, since
we assume no overbidding. Now look at item i; only bidder 0 and bidder i have types
that are interested in it. From Lemma 2, we know when bidder i values the i-th item
3, she will bid some number in [3− δ, 3], and when she values item 1, she will bid some
number in [1−δ, 1]. Similarly, we can argue bidder n always bid between D−(2n−1/2)δ
and D − (2n − 1)δ.

How about Bidder 0? We are only interested in her submodular type.

LEMMA 7. Type vΦ should never buy an item in {1, 2, . . . , n} with price ≥ 3 − 2δ, or
fail to buy an item with price ≤ 1.

PROOF. For any bidder i in {1, . . . , n}, we say her bid is high if it is no less than
3 − δ and low if it is no greater than 1. In Proposition 6 we show that in any Bayesian
equilibrium any bidder i ∈ {1, . . . , n} should bid high on item i if her value is 3 and
low if her value is 1. This Lemma claims that any best response bid vector for type vΦ

should buy item i if and only if its price is low.
Assume b0 is a best response for vΦ, but bidder 0 wins item i with price higher than

3− 2δ. Now consider changing bidder 0’s bid for item i to 2 and call this new bid vector
b′0. When the bidder i’s bid on item i is low, b0 and b′0 give bidder 0 the same utility.
But when bidder i’s bid on item i is high, which happens with probability 1/2, b′0 gives
bidder 0 strictly higher utility. Let S be the set of items bidder 0 wins when bidding
b′0, then S ∪ {i} is the set of items she wins when bidding b0. The difference in value
for the two sets is no greater than 2 + 2n+1 · δ, but she pays at least 3 − δ more when
bidding b0. Hence, bidding b′0 is strictly better. Similarly, we can argue that bidder 0
should never lose an item when the price is low.

LEMMA 8. In any Bayesian equilibrium, type vΦ wins item n + 1 iff the number of
satisfying assignments for Φ is less than 2n−1.

PROOF. Let bn+1 be bidder n + 1’s bid for item n + 1, and #Φ be the number of sat-
isfying assignments for Φ. Using Lemma 7, we can compute U which is the difference
of vΦ’s utility between winning and losing item n.

a =
1

2n

∑

S⊆2[n]

(vΦ(S ∪ {n + 1}) − vΦ(S)) − bn = D − #Φ · 2δ − bn.



From Proposition 6, we know bn+1 is between D − (2n − 1/2)δ and d − (2n − 1)δ.
Therefore, a ≤ −δ/2 if #Φ is at least 2n−1 and a ≥ δ if #Φ is less than 2n−1.

Note that this concludes the proof of the Theorem: One can decide the given instance
of MAJSAT by simply looking at the “gross outcome” of any Bayesian equilibrium of the
auction (which type gets which items).

An interesting consequence of our proof is the following:

COROLLARY 9. In the simultaneous auction with combinatorial valuations, finding
a best response for a single bidder, or even verifying that a response is best, given the
strategies of other players and types, is PP-hard.

PROOF. In our construction, let every type except vΦ be truthful. Then a best re-
sponse by type vΦ gives a Bayesian equilibrium, and whether a response is best de-
pends on the outcome of the MAJSAT instance.

This is ominous for the prospects of computationally efficient regret minimization
[Blum et al. 2008] in Bayesian simultaneous auctions, see Section 4 for further discus-
sion.

Upper bounds. Is the problem in PP? We seriously doubt it. If one insists on equilib-
ria of the continuous game, even existence of equilibria is unclear. It is known that
if the action set is compact and the utilities are continuous, then Nash equilibria
exist; however, utilities here have discontinuities at bidding ties. There is classical
work by Simon and Zame [Simon and Zame 1990] showing that, under conditions,
equilibria exist if appropriate “sharing rules” (tie-breaking rules at discontinuities)
are adopted; however, the proof of [Simon and Zame 1990] is complex and measure-
theoretic, and gives few clues as to the nature and complexity of these sharing rules or
equilibria. [Jackson and Swinkels 2005] show existence of equilibria in auctions (see
e.g. their Theorem 2), albeit in much more restricted contexts than the present. We
only know how to find ǫ-equilibria of the continuous game with exponentially small ǫ,
albeit through quantifier elimination in the theory of reals — a multiply exponential
affair, as it applies a doubly exponential algorithm to an exponentially long input. If we
resort to approximating the cube by an exponentially dense net to obtain an approx-
imate discrete equilibrium (and we do not know in what sense it is “approximate”),
the complexity of computing a Nash equilibrium becomes EXPPAD (the exponential
variant of PPAD).

