
Reducing Revenue to Welfare Maximization: Approximation

Algorithms and other Generalizations

Yang Cai∗

EECS, MIT
ycai@csail.mit.edu

Constantinos Daskalakis†

EECS, MIT
costis@mit.edu

S. Matthew Weinberg‡

EECS, MIT
smw79@mit.edu

Abstract

It was recently shown in [12] that revenue optimization
can be computationally efficiently reduced to welfare
optimization in all multi-dimensional Bayesian auction
problems with arbitrary (possibly combinatorial) feasi-
bility constraints and independent additive bidders with
arbitrary (possibly combinatorial) demand constraints.
This reduction provides a poly-time solution to the op-
timal mechanism design problem in all auction settings
where welfare optimization can be solved efficiently,
but it is fragile to approximation and cannot provide
solutions to settings where welfare maximization can
only be tractably approximated. In this paper, we ex-
tend the reduction to accommodate approximation al-
gorithms, providing an approximation preserving reduc-
tion from (truthful) revenue maximization to (not neces-
sarily truthful) welfare maximization. The mechanisms
output by our reduction choose allocations via black-
box calls to welfare approximation on randomly selected
inputs, thereby generalizing also our earlier structural
results on optimal multi-dimensional mechanisms to ap-
proximately optimal mechanisms. Unlike [12], our re-
sults here are obtained through novel uses of the Ellip-
soid algorithm and other optimization techniques over
non-convex regions.

1 Introduction

The optimal mechanism design problem is a central
problem in mathematical economics that has recently
gained a lot of attention in computer science. The
setting for this problem is simple: a seller has a
limited supply of several items for sale and many buyers
interested in these items. The problem is to design an

∗Supported by NSF Award CCF-0953960 (CAREER) and

CCF-1101491.
†Supported by a Sloan Foundation Fellowship, a Microsoft Re-

search Faculty Fellowship and NSF Award CCF-0953960 (CA-

REER) and CCF-1101491.
‡Supported by a NSF Graduate Research Fellowship and NSF

award CCF-1101491.

auction for the buyers to play that will maximize the
seller’s revenue. While being able to solve this problem
in the worst-case would be desirable, it is easy to see
that there can’t be any meaningful worst-case solution.
Indeed, even in the simpler case of a single buyer and
a single item, how would the seller sell the item to
optimize her profit without any assumptions about the
buyer who can, in principle, lie about his willingness to
pay?

To cope with this impossibility, economists have
taken a Bayesian approach, assuming that a prior
distribution is known that determines the values of the
buyers for each item (and each bundle of items), and
aiming to optimize the seller’s revenue in expectation
over bidders sampled from this distribution. Under this
assumption, Myerson solved the single-item version of
the problem in a seminal paper on Bayesian mechanism
design [27]. On the other hand, until very recently
there had been very small progress on the “multi-
dimensional” version of the problem, i.e. the setting
where the seller has multiple heterogeneous items for
sale [26]. This challenging, and more general problem is
the focus of this paper.

We proceed to state the problem we study more
precisely. First, as we move beyond single-item settings,
one may want to consider settings with non-trivial feasi-
bility constraints on which bidders may simultaneously
receive which items. Here are some examples:

1. Maybe the items are baseball cards. Here, a feasible
allocation should award each card to at most one
bidder.

2. Maybe the items are houses. Here, a feasible
allocation should award each house to at most one
bidder, and to each bidder at most one house.

3. Maybe the items are links in a network, and
all bidders have a desired source-destination pair.
Here, a feasible allocation should award each link
to at most one bidder, and to each bidder a simple
path from their source to their destination (or
nothing).

Following the notation of [12] we encapsulate the fea-
sibility constraints that the auctioneer faces in a set
system F on possible allocations. Namely, if the bid-
der set is [m] and the item set is [n] then an alloca-
tion of items to bidders can be represented by a subset
O ⊆ [m] × [n]. F is then a set-system F ⊆ 2[m]×[n],
determining what allocations are allowed for the auc-
tioneer to choose from.

With this notation in place, we formally state our
problem, and note that virtually every recent result in
the revenue-maximization literature [2, 6, 10, 11, 12, 13,
14, 15, 17, 21, 25] studies a special case of this problem
(perhaps replacing Bayesian Incentive Compatibility
with Incentive Compatibility). A detailed review of this
literature is given in Section 1.2.

Revenue-Maximizing Multi-Dimensional
Mechanism Design Problem (MDMDP):
Given m distributions D1, . . . ,Dm, supported on
Rn, over valuation vectors for n heterogenous items
(possibly correlated across items), and feasibility
constraints F , output a Bayesian Incentive Com-
patible (BIC)a mechanism M whose allocation is in
F with probability 1 and whose expected revenue
is optimal relative to any other, possibly random-
ized, BIC mechanism when played by m additive
biddersb whose valuation vectors are sampled from
D = ×iDi.

aA mechanism is said to be BIC if it asks bidders to report
their valuation to the mechanism and it is in each bidder’s

best interest to report truthfully, given that every other bidder

does so as well. See Section 2 for a formal definition.
bA bidder is additive if their value for a bundle of items is

the sum of their value for each item in the bundle.

It was recently shown that solving MDMDP under
feasibility constraints F can be poly-time reduced to
(the algorithmic problem of) maximizing social welfare
under the same feasibility constraints F , i.e. running
the VCG allocation rule with constraints F [12]. This
result implies that, for all F ’s such that maximizing
social welfare can be solved efficiently, MDMDP can
also be solved efficiently. On the other hand, the
reduction of [12] is geometric and sensitive to having
an exact algorithm for maximizing welfare, and this
limits the span of mechanism design settings that can be
tackled. In this work we extend this reduction, making
it robust to approximation. Namely, we reduce the
problem of approximating MDMDP to within a factor
α to the problem of approximately optimizing social
welfare to within the same factor α. Before stating our
result formally, let us define the concept of a virtual
implementation of an algorithm.

Definition 1. Let A be a social welfare algorithm, i.e.

an algorithm that takes as input a vector (t1, . . . , tm)
of valuations (or types) of bidders and outputs an
allocation O ∈ F . A virtual implementation of A is
defined by a collection of functions f1, . . . , fm, such that
fi : Ti → Rn, where Ti is bidder i’s type set. On
input (t1, . . . , tm) the virtual implementation outputs
A(f1(t1), . . . , fm(tm)), i.e. instead of running A on
the “real input” (t1, . . . , tm) it runs the algorithm on
the “virtual input” (f1(t1), . . . , fm(tm)) defined by the
functions f1, . . . , fm. The functions f1, . . . , fm are
called virtual transformations.

With this definition, we state our main result informally
below, and formally as Theorem 6.1 of Section 6.

Informal Theorem 1. Fix some arbitrary F and fi-
nite T1, . . . , Tm and let A : ×iTi → F be a (possibly
randomized, not necessarily truthful) social welfare algo-
rithm, whose output is in F with probability 1. Suppose
that, for some α ≤ 1, A is an α-approximation algo-
rithm to the social welfare optimization problem for F ,
i.e. on all inputs ~t the allocation output by A has social
welfare that is within a factor of α from the optimum
for ~t. Then for all D1, . . . ,Dm supported on T1, . . . , Tm
respectively, and all ε > 0, given black-box access to A
and without knowledge of F , we can obtain an (α− ε)-
approximation algorithm for MDMDP whose runtime is
polynomial in the number of items, the number of bid-
der types (and not type profiles), and the runtime of A.
Moreover, the allocation rule of the output mechanism
is a distribution over virtual implementations of A.

In addition to our main theorem, we provide in Sec-
tion 6 extensions for distributions of infinite support
and improved runtimes in certain cases, making use of
techniques from [17]. We also show that our results
still hold even in the presence of bidders with hard bud-
get constraints. We remark that the functions defining
a virtual implementation of a social welfare algorithm
(Definition 1) may map a bidder type to a vector with
negative coordinates. We require that the approxima-
tion guarantee of the given social welfare algorithm is
still valid for inputs with negative coordinates. This
is not a restriction for arbitrary downwards-closed F ’s,
as any α-factor approximation algorithm that works for
non-negative vectors can easily be (in a black-box way)
converted to an α-factor approximation algorithm al-
lowing arbitrary inputs.1 But this is not necessarily true

1The following simple black-box transformation achieves this:

first zero-out all negative coordinates in the input vectors; then
call the approximation algorithm; in the allocation output by the
algorithm un-allocate item j from bidder i if the corresponding

coordinate is negative; this is still a feasible allocation as the
setting is downwards-closed.

for non downwards-closed F ’s. If optimal social welfare
cannot be tractably approximated (without concern for
truthfulness) under arbitrary inputs, our result is not
applicable.

Beyond Additive Settings: We note that the ad-
ditivity assumption on the bidders’ values for bundles
of items is already general enough to model all settings
that have been studied in the revenue-maximizing liter-
ature cited above, and already contains all unit-demand
settings.

Beyond these settings that are already additive,
we remark that we can easily extend our results to
broader settings with minimal loss in computational
efficiency. As an easy example, consider a single-minded
combinatorial auction where bidder i is only interested
in receiving some fixed subset Si of items, or nothing,
and has (private) value vi for Si. Instead of designing an
auction for the original setting, we can design an auction
for a single “meta-item” such that allocating the meta-
item to bidder i means allocating subset Si to bidder i.
So bidder i has value vi for the meta-item. The meta-
item can be simultaneously allocated to several bidders.
However, to faithfully represent the underlying setting,
we define our feasibility constraints to enforce that we
never simultaneously allocate the meta-item to bidders
i and j if Si ∩ Sj 6= ∅. As there is now only one item,
the bidders are trivially additive. So, the new setting
faithfully represents the original setting, there is only 1
item, and the bidders are additive. So we can use our
main theorem to solve this setting efficiently.