3. APPROXIMATING A BAYESIAN EQUILIBRIUM

The complexity result of the previous section holds for exponentially small ǫ. In this
section, we show that for some constant ǫ, finding an ǫ-Bayesian equilibrium in simul-
taneous Vickrey combinatorial auctions with a single monotone submodular bidding
type and all other bidders additive is NP-hard. Our hardness result is obtained by a
reduction from SET COVER.

We should be clear about what type of approximation we mean: In an ǫ-Bayesian
equilibrium, the expected utility of any bidder is within factor of (1 − ǫ) of the utility
for her best response strategy. We will first prove our hardness result for this ap-
proximation. There is another type of approximate Bayesian equilibrium, the additive
ǫ-Bayesian equilibrium. For this, we first normalize valuations to [0, 1], and we call
a strategy profile an additive ǫ-Bayesian equilibrium if deviating will increase their
utility by at most ǫ. Finding such an equilibrium is also NP-hard (see the Appendix).

Let C be an instance of the Set Cover problem. The universe is U = [m] and B =
{X1, . . . , Xn} is a family of n sets whose union is U . Let S∗ be the optimal solution for
C. S∗, that is, the smallest subset of B, such that the sets in it cover U .



Now from any such instance C, we shall create an auction. The items of the auction
are the elements of B, and we define a monotone submodular function vC over the items
— the coverage function. The value of vC(S) for a set of items S is c times the number
of elements in the union of the sets in S, where c > 1 is some absolute constant:

vC(S) = c · |
⋃

i∈S

Xi|.

Now we are ready to define the bidders in the auction. There are 2n + 1 bidders,
labeled through 0 to 2n. Bidder 0 has two types, with equal probabilities. The first type
values any set of items as 0. The second type’s valuation is vC . All bidders in [2n] have
only one type. Bidder 2i − 1 and 2i are only interested in item i and both have value 1
for it.

We start with a simple fact about the strategies bidder in [2n] will use in a Bayesian
equilibrium.

LEMMA 10. Let σ and δ be two small positive constants. For a σ·δ
5 -Bayesian equilib-

rium, with probability at most δ, the highest bid between bidder 2i− 1 and 2i for item i
is less than 1 − σ.

PROOF. By contradiction. Suppose that in a σ·δ
5 -Bayesian equilibrium the highest

bid for item i is less than 1−σ with probability larger than δ. Without loss of generality,
assume that when bidder 0 has the first type and the highest bid is less than 1 − σ for
item i, bidder 2i wins the item with probability less than 1/2. Now consider switching
bidder 2i’s bid to 1 for item i (because of the no overbidding assumption, her bids are 0
always on other items). From Lemma 1, we know that this will not decrease 2i’s utility
under any bid profiles of the others. Moreover, when bidder 0 has the first type and the
highest bid is less than 1 − σ for item i, bidder 2i always win item i now. That means,
being truthful increases bidder 2i’s utility by at least 1/2 · δ/2 · (1− (1−σ)) = σ·δ

4 > σ·δ
5 .

Contradiction.

Given the structure of the strategies of bidders other than 0, we are now ready to
show the following lemma (proof in the Appendix) analyzing the strategies of bidder 0
in any approximate Bayesian equilibrium.

LEMMA 11. Given any ǫ-Bayesian equilibrium of the simultaneous auction,
there is a polynomial time randomized algorithm which, with probability 1 −
O (exp(−n)), produces a solution to the instance of SET COVER whose size is at most

1
1−σ

((1 − ǫ)|S∗| + 2ǫcm) + 2δn, where σ, δ are two constants in [0, 1] and σ · δ = 5ǫ.

From this lemma we can show the following:

THEOREM 12. Unless BPP=NP, there is no polynomial time algorithm for finding
an ǫ-Bayesian equilibrium in simultaneous Vickrey combinatorial auction with mono-
tone submodular bidders for some absolute constant ǫ.

PROOF. If we can find a restricted version of SET COVER such that n and m is linear
in |S∗| and it is NP-hard to approximate within some factor a > 1, then Lemma 11
implies our theorem. More specifically, when n and m are linear in |S∗|, Lemma 11
shows that for any ǫ-Bayesian equilibrium, with probability at least 1 − O(exp(−n)),
we can convert it into a solution for C whose size is at most (1 + f(ǫ))|S∗|, 2 where f(·)
is a monotone function with f(0) = 0. Now let ǫ = f−1(a − 1). If there is a polynomial
time algorithm for finding an ǫ-Bayesian equilibrium, then BPP=NP.

2We can get such a function by fixing σ and δ. For example, let σ =

√
ǫ.



In fact such a restricted version exists, and it is called ∆-VERTEX COVER. The prob-
lem is to find the minimum vertex cover in a graph with bounded degree ∆. Now n is
the number of vertices and m is the number of edges. Since every vertex has at most
∆ incident edges, the minimum vertex cover has size at least m/∆. Clearly, ∆|S∗| ≥ m
and (∆+ 1)|S∗| ≥ |S∗|+ m ≥ n. Let A∆ be a number such that it is NP-hard to approx-
imate ∆-VERTEX COVER to within a factor of A∆. Berman and Karpinski show that
A4 ∈ [1.0128, 1.2857] and A5 ∈ [1.0138, 1.625] [Berman and Karpinski 1999]. If we let

c = 2, σ =
√

5(∆ + 1)ǫ and δ =
√

5/(∆ + 1)ǫ. We can show that for any ǫ if there exists

some ∆ such that (4∆ − 1)ǫ + 4
√

5(∆ + 1)ǫ ≤ A∆ − 1, then finding an ǫ-Bayesian equi-
librium is NP-hard. Plugging in the results of [Berman and Karpinski 1999], we prove
that finding an ǫ-Bayesian equilibrium is NP-hard for some ǫ ∈ [7.44×10−7, 7×10−4].

To extend this result to additive approximate equilibria one has to overcome some
technical difficulties, explained in the Appendix.

Incidentally, the complexity upper bound for the two versions of approximate equi-

libria is quite close to the lower bound just proved: NPBPP. To see this, one can embed
an ǫ-grid into the action space, guess an approximate Bayesian equilibrium of the ap-
proximate game, 3 and then make sure that it is an approximate Bayesian equilibrium
by sampling repeatedly the action/type space and relying on the union bound to verify
that it is indeed an approximate Bayesian equilibrium.

4. ON BAYESIAN NO-REGRET DYNAMICS

The complexity obstacles to Bayesian equilibria shown in the previous sections cast a
shadow on the positive price-of-anarchy results in the literature. It is natural to ask
whether price of anarchy guarantees can be shown regarding solution concepts for si-
multaneous Bayesian auction games that are more relaxed — and less complex — than
the Bayesian equilibrium. Hope in this regard comes from the work of Roughgarden
[Roughgarden 2009] who showed that certain price of anarchy results (encompassing,
in fact, most such results in the literature), under certain conditions, and if established
in a particular style called the “smoothness framework,” can be shown to also hold for
correlated equilibria and no-regret dynamics. Recently, [Syrgkanis and Tardos 2013]
extended this framework to accommodate certain Bayesian settings. In this section we
discuss briefly this approach.