More generally, we can define the notion of addi-
tive dimension of an auction setting to be the minimum
number of meta-items required so that the above kind
of transformation can be applied to yield an equivalent
setting whose bidders are additive. For example, the
additive dimension of any setting with arbitrary feasi-
bility constraints and additive bidders with arbitrary
demand constraints is n. The additive dimension of a
single-minded combinatorial auction setting is 1. The
additive dimension of general (i.e. non single-minded)
combinatorial auction settings, as well as all settings
with risk-neutral bidders is at most 2n (make a meta-
item for each possible subset of items). In Appendix D
we discuss the following observation and give examples
of settings with low additive dimension, including set-
tings where bidders have symmetric submodular valua-
tions [4].

Observation 1. In any setting with additive dimen-
sion d, Informal Theorem 1 holds after multiplying the
runtime by a poly(d) factor, assuming that the transfor-
mation to the additive representation of the setting can
be carried out computationally efficiently in the setting’s
specification.

1.1 Approach and Techniques. Our main result,
as well as those of [2, 11, 12], are enabled by an al-
gorithmic characterization of interim allocation rules of
auctions.2 The benefit of working with the interim rule
is, of course, the exponential (in the number of bid-
ders) gain in description complexity that it provides
compared to the ex post allocation rule, which speci-
fies the behavior of the mechanism for every vector of
bidders’ types. On the other hand, checking whether
a given interim rule is consistent with an auction is a
non-trivial task. Indeed, even in single-item settings,
where a necessary and sufficient condition for feasibility
of interim rules had been known for a while [7, 8, 16],
it was only recently that efficient algorithms were ob-
tained [11, 2]. These approaches also generalized to
serving many copies of an item with a matroid feasibil-
ity constraint on which bidders can be served an item
simultaneously [2], but for more general feasibility con-
straints there seemed to be an obstacle in even defining
necessary and sufficient conditions for feasibility [11], let
alone checking them efficiently.

In view of this difficulty, it is quite surprising
that a general approach for the problem was offered
in [12]. The main realization was that, for arbitrary
feasibility constraints, the set of feasible interim rules is
a convex polytope, whose facets are accessible via black-
box calls to an exact welfare optimizer for the same
feasibility constraints. Such an algorithm can be turned
into a separation oracle for the polytope and used to
optimize over it with Ellipsoid. However, this approach
requires use of an exact optimizer for welfare, making
it computationally intractable in settings where optimal
social welfare can only be tractably approximated.

Given only an approximation algorithm for optimiz-
ing social welfare, one cannot pin down the facets of the
polytope of feasible interim rules exactly. Still, a natu-
ral approach could be to resign from the exact polytope
of feasible interim rules, and let the approximation al-
gorithm define a large enough sub-polytope. Namely,
whenever the separation oracle of [12] uses the output
of the social welfare optimizer to define a facet, make
instead a call to the social welfare approximator and
use its output to define the facet. Unfortunately, un-
less the approximation algorithm is a maximal-in-range
algorithm, the separation oracle obtained does not nec-
essarily define a polytope. In fact, the region is likely
not even convex, taking away all the geometry that is

2The interim rule of an auction is the collection of marginal

allocation probabilities πij(ti), defined for each item j, bidder i,
and type ti of that bidder, representing the probability that item
j is allocated to bidder i when her type is ti, and in expectation

over the other bidders’ types, the randomness in the mechanism,
and the bidders’ equilibrium behavior. See Section 2.

crucial for applying Ellipsoid.
Despite this, we show that ignoring the potential

non-convexity, and running Ellipsoid with this “weird
separation oracle” (called “weird” because it does not
define a convex region) gives an approximation guaran-
tee anyway, allowing us to find an approximately op-
timal interim rule with black-box access to the social
welfare approximator. The next difficulty is that, after
we find the approximately optimal interim rule, we still
need to find an auction implementing it. In [12] this is
done via a geometric algorithm that decomposes a point
in the polytope of feasible interim rules into a convex
combination of its corners. Now that we have no poly-
tope to work with, we have no hope of completing this
task. Instead, we show that for any point ~π deemed fea-
sible by our weird separation oracle, the black-box calls
made during the execution to the social welfare approx-
imator contain enough information to decompose ~π into
a convex combination of virtual implementations of the
approximation algorithm (which are not necessarily ex-
treme points, or even contained in the region defined by
our weird separation oracle). After replacing the sep-
aration oracle of [12] with our weird separation oracle,
and the decomposition algorithm with this new decom-
position approach, we obtain the proof of our main the-
orem (Informal Theorem 1 above, and Theorem 6.1 in
Section 6). Our approach is detailed in Sections 3, 4
and 5.

1.2 Related Work

1.2.1 Optimal Mechanism Design. In his seminal
paper, Myerson solved the single-item case of the MD-
MDP [27]. Shortly after, the result was extended to all
“single-dimensional settings,” where the seller has mul-
tiple copies of the same item and some feasibility con-
straint F on which of the bidders can simultaneously
receive a copy. The algorithmic consequence of these
results is that, for all F ’s such that social welfare can
be (not necessarily truthfully) efficiently optimized, the
revenue-optimal auction can also be efficiently found,
and run. On the other hand, before this work, there was
no analogue of this for approximation algorithms, allow-
ing a generic reduction from revenue approximation to
(not necessarily truthful) social-welfare approximation.

On the multi-dimensional front, where there are
multiple, heterogeneous items for sale, progress had
been slower [26], and only recently computationally ef-
ficient constant factor approximations for special cases
were obtained [14, 6, 15, 1, 25, 28]. These results cover
settings where the bidders are unit-demand and the
seller has matroid or matroid-intersection constraints
on which bidders can simultaneously receive items, or

the case of additive-capacitated bidders, i.e. settings
that are special cases of the MDMDP framework.3

More recently, computationally efficient optimal solu-
tions were obtained for even more restricted cases of
MDMDP [2, 11, 17], until a general, computationally
efficient reduction from revenue to welfare optimiza-
tion was given in [12]. This result offers the analog of
Myerson’s result for multi-dimensional settings. Nev-
ertheless, the question still remained whether there is
an approximation preserving reduction from revenue to
(not necessarily truthful) welfare optimization. This re-
duction is precisely what this work provides, resulting
in approximately optimal solutions to MDMDP for all
settings where maximizing welfare is intractable, but
approximately optimizing welfare (without concern for
truthfulness) is tractable.

1.2.2 Black-Box Reductions in Mechanism De-
sign. Our reduction from approximate revenue opti-
mization to non-truthful welfare approximation is a
black-box reduction. Such reductions have been a re-
curring theme in mechanism design literature but only
for welfare, where approximation-preserving reductions
from truthful welfare maximization to non-truthful wel-
fare maximization have been provided [9, 3, 23, 18, 5,
22]. The techniques used here are orthogonal to the
main techniques of these works. In the realm of black-
box reductions in mechanism design, our work is best
viewed as “catching up” the field of revenue maximiza-
tion to welfare maximization, for the settings covered
by the MDMDP framework.

1.2.3 Weird Separation Oracle, Approxima-
tion, and Revenue Optimization. Grötschel et
al. [19] show that exactly optimizing any linear function
over a bounded polytope P is equivalent to having a sep-
aration oracle for P . This is known as the equivalence of
exact separation and optimization. Jansen extends this
result to accommodate approximation [24]. He shows
that given an approximation algorithm A such that for
any direction ~w, A returns an approximately extreme
point A(~w) ∈ P , where A(~w)· ~w ≥ α·max~v∈P {~w·~v}, one
can construct a strong, approximate separation oracle
which either asserts that a given point ~x ∈ P or outputs
a hyperplane that separates ~x from αP (the polytope
P shrunk by α). We show a similar but stronger result.
Under the same conditions, our weird separation oracle
either outputs a hyperplane separating ~x from a poly-
tope P1 that contains αP , or asserts that ~x ∈ P2, where

3In some of these results, bidders may also have budget con-
straints (and this does not directly fit in the MDMDP framework).

Nevertheless, budgets can be easily incorporated to the framework

without any loss, as was shown in [12].

P2 is a polytope contained in P . A precise definition
of P1 and P2 is given in Section 3.1. Moreover, for any
point ~x that the weird separation oracle asserts is in P2,
we show how to decompose it into a convex combina-
tion of points of the form A(~w). This is crucial for us,
as our goal is not just to find an approximately optimal
reduced form, but also to implement it. The technology
of [24] is not enough to accomplish this, which motivates
our stronger results.

But there is another, crucial reason that prevents
using the results of [24], and for that matter [19] (for
the case α = 1), as a black box for our purposes.
Given a computationally efficient, α-approximate social-
welfare algorithm A for feasibility constraints F , we
are interested in obtaining a separation oracle for the
polytope P = F (F ,D) of feasible interim allocation
rules of auctions that respect F when bidder types are
drawn from distribution D. To use [24] we need to use A
to come up with an α-approximate linear optimization
algorithm for P . But, in fact, we do not know how
to find such an algorithm efficiently for general F , due
to the exponentiality of the support of D (which is a
product distribution over D1, . . . ,Dm). Indeed, given ~w
we only know how to query A to obtain some π∗(~w) such
that π∗(~w) · ~w ≥ α ·max~π∈P {~w · ~π} − ε, for some small
ε > 0. This additive approximation error that enters
the approximation guarantee of our linear optimization
algorithm is not compatible with using the results of [24]
or [19] as a black box, and requires us to provide our
own separation to optimization reduction, together with
additional optimization tools.

2 Preliminaries and notation

2.1 MDMDP. Here are preliminaries and notation
regarding the MDMDP aspect of our results. We
use the same notation as [12]. Denote the number
of bidders by m, the number of items by n, and the
type space of bidder i by Ti. To ease notation, we
sometimes use B (C, D, etc.) to denote possible types
of a bidder (i.e. elements of Ti), and use ti for the
random variable representing the instantiated type of
bidder i. So when we write Pr[ti = B], we mean the
probability that bidder i’s type is B. The elements of
×iTi are called type profiles, and specify a type for every
bidder. We assume type profiles are sampled from a
known distribution D over ×iTi. We denote by Di the
marginal of this distribution on bidder i’s type, and use
D−i(B) to denote the marginal of D over the types of
all bidders except i, conditioned on ti = B. If D is
a product distribution, we will drop the parameter B
and just write D−i. We refer the reader to Appendix C
for a discussion on how an algorithm might access the
distribution D.

Let [m]× [n] denote the set of possible assignments
(i.e. the element (i, j) denotes that bidder i was awarded
item j). We call (distributions over) subsets of [m]× [n]
(randomized) allocations, and functions mapping type
profiles to (possibly randomized) allocations allocation
rules. We call an allocation combined with a price
charged to each bidder an outcome, and an allocation
rule combined with a pricing rule a (direct revelation,
or direct) mechanism. As discussed in Section 1, we
may also have a set system F on [m] × [n] (that is, a
subset of 2[m]×[n]), encoding constraints on what allo-
cations are feasible. F may be incorporating arbitrary
demand constraints imposed by each bidder, and supply
constraints imposed by the seller, and will be referred
to as our feasibility constraints. In this case, we restrict
all allocation rules to be supported on F . We always
assume that ∅ ∈ F , i.e. the auctioneer has the option
to allocate no item.

The interim allocation rule, also called reduced
form of an allocation rule, is a vector function π(·),
specifying values πij(B), for all items j, bidders i and
types B ∈ Ti. πij(B) is the probability that bidder
i receives item j when truthfully reporting type B,
where the probability is over the randomness of all
other bidders’ types (drawn from D−i(B)) and the
internal randomness of the allocation rule, assuming
that the other bidders report truthfully their types.
Sometimes, we will want to think of the reduced form
as a n

∑m
i=1 |Ti|-dimensional vector, and may write ~π

to emphasize this view. To ease notation we will also
denote by T := n

∑
i |Ti|.

Given a reduced form π, we will be interested
in whether the form is “feasible”, or can be “imple-
mented.” By this we mean designing a feasible alloca-
tion rule M (i.e. one that respects feasibility constraints
F on every type profile with probability 1 over the ran-
domness of the allocation rule) such that the probability
that bidder i receives item j when truthfully report-
ing type B is exactly πij(B), where the probability is
computed with respect to the randomness in the alloca-
tion rule and the randomness in the types of the other
bidders (drawn from D−i(B)), assuming that the other
bidders report truthfully. While viewing reduced forms
as vectors, we denote by F (F ,D) the set of feasible re-
duced forms when the feasibility constraints are F and
bidder types are sampled from D.

A bidder is additive if her value for a bundle of items
is the sum of her values for the items in that bundle. To
specify the preferences of additive bidder i, we can pro-
vide a valuation vector ~vi, with the convention that vij
represents her value for item j. Even in the presence of
arbitrary (possibly combinatorial) demand constraints,
the value of bidder i of type ~vi for a randomized al-

location that respects the bidder’s demand constraints
with probability 1, and whose expected probability of
allocating item j to the bidder is πij , is just the bid-
der’s expected value, namely

∑
j vij · πij . The utility of

bidder i for the same allocation when paying price pi
is just

∑
j vij · πij − pi. Such bidders whose value for

a distribution of allocations is their expected value for
the sampled allocation are called risk-neutral. Bidders
subtracting price from expected value are called quasi-
linear.

Throughout the paper we denote by A a (possibly
randomized, non-truthful) social welfare algorithm that
achieves an α-fraction of the optimal welfare for feasi-
bility constraints F . We denote by A({fi}i) the vir-
tual implementation of A with virtual transformations
fi (see Definition 1).

Some arguments will involve reasoning about the
bit complexity of a rational number. We say that a
rational number has bit complexity b if it can be written
with a binary numerator and denominator that each
have at most b bits. We also take the bit complexity
of a rational vector to be the total number of bits
required to describe its coordinates. Similarly, the
bit complexity of an explicit distribution supported
on rational numbers with rational probabilities is the
total number of bits required to describe the points
in the support of the distribution and the probabilities
assigned to each point in the support. For our purposes
the bidder distributions D1, . . . ,Dm are given explicitly,
while D = ×iDi is described implicitly as the product
of D1, . . . ,Dm.

Finally, for completeness, we define in Appendix B
the standard notions of Bayesian Incentive Compati-
bility (BIC) and Individual Rationality (IR) of mecha-
nisms.

2.2 Weird Separation Oracles. In our technical
sections, we will make use of “running the ellipsoid
algorithm with a weird separation oracle.” A weird
separation oracle is just an algorithm that, on input
~x, either outputs “yes,” or a hyperplane that ~x violates.
We call it “weird” because the set of points that will it
accepts is not necessarily convex, or even connected, so
it is not a priori clear what it means to run the ellipsoid
algorithm with a weird separation oracle. When we
say “run the ellipsoid algorithm with a weird separation
oracle” we mean:

1. Find a meaningful ellipsoid to start with (this
will be obvious for all weird separation oracles we
define, so we will not explicitly address this).

2. Query the weird separation oracle on the center of
the current ellipsoid. If it is accepted, output it
as a feasible point. Otherwise, update the ellipsoid

using the violated hyperplane (in the same manner
that the standard ellipsoid algorithm works).

3. Repeat step 2) for a pre-determined number of iter-
ations N (N will be chosen appropriately for each
weird separation oracle we define). If a feasible
point is not found after N iterations, output “in-
feasible.”

It is also important to note that we are not using
the ellipsoid algorithm as a means to learning whether
some non-convex set is empty. We are using properties
of the ellipsoid algorithm with carefully chosen weird
separation oracles to learn information, not necessarily
related to a feasibility question.

3 The Weird Separation Oracle (WSO)

In this section, we take a detour from mechanism design,
showing how to construct a weird separation oracle
from an algorithm that approximately optimizes linear
functions over a convex polytope. Specifically, let P be
a bounded polytope containing the origin, and let A be
any algorithm that takes as input a linear function f and
outputs a point ~x ∈ P that approximately optimizes f
(over P). We will define our weird separation oracle
using black-box access to A and prove several useful
properties that will be used in future sections. We
begin by discussing three interesting convex regions
related to P in Section 3.1. This discussion provides
insight behind why we might expect WSO to behave
reasonably. In addition, the polytopes discussed will
appear in later proofs. In Section 3.2 we define WSO
formally and prove several useful facts about executing
the ellipsoid algorithm with WSO. For this section,
we will not address running times, deferring this to
Section 5. Our basic objects for this section are
encapsulated in the following definition.

Definition 2. P is a convex d-dimensional polytope
contained in [−1, 1]d, α ≤ 1 is an absolute constant,
and A is an approximation algorithm such that for any
~w ∈ Rd, A(~w) ∈ P and A(~w) · ~w ≥ α ·max~x∈P {~x · ~w}.
(Since ~0 ∈ P , this is always non-negative.)

Notice that the restriction that P ⊆ [−1, 1]d is
without loss of generality as long as P is bounded, as in
this section we deal with multiplicative approximations.

3.1 Three Convex Regions. Consider the follow-
ing convex regions, where Conv(S) denotes the convex
hull of S.

• P0 = {~π | ~πα ∈ P}.
• P1 = {~π | ~π · ~w ≤ A(~w) · ~w, ∀~w ∈ [−1, 1]d}.
• P2 = Conv({A(~w), ∀~w ∈ [−1, 1]d}).

It is not hard to see that, if A always outputs the
exact optimum (i.e. α = 1), then all three regions are
the same. It is this fact that enables the equivalence of
separation and optimization [19]. It is not obvious, but
perhaps not difficult to see also that if A is a maximal-
in-range algorithm,4 then P1 = P2. It turns out that
in this case, WSO (as defined in Section 3.2) actually
defines a polytope. We will not prove this as it is not
relevant to our results, but it is worth observing where
the complexity comes from. We conclude this section
with a quick lemma about these regions, whose proof
appears in Appendix E.1.

Lemma 3.1. P0 ⊆ P1 ⊆ P2.

3.2 WSO. Before defining WSO, let’s state the
properties we want it to have. First, for any challenge
~π, WSO should either assert ~π ∈ P2 or output a hy-
perplane separating ~π from P1. Second, for any ~π such
that WSO(~π) = “yes′′, we should be able to decom-
pose ~π into a convex combination of points of the form
A(~w). Why do we want these properties? Our goal in
later sections is to write a LP that will use WSO for
F (F ,D) to find a reduced form auction whose revenue
is at least αOPT. Afterwards, we have to find an ac-
tual mechanism that implements this reduced form. So
WSO needs to guarantee two things: First, running a
revenue maximizing LP with WSO must terminate in
a reduced form with good revenue. Second, we must be
able to implement any reduced form that WSO deems
feasible. Both claims will be proved in Section 4 using
lemmas proved here. That using WSO achieves good
revenue begins with Fact 3.1. That we can implement
any reduced form deemed feasible by WSO begins with
Lemma 3.2. We define WSO in Figure 1.