One encounters three difficulties when looking for good price of anarchy results
through no-regret dynamics and the smoothness framework in Bayesian simultane-
ous auctions. First, it is not at all clear what no-regret learning means in a Bayesian
game: there is no mention of Bayesian games in the Learning in Games book [Fu-
denberg and Levine 1998], and even the concept of correlated equilibria of Bayesian
games is controversial [Bergemann and Morris 2013]. Second, once we have decided on
a notion of “no-regret dynamics” in the context of Bayesian games, we must show that
Roughgarden’s smoothness framework extends to the Bayesian case. Third, to the ex-
tent that the methodology does generalize, one has to apply it to prove price-of-anarchy
bounds for Bayesian simultaneous auctions.

There are two fundamentally different kinds of learning dynamics one can define for
Bayesian games, see [Dekel et al. 2004] for a detailed discussion albeit from a different
point of view: (a) dynamics in which types are re-drawn from scratch at every stage of
the game (we call these strongly Bayesian dynamics), and (b) dynamics in which types
are drawn once and for all in the beginning of the process and retained throughout
(these are weakly Bayesian dynamics). In either case, one can define a coarse correlated

3The results of [Lipton et al. 2003] guarantee that an approximate equilibrium with small supports (poly-
nomial in n and m) always exists.



equilibrium, or no-regret dynamics to be a polynomially computable sequence of n-
tuples of mixed strategies (one for for each of the players) with the property that the
overall expected utility of each player is no smaller than the expected utility of the best
single pure strategy play by the same player (or smaller only by a vanishingly small
quantity). Note that the sequence of play by a player in a coarse correlated equilibrium
need not be best response.

Weakly Bayesian dynamics seem intuitively to be a significant departure from —
some would say a betrayal of — the incomplete information nature of Bayesian games.
This intuition is supported by the following observation: It turns out that the problem
of weakly Bayesian no-regret learning can be reduced to full-information no-regret
learning. To see how, let us describe the sequence of play in the reduction: Once types
are drawn at the first stage, the players start by announcing through their strategies
their type to the other players. This may take a few moves, and cause a (quadratic at
worst) loss in utility to each player, which will however be amortized over the remain-
ing (polynomial) play. The game needs to have some minimal complexity for this coding
to be achieved, but it is easy to see that it is always possible in auction-like games with
finitely many types. Once the types are common knowledge, the players proceed with
the assumed no-regret dynamics for the full-information game, completing the reduc-
tion.

Given the reduction sketched above, weak Bayesian dynamics is essentially a linear
combination of (distribution over) exponentially many full-information game dynam-
ics. Therefore, price of anarchy results obtained for full-information simultaneous auc-
tion games through the smoothness framework carry over to the weak Bayesian case,
and these include the results of [Bhawalkar and Roughgarden 2011] and [Dütting et al.
2013], but also [Christodoulou et al. 2008] (since it is noted in [Bhawalkar and Rough-
garden 2011] that their proof can be rendered within the smoothness framework). We
conclude that weakly no-regret learning in Bayesian simultaneous auctions for subad-
ditive valuations has bounded price of anarchy with respect to welfare.

Strongly Bayesian dynamics are much more faithful to the Bayesian nature of
the auction, but are also far more problematic. We can show, by modifying the proof
of Theorem 12, that it is NP-hard to find a strongly Bayesian approximate coarse cor-
related equilibrium in the simultaneous Bayesian auction game. The proof is given in
the Appendix, but the basic intuition is this: Since types are re-drawn from the type
distribution at each stage, it is impossible to learn the types. And since our intractabil-
ity proofs show that it is difficult for a bidder to play “well” even if the behavior of all
other types is fixed and known, one cannot learn the behavior of the types either —
simply because it is already known. Thus, there is nothing to learn, and each play of
the game is essentially a one-shot game — that is to say, hard to play with no substan-
tial regret. The constant inapproximability result of Theorem 12 is needed, because a
lesser gap could be absorbed in the allowed deviation from optimality.

5. OPEN PROBLEMS

Our work suggests many open problems:

— Show that Bayesian Nash equilibria in first-price simultaneous auctions are hard to
find. We are confident this is true, but there are still gaps in our proof.

— Prove that, perhaps under assumptions, the simultaneous auction game has
Bayesian Nash equilibria.

— Pin down more precisely the complexity of finding such equilibria and approximating
them. Improve the approximation lower bound.

— Understand the computational implications of Simon-Zame theory of endogenous tie-
breaking rules.



— What is the precise complexity of finding Bayesian equilibria in finite games?

Acknowledgment:. Many thanks to Costis Daskalakis for suggesting this problem to
us, and for his advice about the no-regret dynamics section.
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Appendix I: Proof of Theorem 3

PROOF. We start from the standard PP-complete problem, MAJSAT: Given a
Boolean formula Φ, is the number of satisfying truth assignments greater than 1

2 · 2n?
Given an instance Φ of MAJSAT with n variables and m clauses, we construct a combi-
natorial auction with m items and n + 1 bidders, as follows:

— The items C1, . . . , Cm correspond to the clauses of the formula.
— The first n bidders correspond to the variables of the formula. Bidder i has two

equiprobable types denoted by the two literals associated with the ith variable: xi

and x̄i. Each type/literal λ has an additive valuation, where her valuation for clause
Cj is 1 if the λ appears in the clause, and zero otherwise.

— The last bidder n + 1 also has two equiprobable types. The active type has valuation
1−δ for all items. δ is a positive constant to be specified later. Finally, the unit demand
type has valuation v for all items and unit demand. Here v is a parameter greater
than one, to be specified soon.

LEMMA 13. At any Bayesian Nash equilibrium, each literal type bids at least 1 − δ
for all clauses containing it, and 0 on all other clauses.

PROOF. Since the literal type has value 0 on all clauses that do not contain it, she
must bid 0 on all of them. For any clause that contains the literal type, Lemma 2 says
that bidding truthfully strictly dominates any strategy that bids less than 1−δ on that
clause.

How about the unit demand type of the n + 1st bidder? We can show that only two
kinds of bids make sense for this type:

LEMMA 14. In any Bayesian Nash equilibrium the unit demand type:

— either chooses one clause and bids v for it (or anything between 1 and v — this is called
the one high bid;

— or, otherwise, he bids something strictly between 0 and 1 on all clauses (many low
bids), and in such case his utility is the same as bidding strictly less than 1 − δ on all
clauses.

PROOF. We first argue that bidding high on more than one clause is a strictly dom-
inated strategy. Since if he bids 1 on only one of those clauses, he still wins a clause
with probability 1 and his value will be the same, but the price is strictly lower.

Next, we consider the case that he uses many low bids. For each clause C, whenever
one of the additive bidders has value 1 on it, the unit-demand type loses. Otherwise,
the additive bidder can bid 1 and strictly increase her utility. That means the unit-
demand type wins a clause only if all the additive bidders have value 0 on it, which is
the same outcome as bidding strictly between 0 and 1 − δ.

Which of these two strategies should the unit demand type choose? With the one
high bid strategy he gets a utility of v with probability 1

8 , and utility between v− 1 and

v − (1 − δ) with probability 7
8 , and therefore an expected utility of v − 7

8 . On the other
hand, with many low bids he gets utility v with probability 1 − sΦ2−n, and utility zero
with probability sΦ2−n, where sΦ is the number of satisfying truth assignments of Φ.
Setting v = 7

4 − 1
2n

and δ = 1
7·2n−3 concludes the proof.

Appendix II: Proof of Lemma 11

Lemma 11:. Given any ǫ-Bayesian equilibrium of the simultaneous auction,
there is a polynomial time randomized algorithm which, with probability 1 −



O (exp(−n)), produces a solution to the instance of SET COVER whose size is at most
1

1−σ
((1 − ǫ)|S∗| + 2ǫcm) + 2δn, where σ, δ are two constants in [0, 1] and σ · δ = 5ǫ.