Let’s now understand what exactly WSO is trying
to do. What WSO really wants is to act as a separation
oracle for P2. As P2 is a polytope, if ~π /∈ P2, then there
is some weight vector ~w such that ~π·~w > max~x∈P2{~x·~w}.
WSO wants to find such a weight vector or prove that
none exists (and therefore ~π ∈ P2). It is shown in [19]
that if we replace A(~w) with argmax~x∈P2

{~x · ~w} inside
ŴSO, then WSO would be a separation oracle for P2.
Unfortunately, unless A is maximal-in-range, we cannot
find argmax~x∈P2

{~x · ~w} with only black-box access to
A.5 So WSO makes its best guess that A(~w) is the
maximizer it is looking for. Of course, this is not
necessarily the case, and this is why the set of points
accepted by WSO is not necessarily a convex region.

4Let S denote the set of vectors that are ever output by

A on any input. Then A is maximal-in-range if, for all ~w,
A(~w) ∈ argmax~x∈S{A(~x) · ~w}.

5If A is maximal-in-range, then this is exactly A(~w).

WSO(~π) =
• “Yes” if the ellipsoid algorithm with N iter-

ationsa outputs “infeasible” on the following
problem:

variables: ~w, t;

constraints:

– ~w ∈ [−1, 1]d;
– t− ~π · ~w ≤ −δ;b
– ŴSO(~w, t) =

∗ “yes” if t ≥ A(~w) · ~w;c
∗ the violated hyperplane t′ ≥ A(~w) · ~w′

otherwise.

• If a feasible point (t∗, ~w∗) is found, output the
violated hyperplane ~w∗ · ~π′ ≤ t∗.

aThe appropriate choice of N for our use of WSO is
provided in Corollary 5.1 of Section 5. The only place that

requires an appropriate choice of N is the proof of Lemma 3.2.
bThe appropriate choice of δ for our use of WSO is

provided in Lemma 5.1 of Section 5. The only place that

requires an appropriate choice of δ is the proof of Lemma 3.2.
cNotice that the set {(~w, t)|ŴSO(~w, t) = “Yes”} is not

necessarily convex or even connected.

Figure 1: A “weird” separation oracle.

Now, we need to prove some facts about WSO despite
this. All proofs can be found in Appendix E.2.

Fact 3.1. Consider an execution of the ellipsoid al-
gorithm using WSO, possibly together with additional
variables and constraints. Let Q be the polytope defined
by the halfspaces output by WSO during its execution.
Then during the entire execution, P1 ⊆ Q.

Fact 3.2. If ~π ∈ P1, then WSO(~π) = “yes.”

Corollary 3.1. When WSO rejects ~π, it acts as a
valid separation oracle for P1, or any polytope contained
in P1 (i.e. the hyerplane output truly separates ~π from
P1). In other words, the only difference between WSO
and a valid separation oracle for P1 is that WSO may
accept points outside of P1.

Lemma 3.2. Let WSO(~π) = “yes” and let S denote the
set of weights ~w such that WSO queried ŴSO(~w, t) for
some t during its execution. Then ~π ∈ Conv({A(~w)|~w ∈
S}).

4 Approximately Maximizing Revenue using
WSO

In this section, we show that running the revenue maxi-
mizing LP of [12] using the weird separation oracle of the

previous section obtains good revenue, and outputs a
reduced form that can be implemented with only black-
box access to a social welfare algorithm A.

In brush strokes, the approach of [12] is the fol-
lowing. They start by creating a proxy distribution D′
that is a (correlated across bidders) uniform distribu-
tion over poly(n, T, 1/ε) type profiles. Roughly, D′ is
obtained by sampling the same number of profiles from
D, and forming the uniform distribution over them, and
its advantage over D is that its support is polynomial.
With D′ at hand, it shown that the LP of Figure 2 in
Appendix F outputs a reduced form whose revenue is
at least OPT − ε. This is proved by showing that the
polytopes F (F ,D) and F (F ,D′) are “ε-close” in some
meaningful way. To show how we adapt this approach
to our setting, we need a definition.

Definition 3. Let ~w ∈ RT , and D̂ be a (possibly
correlated) distribution over bidder type profiles. Define
fi : Ti → Rn so that fij(B) = wij(B)

Pr[ti=B] . Then AD̂(~w)
denotes the allocation rule A({fi}i), RAD̂(~w) denotes the
reduced form of AD̂(~w), and WA

D̂ (~w) := RAD̂(~w) · ~w is
exactly the expected virtual welfare obtained by algorithm
A under the virtual transformations {fi}i. For the
purpose of the dot product, recall that we may view
reduced forms as T -dimensional vectors (Section 2).

Given this definition, and for the same D′ used
in [12], we let P = F (F ,D′), and A(~w) be the algorithm
that on input ~w ∈ RT returns RAD′(~w). Because taking
a dot product with ~w is exactly computing expected
virtual welfare (as in Definition 3), it is clear that A is
an α-factor approximation algorithm for optimizing any
linear function ~w · ~x over ~x ∈ P . Using A, we define P0,
P1 and P2 as in Section 3.

We continue to bound the revenue of the reduced
form output by our LP of Figure 2. Denote by Rev(F)
the revenue obtained by the LP of Figure 2, and by
Rev(Pi) the revenue obtained by replacing P with Pi.
The proof of Lemma 4.1, as well as all other results of
this section are in Appendix F.

Lemma 4.1. Rev(P0) ≥ αRev(F) ≥ α(OPT− ε).

Now, denote by Rev(WSO) the revenue obtained
by replacing P with WSO in Figure 2. By “replace P
with WSO,” we mean run the optimization version of
the ellipsoid algorithm that does a binary search on pos-
sible values for the objective function. On each subprob-
lem (i.e. for a guess x of the revenue), run the ellipsoid
algorithm using a new weird separation oracle WSO′,
which does the following. For challenge (~π, ~p), first
check if it satisfies the IR and BIC constraints in Fig-
ure 2 and the revenue constraint

∑m
i=1

∑
~vi∈Ti

Pr[ti =

~vi] · pi(~vi) ≥ x, for the guessed value x of revenue. If
not, output the hyperplane it violates. If yes, output
WSO(~π). The ellipsoid algorithm will use exactly the
same parameters as if WSO was a separation or-
acle for P0. In particular, we can calculate the number
of iterations and the precision that Ellipsoid would use
if it truly had access to a separation oracle for P0,6 and
use the same number of iterations here. Moreover, we
use here the same criterion for deeming the feasible re-
gion lower-dimensional that the Ellipsoid with separa-
tion oracle for P0 would use. Similarly, the bit complex-
ity over values of x that the binary search will search
over is taken to be the same as if binary search and the
ellipsoid algorithm were used to solve the LP of Figure 2
with P0 in place of F (F ,D′).

We now want to use Lemma 4.1 to lower bound
Rev(WSO). This is almost a direct corollary of
Fact 3.1. The only remaining step is understanding the
ellipsoid algorithm.

Proposition 4.1. If x ≤ Rev(P0), then the ellipsoid
algorithm using WSO′ (with the same parameters as if
WSO was a separation oracle for P0) will always find a
feasible point.

Corollary 4.1. Rev(WSO) ≥ Rev(P0).

Corollary 4.2. Rev(WSO) ≥ α(OPT− ε).

Finally, we need to argue that we can implement
any reduced form output by the LP with WSO, as
otherwise the reduced form is useless. This is a direct
consequence of Lemma 3.2:

Corollary 4.3. Let ~π∗ denote the reduced form out-
put by the LP of Figure 2 using WSO instead of
F (F ,D′), and let S be the set of weights ~w that are
queried to ŴSO during the execution. Then ~π∗ can
be implemented (for bidders sampled from D′) as a dis-
tribution over virtual implementations of A using only
virtual transformations corresponding to weights in S.

At this point, we have shown that the reduced
form ~π∗ and pricing rule p∗ computed by the LP of
Figure 2 after replacing F (F ,D′) with WSO achieves
good revenue when bidders are sampled from D, and
define a BIC mechanism when bidders are sampled from
D′. We have also shown that we can implement ~π∗ as
a distribution over virtual implementations of A using
only weights that were queried during the execution of
the LP, albeit for bidders are sampled from D′.

6These parameters were computed in [12] except for F (F ,D′)
rather than P0. As the latter is just the former scaled by α it

is easy to modify these parameters to accommodate α. This is
addressed in Lemma 5.2 in Section 5.

The remaining step for correctness (we still have
not addressed running time) is to show that, with
high probability, the same distribution over virtual
implementations of A implements some reduced form
~π′ when the bidders are sampled from D that satisfies
|~π∗ − ~π′|1 ≤ ε. Once we show this, we will have proved
that our distribution over virtual implementations of A
and our pricing rule p∗ define an ε-BIC, ε-IR mechanism
when bidders are sampled from D with good revenue.
We will argue this informally in Appendix F.1 and refer
the reader to [12] for a formal proof of the same fact
when using F (F ,D′) rather than WSO in the LP of
Figure 2 as the proof is nearly identical. In addition,
we can give every bidder type an ε rebate in order to
get an ε-BIC, IR mechanism for bidders sampled from
D for an additional hit of mε in revenue. (Recall that
the runtime we are shooting for is polynomial in 1/ε,
so ε can be made small enough to cancel the additional
factor of m.) With this discussion, we have shown that
our algorithm is correct: we have implemented some
ε-BIC, IR mechanism (~π′, ~p∗ − ε) whose revenue is at
least α(OPT − ε). We show that our approach runs in
polynomial time in Section 5.

5 Runtime

Until now, we have only established that our algorithms
are correct, up to maybe choosing the right parameters
in WSO, which was deferred to this section. Here, we
set these parameters appropriately and analyze the
running times of all our algorithms. In particular, we
show that all reduced forms required in Section 4 can
be computed in polynomial time, and that both WSO
from Section 3 and our revenue maximizing LP from
Section 4 run in polynomial time.

Analyzing WSO from Section 3. We start with
the appropriate choice of δ. The proof of the following
lemma is in Appendix G.1.

Lemma 5.1. Let S be any subset of weight vectors in
[−1, 1]d, b be the bit complexity of ~π, and ` be an upper
bound on the bit complexity of A(~w) for all ~w ∈ [−1, 1]d.
Then if ~π /∈ Conv({A(~w)|~w ∈ S}), there exists a weight
vector ~w∗ such that ~π · ~w∗ ≥ max~w∈S{A(~w) · ~w∗}+ 4δ,
where δ = 2−poly(d,`,b) (does not depend on S).

The requirement that δ is chosen appropriately only
appears in the proof of Lemma 3.2. As Lemma 5.1
describes an appropriate choice of δ for the proof to
be correct, we take δ = 2−poly(d,`,b) in the definition of
WSO.

Next we address the appropriate choice of N for
the number of iterations used in WSO. This is stated
in Corollary 5.1, and proved in Appendix G.1.

Corollary 5.1. There exists some N = poly(d, `, b)
such that, if WSO has not found a feasible point after
N iterations of the ellipsoid algorithm, the following
polytope (P (S)) is empty:

t− ~π · ~w ≤ −δ;

t ≥ A(~w′) · ~w, ∀~w′ ∈ S;

~w ∈ [−1, 1]d;

where S is the set of weights ~w′ such that WSO queried
ŴSO on (t, ~w′) for some t during its execution, b is
the bit complexity of ~π, ` is an upper bound on the bit
complexity of A(~w) for all ~w ∈ [−1, 1]d, and δ is chosen
as in Lemma 5.1.

Note that Lemma 5.1 and Corollary 5.1 complete
the description of WSO, and establish the truth of
Lemma 3.2.

It remains to bound the running time of WSO.
Let rtA(x) be the running time of algorithm A on
input whose bit complexity is x. With Lemma 5.1
and Corollary 5.1, we can bound the running time of
WSO. This is stated below as Corollary 5.2 and proved
in Appendix G.1.

Corollary 5.2. Let b denote the bit complexity of ~π
and ` be an upper bound of the bit complexity of A(~w)
for all ~w ∈ [−1, 1]d. Then on input ~π, WSO terminates
in time poly(d, `, b, rtA(poly(d, `, b))).

Computing Reduced Forms. In Section 4 we
need to use a possibly randomized social-welfare algo-
rithm A (to which we have black-box access) to obtain
an α-approximation algorithm A for optimizing any lin-
ear function ~w · ~x over ~x ∈ P = F (F ,D′), where D′ is
a (correlated across bidders) uniform distribution over
poly(n, T, 1/ε) type profiles. We need to argue that for
a given input ~w ∈ RT we can compute A(~w) ≡ RAD′(~w)
in time polynomial in the description of ~w and the de-
scription of the distribution D′. If A is randomized we
cannot do this exactly, but we do get with high probabil-
ity a good enough approximation for our purposes. We
explain how to do this in Appendix G.2. The outcome
is an algorithm A, which has the following properties
with probability at least 1−η, and for arbitrary choices
of η ∈ (0, 1) and γ ∈ (0, α):
• for all ~w for which our algorithm from Section 4

may possibly query A, A approximately optimizes
the linear objective ~w·~x over ~x ∈ F (F ,D′) to within
a factor of (α− γ);
• the bit complexity of A(~w) is always polynomial

in the dimension T and the logarithm of the size,
poly(n, T, 1/ε), of the support of D′;

• on input ~w of bit complexity y, the running time of
A is

rtA(y) = poly(n, T, ˆ̀, 1/ε, log 1/η, 1/γ, y)

· rtA(poly(n, T, ˆ̀, log 1/ε, y)),

where rtA(·) represents the running time of A and ˆ̀
the bit complexity of the coordinates of the points
in ×iTi.

Note that replacing α with α − γ in Section 4 does
not affect our guarantees, except for a loss of a small
amount in revenue and truthfulness, which can be
made arbitrarily small with γ.

Analyzing the Revenue Optimizing LP. First
we show that the WSO used in Section 4 as a proxy
for a separation oracle for F (F ,D′) runs in polynomial
time. Recall that the dimension is d = T , the bit
complexity of A(~w) for any ~w can be bounded by
` = poly(n, T, log 1/ε), and that γ and η are constants
used in the definition of A. Hence, we immediately get
the following corollary of Corollary 5.2.

Corollary 5.3. Let b denote the bit complexity of ~π.
Then on input ~π, WSO terminates in time

poly(b, n, T, ˆ̀, 1/ε, log 1/η, 1/γ)

· rtA(poly(n, T, ˆ̀, log 1/ε, b)),

where ˆ̀ is an upper bound on the bit complexity of the
coordinates of the points in ×iTi.

Now that we have shown that WSO runs in polynomial
time, we need to show that our revenue maximizing
LP does as well. The proof of the following is in
Appendix G.3.

Lemma 5.2. Let ˆ̀ denote an upper bound on the bit
complexity of α, vij(B) and Pr[ti = B] for all i, j, B.
Then the revenue maximizing LP (if we replace P with
WSO)7 terminates in time

poly(n, T, ˆ̀, 1/ε, log 1/η, 1/γ)

· rtA(poly(n, T, ˆ̀, log 1/ε)).

With this lemma we complete our proof that our algo-
rithm from Section 4 is both correct and computation-
ally efficient.

7See what we mean by “replacing P with WSO” in Section 4.

6 Formal Theorem Statements

In this section we provide our main theorem, formalizing
Informal Theorem 1. In Appendix A, we also provide
two extensions of our theorem to item-symmetric set-
tings using the techniques of [17]. These extensions are
Theorems A.1 and A.2 of Appendix A. In all cases,
the allocation rule of the mechanism output by our al-
gorithm is a distribution over virtual implementations
of the given social-welfare algorithm A. Moreover, the
mechanisms are ε-BIC and not truly-BIC, as we only
know how to implement the target reduced forms ex-
actly when consumers are sampled from D′ (see discus-
sion in Section 4). Theorems 6.1, A.1 and A.2 follow
directly from Sections 3 through 5 in the same way that
their corresponding theorems (Theorems 6 through 8) in
Section 6 of [12] (arXiv version) follow, after replacing
the separation oracle for F (F ,D′) with WSO in the LP
of Figure 2. In all theorem statements, rtA(x) denotes
the runtime of algorithm A on inputs of bit complexity
x.

Theorem 6.1. For all ε, η > 0, all D of fi-
nite support in [0, 1]nm, and all F , given black-
box access to a (non-truthful) α-approximation al-
gorithm, A, for finding the welfare-maximizing al-
location in F , there is a polynomial-time random-
ized approximation algorithm for MDMDP with the
following properties: the algorithm obtains expected
revenue α(OPT − ε), with probability at least 1 −
η, in time polynomial in `, n, T, 1/ε, log(1/η) and
rtA(poly(`, n, T, log 1/ε, log log(1/η))), where ` is an up-
per bound on the bit complexity of the coordinates of
the points in the support of D, as well as of the prob-
abilities assigned by D1, . . . ,Dm to the points in their
support. The output mechanism is ε-BIC, and can be
implemented in the same running time.

We remark that we can easily modify Theorem 6.1
and its extensions (Theorems A.1 and A.2) to accommo-
date bidders with hard budget constraints. We simply
add into the revenue-maximizing LP constraints of the
form pi(~vi) ≤ Bi, where Bi is bidder i’s budget. It is
easy to see that this approach works; this is addressed
formally in [11, 12, 17].

References

[1] Saeed Alaei. Bayesian Combinatorial Auctions: Ex-
panding Single Buyer Mechanisms to Many Buyers. In
the 52nd Annual IEEE Symposium on Foundations of
Computer Science (FOCS), 2011.

[2] Saeed Alaei, Hu Fu, Nima Haghpanah, Jason Hartline,
and Azarakhsh Malekian. Bayesian Optimal Auctions

via Multi- to Single-agent Reduction. In the 13th ACM
Conference on Electronic Commerce (EC), 2012.

[3] Moshe Babaioff, Ron Lavi, and Elan Pavlov. Single-
value combinatorial auctions and implementation in
undominated strategies. In the 17th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA),
2006.

[4] Ashwinkumar Badanidiyuru, Robert Kleinberg, and
Yaron Singer. Learning on a budget: posted price
mechanisms for online procurement. In the 13th ACM
Conference on Electronic Commerce (EC), 2012.

[5] Xiaohui Bei and Zhiyi Huang. Bayesian Incentive
Compatibility via Fractional Assignments. In the
22nd Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), 2011.

[6] Sayan Bhattacharya, Gagan Goel, Sreenivas Gollapudi,
and Kamesh Munagala. Budget Constrained Auctions
with Heterogeneous Items. In the 42nd ACM Sympo-
sium on Theory of Computing (STOC), 2010.

[7] Kim C. Border. Implementation of reduced form
auctions: A geometric approach. Econometrica,
59(4):1175–1187, 1991.

[8] Kim C. Border. Reduced Form Auctions Revisited.
Economic Theory, 31:167–181, 2007.

[9] Patrick Briest, Piotr Krysta, and Berthold Vöcking.
Approximation techniques for utilitarian mechanism
design. In the 37th Annual ACM Symposium on
Theory of Computing (STOC), 2005.