PROOF. First, consider bidders other than zero. Because no bidder is overbidding,
the highest bid for any item is at most 1. If type vC bids c on any item in S∗ and 0 on
everywhere else, her utility is at least cm − |S∗|. Since type vC occurs with probability

1/2, bidder 0’s utility is at least cm−|S∗|
2 . For any ǫ-Bayesian equilibrium, type vC should

expect utility at least (1 − ǫ)(cm − |S∗|), as the first type always has utility 0.
Take the given ǫ-Bayesian equilibrium and fix bidder 0’s type to be vC . Sample k

bid profiles from the ǫ-Bayesian equilibrium. We say a profile is good if the number of
items, whose highest bid between bidder 2i and 2i − 1 is less than 1 − σ, is no more
than 2δn, and type vC ’s utility is no less than (1− ǫ)(cm−|S∗|)− ǫcm. As the highest bid
between bidder 2i and 2i − 1 is less than 1 − σ with probability at most δ (Lemma 10),
by a Chernoff bound we can argue that for every bid profile with probability at most
exp(−2nδ2) the number of items whose highest bid between bidder 2i and 2i − 1 is
more than 2δn. Similarly, for any sampled bid profile, the utility for type vC is less
than (1− ǫ)(cm−|S∗|)− ǫcm with probability at most exp(−2ǫ2). For any constant ǫ and
δ, if we take n to be sufficiently large, exp(−2nδ2) + exp(−2ǫ2) < p, for some absolute
constant p < 1. By union bound, a sampled profile is good with probability at least
1−p. Let k = O(n), then with probability at least 1−O (exp(−n)) there is a good profile
among the k samples.

Let S be the set of items won by vC in the good profile. If the items (sets) in S do
not cover U , repeat the following until done. Add an item to S, if it covers any new
element. Since getting one more item costs us at most 1, but covering one more element
increases the value by c, in the end the total utility increases. As there are at most n
items, this will take at most n rounds. Now let S be the set we got after applying this
procedure, and S′ ⊆ S be the set of items whose prices are least 1 − σ. The following
must hold.

cm − (1 − σ)|S′| ≥ utility of vC ≥ (1 − ǫ)(cm − |S∗|) − ǫcm

=⇒ (1 − ǫ)|S∗| + 2ǫcm ≥ (1 − σ)|S′|

=⇒
1

1 − σ
((1 − ǫ)|S∗| + 2ǫcm) ≥ |S′|

=⇒
1

1 − σ
((1 − ǫ)|S∗| + 2ǫcm) + 2δn ≥ |S|

Appendix III: Additive ǫ-Bayesian Nash Equilibrium

Next we consider additive ǫ-Bayesian equilibria, the main reason that we cannot di-
rectly apply our previous result is that after normalization bidders in [2i] will have
values O(1/n); to get an additive ǫ-Bayesian equilibrium, they can use any strategy.
To fix this, we will essentially just merge all odd-numbered bidders into bidder 1 and
all even number bidders except bidder 0 into bidder 2. Now both bidder 1 and 2 have
only one additive type, which values each item 1. Let C be an instance of ∆-VERTEX

COVER. With the exception of the first type of bidder 0, every type has largest value
that is Θ(n). To find an additive ǫ-Bayesian equilibrium for the normalized version of
this auction is the same as finding an additive ǫn-Bayesian equilibrium in the original
auction.

The proof will be essentially the same as for ǫ-Bayesian equilibrium, except that
we need to establish some structure for the bids of bidder 1 and 2 similar to those in
Lemma 10.



LEMMA 15. For an additive σ·δ·λn
5 -Bayesian equilibrium, with probability at most

δ, there are at least λn items whose highest bid between bidder 1 and 2 is less than 1−σ.