[10] Yang Cai and Constantinos Daskalakis. Extreme-Value
Theorems for Optimal Multidimensional Pricing. In
the 52nd Annual IEEE Symposium on Foundations of
Computer Science (FOCS), 2011.

[11] Yang Cai, Constantinos Daskalakis, and S. Matthew
Weinberg. An Algorithmic Characterization of Multi-
Dimensional Mechanisms. In the 44th Annual ACM
Symposium on Theory of Computing (STOC), 2012.

[12] Yang Cai, Constantinos Daskalakis, and S. Matthew
Weinberg. Optimal Multi-Dimensional Mechanism
Design: Reducing Revenue to Welfare Maximiza-
tion. In the 53rd Annual IEEE Symposium on
Foundations of Computer Science (FOCS), 2012.
http://arxiv.org/abs/1207.5518.

[13] Yang Cai and Zhiyi Huang. Simple and Nearly Opti-
mal Multi-Item Auctions. In the 24th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA),
2013.

[14] Shuchi Chawla, Jason D. Hartline, and Robert D.
Kleinberg. Algorithmic Pricing via Virtual Valuations.
In the 8th ACM Conference on Electronic Commerce
(EC), 2007.

[15] Shuchi Chawla, Jason D. Hartline, David L. Malec, and
Balasubramanian Sivan. Multi-Parameter Mechanism
Design and Sequential Posted Pricing. In the 42nd
ACM Symposium on Theory of Computing (STOC),
2010.

[16] Yeon-Koo Che, Jinwoo Kim, and Konrad Mierendorff.
Generalized Reduced-Form Auctions: A Network-Flow
Approach. University of Zürich, ECON-Working Pa-

pers, 2011.
[17] Constantinos Daskalakis and S. Matthew Weinberg.

Symmetries and Optimal Multi-Dimensional Mecha-
nism Design. In the 13th ACM Conference on Elec-
tronic Commerce (EC), 2012.

[18] Shaddin Dughmi and Tim Roughgarden. Black-box
randomized reductions in algorithmic mechanism de-
sign. In the 51st Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS), 2010.

[19] Martin Grötschel, László Lovász, and Alexander Schri-
jver. The ellipsoid method and its consequences in
combinatorial optimization. Combinatorica, 1(2):169–
197, 1981.

[20] Martin Grötschel, Lászlo Lovász, and Alexander Schri-
jver. Geometric Algorithms and Combinatorial Opti-
mization, volume 2 of Algorithms and Combinatorics.
Springer, 1988.

[21] Sergiu Hart and Noam Nisan. Approximate Revenue
Maximization with Multiple Items. In the 13th ACM
Conference on Electronic Commerce (EC), 2012.

[22] Jason D. Hartline, Robert Kleinberg, and Azarakhsh
Malekian. Bayesian Incentive Compatibility via
Matchings. In the 22nd Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), 2011.

[23] Jason D. Hartline and Brendan Lucier. Bayesian
Algorithmic Mechanism Design. In the 42nd ACM
Symposium on Theory of Computing (STOC), 2010.

[24] Klaus Jansen. Approximate Strong Separation with
Application in Fractional Graph Coloring and Pre-
emptive Scheduling. In the 19th Annual Symposium
on Theoretical Aspects of Computer Science (STACS),
2002.

[25] Robert Kleinberg and S. Matthew Weinberg. Matroid
prophet inequalities. In the 44th Annual ACM Sympo-
sium on Theory of Computing (STOC), 2012.

[26] A. M. Manelli and D. R. Vincent. Multidimensional
Mechanism Design: Revenue Maximization and the
Multiple-Good Monopoly. Journal of Economic The-
ory, 137(1):153–185, 2007.

[27] Roger B. Myerson. Optimal Auction Design. Mathe-
matics of Operations Research, 6(1):58–73, 1981.

[28] Tim Roughgarden, Inbal Talgam-Cohen, and Qiqi Yan.
Supply-limiting mechanisms. In 13th ACM Conference
on Electronic Commerce (EC), 2012.

A Extensions of Theorem 6.1

This section contains extensions of Theorem 6.1 enabled
by the techniques of [17].

Theorem A.1. For all ε, η > 0, item-symmetric
D of finite support in [0, 1]nm, item-symmetric F ,8

and given black-box access to a (non-truthful) α-
approximation algorithm, A, for finding the welfare-
maximizing allocation in F , there is a polynomial-

8Distributions and feasibility constraints are item-symmetric
if they are invariant under every item permutation.

time randomized approximation algorithm for MDMDP
with the following properties: the algorithm obtains ex-
pected revenue α(OPT − ε), with probability at least
1 − η, in time polynomial in `, m,nc, 1/ε, log(1/η)
and rtA(poly(nc,m, log 1/ε, log log(1/η), `)), where c =
maxi,j |Dij |, and |Dij | is the cardinality of the support
of the marginal of D on bidder i and item j, and ` is
as in the statement of Theorem 6.1. The output mech-
anism is ε-BIC, and can be implemented in the same
running time.

Theorem A.2. For all ε, η, δ > 0, item-symmetric D
supported on [0, 1]nm, item-symmetric F , and given
black-box access to a (non-truthful) α-approximation
algorithm, A, for finding the welfare-maximizing al-
location in F , there is a polynomial-time random-
ized approximation algorithm for MDMDP with the
following properties: If C is the maximum num-
ber of items that are allowed to be allocated simul-
taneously by F , the algorithm obtains expected rev-
enue α(OPT − (

√
ε+
√
δ)C), with probability 1 −

η, in time polynomial in m,n1/δ, 1/ε, log(1/η), and
rtA(poly(n1/δm, log 1/ε, log log 1/η)). In particular, the
runtime does not depend on |D| at all). The output
mechanism is ε-BIC, and can be implemented in the
same running time.

Remark 1. The assumption that D is supported in
[0, 1]mn as opposed to some other bounded set is w.l.o.g.,
as we could just scale the values down by a multiplicative
vmax. This would cause the additive approximation
error to be εvmax. In addition, the point of the additive
error in the revenue of Theorem A.2 is not to set ε, δ so
small that they cancel out the factor of C, but rather to
accept the factor of C as lost revenue. For “reasonable”
distributions, the optimal revenue scales with C, so it is
natural to expect that the additive loss should scale with
C as well.

B Appendix to Preliminaries

Here we provide two missing details from the Prelimi-
naries: a formal definition of Bayesian Incentive Com-
patibility (BIC) and Individual Rationality (IR) for
(possibly correlated) bidders.

Definition 4. [17](BIC/ε-BIC Mechanism) A direct
mechanism M is called ε-BIC iff the following inequality
holds for all bidders i and types τi, τ ′i ∈ Ti:

Et−i∼D−i(τi) [Ui(τi,Mi(τi ; t−i))]

≥ Et−i∼D−i(τi) [Ui(τi,Mi(τ ′i ; t−i))]

− εvmax ·max

1,
∑
j

πMij (τ ′i , τi)

 ,

where:
• Ui(B,Mi(C ; t−i)) denotes the utility of bidder i

for the outcome of mechanism M if his true type is
B, he reports C to the mechanism, and the other
bidders report t−i;

• vmax is the maximum possible value of any bidder
for any item in the support of the value distribution;
and

• πMij (A,B) is the probability that item j is allocated
to bidder i by mechanism M if bidder i reports
type A to the mechanism, in expectation over the
types of the other bidders, assuming they are drawn
from D−i(B) and report truthfully, as well as the
mechanism’s internal randomness.

In other words, M is ε-BIC iff when a bidder i lies by
reporting τ ′i instead of his true type τi, she does not
expect to gain more than εvmax times the maximum of 1
and the expected number of items that she would receive
by reporting τ ′i instead. A mechanism is called BIC iff
it is 0-BIC.9

Definition 5. (IR/ε-IR) A direct mechanism M is
called (interim) ε-IR iff the following inequality holds
for all bidders i and types τi ∈ Ti:

Et−i∼D−i(τi) [Ui(τi,Mi(τi ; t−i))] ≥ −ε,

where Ui(B,Mi(C ; t−i)) is as in Definition 4. A
mechanism is said to be IR iff it is 0-IR.

C Input Model

We discuss two models for accessing a value distribution
D over some known ×iTi, as well as what modifications
are necessary, if any, to our algorithms to work with
each model:
• Exact Access: We are given access to a sampling

oracle as well as an oracle that exactly integrates
the pdf of the distribution over a specified region.
• Sample-Only Access: We are given access to a

sampling oracle and nothing else.
The presentation of the paper focuses on the first model.
In this case, we can exactly evaluate the probabilities of
events without any special care. If we have sample-
only access to the distribution, some care is required.
Contained in Appendix A of [17] is a sketch of the
modifications necessary for all our results to apply with

9Strictly speaking, the definition of BIC in [17] is the same

but without taking a max with 1. We are still correct in applying
their results with this definition because any mechanism that is
considered ε-BIC by [17] is certainly considered ε-BIC by this

definition. We basically call a mechanism ε-BIC if either the
definition in [5, 22, 23] (εvmax) or [17] (εvmax

P
j πij(τ

′
i)) holds.

sample-only access. The sketch is given for the item-
symmetric case, but the same approach will work in
the asymmetric case. Simply put, repeated sampling
will yield some distribution D′ that is very close to
D with high probability. If the distributions are close
enough, then a solution to the MDMDP for D′ is an
approximate solution for D. The error in approximating
D is absorbed into the additive error in both revenue
and truthfulness.

D Additive Dimension

Here we discuss the notion of additive dimension and
show some interesting examples of settings with low
additive dimension. Consider two settings, both with
the same possible type-space for each bidder, T̂i (i.e. T̂i
is the entire set of types that the settings model, Ti ⊆ T̂i
is the set of types that will ever be realized for the
given distribution. As a concrete example, T̂i = Rn for
additive settings.): the first is the “real” setting, with
the actual items and actual bidder valuations. The real
setting has n items, m bidders, feasibility constraints
F , and valuation functions Vi,B(S) : F → R for all
i, B ∈ T̂i that map S ∈ F to a value of bidder i of
type B for the allocation of items S. The second is the
“meta” setting, with meta-items. The meta-setting has
d meta-items, m bidders, feasibility constraints F ′, and
valuation functions V ′i,B(S′) : F ′ → R for all i, B ∈ T̂i
that map S′ ∈ F ′ to the value of bidder i of type B for
the allocation of meta-items S′. We now define what it
means for a meta-setting to faithfully represent the real
setting.

Definition 6. A meta-setting is equivalent to a real
setting if there is a mapping from F to F ′, g, and an-
other from F ′ to F , h, such that Vi,B(S) = V ′i,B(g(S)),
and V ′i,B(S′) = Vi,B(h(S′)) for all i, B ∈ T̂i, S ∈ F , S′ ∈
F ′.

When two settings are equivalent, there is a natural
mapping between mechanisms in each setting. Specifi-
cally, let M be any mechanism in the real setting. Then
in the meta-setting, have M ′ run M , and if M selects
allocation S of items, M ′ selects the allocation g(S) of
meta-items and charges exactly the same prices. It is
clear that when bidders are sampled from the same dis-
tribution, M is BIC/IC/IR if and only if M ′ is as well.
It is also clear that M and M ′ achieve the same ex-
pected revenue. The mapping in the other direction is
also obvious, just use h. We now define the additive
dimension of an auction setting.

Definition 7. The additive dimension of an auction
setting is the minimum d such that there is an equivalent
(by Definition 6) meta-setting with additive bidders and

d meta-items (i.e. due to the feasibility constraints, all
bidders valuations can be models as additive over their
values for each meta-item).

In Section 1, we observed that all of our results
also apply to settings with additive dimension d after
multiplying the runtimes by a poly(d) factor. This
is because a black-box algorithm for approximately
maximizing welfare in the real setting is also a black-box
algorithm for approximately maximizing welfare in the
meta-setting (just apply g to whatever the algorithm
outputs). So if we have black-box access to a social
welfare algorithm for the real setting, we have black-box
access to a social welfare algorithm for the meta-setting.
As the meta-setting is additve, all of our techniques
apply. We then just apply h at the end and obtain
a feasible allocation in the real setting.

We stress that important properties of the setting
are not necessarily preserved under the transformation
from the real to meta setting. Importantly, when the
real setting is downwards closed, this is not necessarily
true for the meta-setting. The user of this transforma-
tion should be careful of issues arising due to negative
weights if the desired meta-setting is not downwards-
closed.

Respecting the required care, we argued in Section 1
that single-minded combinatorial auctions had additive
dimension 1 (and the meta-setting is still downwards-
closed, and therefore can accommodate negative val-
ues). Now we will show that two other natural mod-
els have low additive dimension, and that their corre-
sponding meta-settings are downwards-closed. The dis-
cussions below are not intended to be formal proofs.
The point of this discussion is to show that interest-
ing non-additive settings have low additive dimension
(via meta-settings where approximation algorithms can
accommodate negative values) and can be solved using
our techniques.

D.1 d-minded Combinatorial Auctions A d-
minded combinatorial auction setting is where each bid-
der i has at most d (public) subsets of items that they
are interested in, and a (private) value vij for receiving
the jth subset in their list, Sij , and value 0 for receiving
any other subset. Such bidders are clearly not addi-
tive over their value for the items, but have additive
dimension d. Specifically, make d meta-items. Define
g(S) so that if bidder i receives subset Sij in S, they
receive item j in g(S). Define h(S′) so that if bid-
der i receives item j in S′, they receive the subset of
items Sij in h(S′). Also define F ′ so that an allocation
is feasible iff it assigns each bidder at most 1 meta-
item, and when bidder i is assigned meta-item ji, the
sets {Siji |i ∈ [m]} are pairwise disjoint. Finally, set

V ′i,B(j) = Vi,B(Sij). Then it is clear that these two set-
tings are equivalent. It is also clear that bidders are ad-
ditive in the meta-setting as they are unit-demand (i.e.
they can never feasibly receive more than one item).
Therefore, d-minded Combinatorial Auctions have ad-
ditive dimension d, and any (not necessarily truthful)
α-approximation algorithm for maximizing welfare im-
plies a (truthful) (α − ε)-approximation algorithm for
maximizing revenue whose runtime is poly(d, T, 1/ε, b).
It is also clear that the meta-setting is downwards-
closed, and therefore all (not necessarily truthful) α-
approximation algorithms for maximizing welfare can
accommodate negative values.

D.2 Combinatorial Auctions with Symmet-
ric Bidders. A bidder is symmetric if their value
Vi,B(S) = Vi,B(U) whenever |S| = |U | (i.e. bidders
only care about the cardinality of sets they receive).
Such bidders (with the extra constraint of submodular-
ity) are studied in [4]. Such bidders are again clearly
not additive over their values for the items, but have
additive dimension n. Specifically, make n meta-items.
Define g(S) to assign bidder i item j if they received
exactly j items in S. Define h(S′) to assign bidder i
exactly j items if they were awarded item j in S′ (it
doesn’t matter in what order the items are handed out,
lexicographically works). Also define F ′ so that an al-
location is feasible iff it assigns each bidder at most 1
meta-item and when bidder i is assigned meta-item ji,
we have

∑
i ji ≤ n. Finally, set V ′i,B(j) = Vi,B(S) where

S is any set with cardinality j. It is again clear that the
two settings are equivalent. It is also clear that the
meta-setting is unit-demand, so bidders are again addi-
tive. Therefore, combinatorial auctions with symmetric
bidders have additive dimension n, and any (not neces-
sarily truthful) α-approximation algorithm for maximiz-
ing welfare implies a (truthful) (α − ε)-approximation
algorithm for maximizing revenue whose runtime is
poly(n, T, 1/ε, b). It is also clear that the meta-setting
is downwards-closed, and therefore all (not necessarily
truthful) α-approximation algorithms for maximizing
welfare can accomodate negative values.

In addition, we note here that it is possible to ex-
actly optimize welfare in time poly(n,m) for symmetric
bidders (even with negative, not necessarily submodu-
lar values) using a simple dynamic program. We do not
describe the algorithm as that is not the focus of this
work. We make this note to support that this is another
interesting non-additive setting that can be solved using
our techniques.

E Omitted Proofs from Section 3

E.1 Omitted Proofs from Section 3.1. Proof of
Lemma 3.1: If ~π ∈ P0, then ~π · ~w ≤ αmaxx∈P {x ·
~w} ≤ A(~w) · ~w for all ~w ∈ [−1, 1]d, since A is an α-
approximation algorithm. Therefore, ~π ∈ P1 as well.
So P0 ⊆ P1.

Recall now that a point ~π is in the convex hull of
S if and only if for all ~w ∈ [−1, 1]d, there exists a point
~x(~w) ∈ S such that ~π · ~w ≤ ~x(~w) · ~w. If ~π ∈ P1, then
we may simply let ~x(~w) = A(~w) to bear witness that
~π ∈ P2(A,D). 2

E.2 Omitted Proofs from Section 3.2. Proof of
Fact 3.1: Any hyperplane output by WSO is of the
form ~w∗ ·~π ≤ t∗. Because ~w∗, t∗ was accepted by ŴSO,
we must have t∗ ≥ A(~w∗) · ~w∗. As every point in P1

satisfies ~π · ~w∗ ≤ A(~w∗) · ~w∗ ≤ t∗, we get that P1 ⊆ Q.
2

Proof of Fact 3.2: In order for WSO to reject ~π, its
internal ellipsoid algorithm that uses ŴSO must find
some feasible point (t∗, ~w∗). As ŴSO accepts (t∗, ~w∗),
such a point clearly satisfies the following two equations:

t∗ < ~π · ~w∗

t∗ ≥ A(~w∗) · ~w∗

Together, this implies that ~π · ~w∗ > A(~w∗) · ~w∗, so
~π /∈ P1. 2

Proof of Corollary 3.1: By Fact 3.2, whenever WSO
rejects ~π, ~π /∈ P1. By Fact 3.1, any halfspace output by
WSO contains P1. This is all that is necessary in order
for WSO to act as a valid separation oracle for P1 when
it rejects ~π. 2

Proof of Lemma 3.2: Define the polytope P (S) as the
set of t, ~w that satisfy the following inequalities:

t− ~π · ~w ≤ −δ

t ≥ A(~w′) · ~w, ∀~w′ ∈ S

~w ∈ [−1, 1]d

We first claim that if ~π /∈ Conv({A(~w)|~w ∈ S}),
then P (S) is non-empty. This is because when ~π /∈
Conv({A(~w)|~w ∈ S}), there is some weight vector
~w∗ ∈ [−1, 1]d such that ~w∗ · ~π > max~w′∈S{~w∗ · A(~w′)}.
For appropriately chosen δ (Lemma 5.1 in Section 5
provides one), there is also a ~w∗ such that ~w∗ · ~π ≥
max~w′∈S{~w∗ ·A(~w′)}+δ. Set t∗ := max~w′∈S{~w∗ ·A(~w′)}
and consider the point (t∗, ~w∗). As t∗ is larger than
A(~w′) · ~w∗ for all ~w′ ∈ S by definition, and ~w∗ ∈ [−1, 1]d

by definition, we have found a point in P (S).