PROOF. By contradiction. Let ǫ = σ·δ·λ
5 , E denote the invent that at least λn items

whose highest bid between bidder 1 and 2 is less than 1 − σ. Imagine there is an
additive ǫn-Bayesian equilibrium such that the probability for E to happen is bigger
than δ. Without loss of generality, we can assume that when bidder 0 has her first type
and E happened, bidder 1 wins less of the low price items (whose highest bid is less
than 1 − σ) than bidder 2. Now switch bidder 1’s bids to the all 1 bid. From Lemma 1,
we know that this will not decrease 1’s utility under any bid profiles of the others.
Moreover, when bidder 0 has her first type and E happens, bidder 1’s expected utility
actually increases by at least 1/2 · δλn/2 · σ = 5ǫn/4. Contradiction.

With Lemma 15, we can use an almost identical proof to show that for sufficiently
small ǫ, an additive ǫ-Bayesian equilibrium for the normalized auction can be effi-
ciently converted to a factor 1+g(ǫ) approximate solution for C with probability almost
1, if C is an instance of ∆-VERTEX COVER (or other restricted version of the set cover
problem where both n and m are linear in |S∗|). Then similarly as in Theorem 12, we
can prove the following theorem.

THEOREM 16. Unless BPP=NP, there is no polynomial time algorithm for find-
ing an additive ǫ-Bayesian equilibrium in simultaneous Vickrey combinatorial auction
with monotone submodular bidders for some absolute constant ǫ.

Appendix III: Strongly Bayesian No-Regret Dynamics

We first define strongly Bayesian no-regret dynamics. Let D be the distribution of
players’ types, pi(s|θ) be the expected payoff for player i, if the strategy profile is s and
the type profile is θ. Now, let {st|θt}t∈[T ] be a sequence of strategy profiles that players
will use from day 1 to day T , when the corresponding types are θ. We say {st|θt}t∈[T ] is
small-regret if for each player i, and for any pure strategy a of i,

Et∼D[

T
∑

t=1

pi(a, st
−i|θ

t) −

T
∑

t=1

pi(s
t|θt)] = o(T ).

We call this difference, maximized over all players and all pure strategies, the regret
of the sequence.

We will show that, for simultaneous Vickrey auctions, finding a polynomial sequence
of strategies that has O(T ) regret is already NP-hard. We use the same hard instance
as in Section 3. The crux of the proof is to establish the following informal claim:

Claim:. For most t ∈ T , and for most i ∈ [n], the highest bid between bidders 2i − 1
and 2i is close to 1 with high probability.

Once this is proved, we know that the types in [2n] have small total payoff, and
therefore the VERTEX COVER type should use a nearly best response strategy with
respect to the others’ strategies. We can then argue that, if such a strategy sequence
exists that is polynomially computable, we can recover from the play of the VERTEX

COVER player an approximate solution of the VERTEX COVER instance. This is done
in a manner essentially identical to Lemma 11 and Theorem 12, and we do not repeat
it here.

We now turn to the claim. In the sequel, when we say the high bid of item i, we mean
the higher bid between 2i − 1 and 2i. We shall also call the elements of [T ] “days.”



LEMMA 17. For any sequence with regret at most σ4T
2 , there are at most σT days,

such that more than σn items have expected high bids less than 1 − σ2.

PROOF. For any i ∈ [n], let bt
i be the expected high bid for item i at day t. Let

bi =
∑T

t=1 bt
i. Consider switching bidder 2i−1’s strategy to bidding 1 in all days, clearly

this will only increase the utility of bidder 2i−1, we call the increment g2i−1. Similarly,
we define g2i. An interesting property is that g2i−1 + g2i = 1 − bi, since when the high
bid is b, increasing the high bidder’s bid to 1 will not change her utility, but increasing
the low bidder’s bid to 1 will increase her utility by 1 − b. Because, the sequence has

regret σ4T
2 , g2i−1, g2i ≤

σ4T
2 . Hence, 1 − bi ≤ σ4T .

If there are more than σT days, at which more than σn items have expected high
bids less than 1 − σ2, then

∑

i∈[n] 1 − bi > σT · σn · σ2 = σ4Tn. Contradiction.

To complete the proof of the claim, we only need to notice that if the expected high
bid is close to 1, then the high bid is close to 1 with high probability.