Now, consider that in the execution of WSO(~π),
ŴSO outputs several halfspaces. As S is exactly the
set of weights ~w that WSO queries to ŴSO, these are
exactly the halfspaces:

t ≥ A(~w′) · ~w, ∀~w′ ∈ S

During the execution of WSO(~π), other halfspaces
may be learned not from ŴSO, but of the form t −
~π · ~w ≤ −δ or −1 ≤ wi, wi ≤ 1 for some i ∈ [d].
Call the polytope defined by the intersection of all these
halfspaces P (WSO). As all of these halfspaces contain
P (S), it is clear that P (WSO) contains P (S).

Now we just need to argue that if N is sufficiently
large, and WSO(~π) could not find a feasible point
in N iterations, then P (S) is empty. Corollary 5.1
in Section 5 provides an appropriate choice of N .
Basically, if P (S) is non-empty, we can lower bound
its volume with some value V (independent of S). If
N = poly(log(1/V)), then the volume of the ellipsoid
containing P (WSO) after N iterations will be strictly
smaller than V . As P (WSO) contains P (S), this
implies that P (S) is empty. Therefore, we may conclude
that ~π ∈ Conv({A(~w)|~w ∈ S}). 2

F Omitted Figures and Proofs from Section 4

Proof of Lemma 4.1: Let (~π∗, ~p∗) denote the reduced
form output by the LP in Figure 2. Then we claim
that the reduced form (α~π∗, α~p∗) is a feasible solution
after replacing F (F ,D′) with P0. It is clear that this
mechanism is still IR and BIC, as we have simply
multiplied both sides of every incentive constraint by
α. It is also clear that α~π∗ ∈ P0 by definition. As
we have multiplied all of the payments by α, and the
original LP had revenue OPT − ε [12], it is clear that
revenue of the reduced form output in the new LP is at
least α(OPT− ε). 2

Proof of Proposition 4.1: Let Q0 be the set of (~π, ~p) that
satisfy ~π ∈ P0, the BIC and IR constraints, as well as the
revenue constraint

∑m
i=1

∑
~vi∈Ti

Pr[ti = ~vi] · pi(~vi) ≥ x.
As x ≤ Rev(P0), we know that there is some feasible
point (~π∗, ~p∗) ∈ Q0. Therefore, the ellipsoid algorithm
using a valid separation oracle for Q0 and the correct
parameters will find a feasible point.

Now, what is the difference between a valid separ-
tion oracle for Q0 and WSO′ as used in Proposition 4.1?
A separation oracle for Q0 first checks the BIC, IR, and
revenue constraints, then executes a true separation or-
acle for P0. WSO′ first checks the BIC, IR, and rev-
enue constraints, then executes WSO. So let us assume
for contradiction that the Ellipsoid using WSO′ out-
puts infeasible, but Q0 is non-empty. It has to be then

Near-Optimal LP:

Variables:
• pi(~vi), for all bidders i and types ~vi ∈ Ti,

denoting the expected price paid by bidder i
when reporting type ~vi over the randomness of
the mechanism and the other bidders’ types.
• πij(~vi), for all bidders i, items j, and types
~vi ∈ Ti, denoting the probability that bidder
i receives item j when reporting type ~vi over
the randomness of the mechanism and the other
bidders’ types.

Constraints:
• ~πi(~vi) · ~vi − pi(~vi) ≥ ~πi(~wi) · ~vi − pi(~wi), for all

bidders i, and types ~vi, ~wi ∈ Ti, guaranteeing
that the reduced form mechanism (~π, ~p) is BIC.
• ~πi(~vi) · ~vi − pi(~vi) ≥ 0, for all bidders i, and

types ~vi ∈ Ti, guaranteeing that the reduced
form mechanism (~π, ~p) is individually rational.
• ~π ∈ F (F ,D′), guaranteeing that the reduced

form ~π is feasible for D′.
Maximizing:
•

∑m
i=1

∑
~vi∈Ti

Pr[ti = ~vi] · pi(~vi), the expected
revenue when played by bidders sampled
from the true distribution D.

Figure 2: An LP with near-optimal revenue.

that WSO rejected every point that was queried to it.10

However, Corollary 3.1 guarantees that when rejecting
points, WSO acts as a valid separation oracle for P0

(i.e. provides a valid hyperplane separating ~π from P0).
As the only difference between a separation oracle for
Q0 and WSO′ was the use of WSO, and WSO acted as
a valid separation oracle for P0, this means that in fact
WSO′ behaved as a valid separation oracle for Q0. So
we ran the ellipsoid algorithm using a valid separation
oracle for Q0 with the correct parameters, but output
“infeasible” when Q0 was non-empty, contradicting the
correctness of the ellipsoid algorithm.

Therefore, whenever Q0 is non-empty, WSO′ must
find a feasible point. As Q0 is non-empty whenever
x ≤ Rev(P0), this means that WSO′ will find a feasible
point whenever x ≤ Rev(P0), proving the proposition.2

Proof of Corollary 4.1: Consider running the LP of Fig-
ure 2 with WSO. The optimization version of the ellip-

10In particular, even if Ellipsoid deems the feasible region lower-
dimensional, and continues in a lower-dimensional space, etc.,

then still if the final output of Ellipsoid is infeasible, then all
points that it queried to WSO were rejected.

soid algorithm will do a binary search on possible values
for the objective function and solve a separate feasibility
subproblem for each. Proposition 4.1 guarantees that
on every feasibility subproblem with x ≤ Rev(P0), the
ellipsoid algorithm will find a feasible point. Therefore,
the binary search will stop at some value x∗ ≥ Rev(P0),
and we get that Rev(WSO) ≥ Rev(P0). 2

Proof of Corollary 4.3: Because ~π∗ is output, we
have WSO(~π∗) = “yes.” Lemma 3.2 tells us that ~π∗

is therefore in the convex hull of {RAD′(~w)|~w ∈ S}.
As a convex combination of reduced forms can be
implemented as a distribution over the allocation rules
that implement them, we have proven the corollary. 2

F.1 The Solution is ε-BIC. Here we provide the
omitted informal argument from Section 4. Again, the
reader is referred to [12] for a formal proof. Recall
that we are trying to show that the distribution over
virtual implementations of A used to implement ~π∗

when bidders are sampled from D′ implements some
reduced form ~π′ when bidders are sampled from D
satisfying |~π∗ − ~π′|1 ≤ ε. This suffices to guarantee
that our mechanism computed in Section 4 is ε-BIC.

Let x denote the number of samples taken for D′.
There are two steps in the argument: the first is showing
that for a fixed allocation rule, the probability that
its reduced form when bidders are sampled from D′
is within ε in `1 distance of the reduced form when
bidders are sampled from D approaches 1 exponentially
fast in x. This can be done by a simple Chernoff
bound. The second is showing that, before actually
sampling D′, but after choosing how many samples to
take, the number of weights ~w that could possibly ever
be queried to ŴSO grows like 2poly(log x). This can be
done by reasoning about bit complexities maintained
by the ellipsoid algorithm, and the fact that the bit
complexity of D′ grows logarithmically in x. With both
facts, we can then take a union bound over the entire
set of weights that will ever be possibly queried to ŴSO
and get that with high probability, the reduced forms of
all the allocation rules corresponding to these weights
are ε-close under D and D′. If this holds for all these
allocation rules simultaneously, then it clearly also holds
for any distribution over them (in particular, for ~π∗).
This entire argument appears formally in [12] for the
case where the LP of Figure 2 uses F (F ,D′) rather than
WSO, and is nearly identical.

G Omitted Proofs from Section 5

G.1 Omitted Proofs on the Runtime of WSO
from Section 5. Proof of Lemma 5.1: Consider the
polytope P ′(S) with respect to variables t′ and ~w′ that

is the intersection of the following half-spaces (similar
to P (S) from the proof of Lemma 3.2):

t′ ≤ d

t′ ≥ A(~w) · ~w′, ∀~w ∈ S

~w′ ∈ [−1, 1]d

If ~π /∈ Conv({A(~w)|~w ∈ S}), there exists some
weight vector ~w′ such that ~π · ~w′ > max~w∈S{A(~w) · ~w′}.
This bears witness that there is a point in P ′(S)
satisfying ~π · ~w′ > t′. If such a point exists, then clearly
we may take (~w′, t′) to be a corner of P ′(S) satisfying
the same inequality. As the bit complexity of every
halfspace defining P ′(S) is poly(d, `), the corner also has
bit complexity poly(d, `). Therefore, if t′ − ~π · ~w′ < 0,
t′ − ~π · ~w′ ≤ −4δ, for some δ = 2−poly(d,`,b). 2

Lemma G.1. Let S be any subset of weights. Let also b
be the bit complexity of ~π, and ` an upper bound on the
bit complexity of A(~w) for all ~w. Then, if we choose δ as
prescribed by Lemma 5.1, the following polytope (P (S))
is either empty, or has volume at least 2−poly(d,`,b):

t− ~π · ~w ≤ −δ

t ≥ A(~w′) · ~w, ∀~w′ ∈ S

~w ∈ [−1, 1]d

Proof of Lemma G.1: First, it will be convenient to
add the vacuous constraint t ≤ d to the definition of
the polytope. It is vacuous because it is implied by
the existing constraints,11 but useful for the analysis.
Define P ′(S) by removing the first constraint. That is,
P ′(S) is the intersection of the following halfspaces (this
is the same as P ′(S) from the proof of Lemma 5.1):

t ≤ d

t ≥ A(~w′) · ~w, ∀~w′ ∈ S

~w ∈ [−1, 1]d

If there is a point in P (S), then there is some point
in P ′(S) satisfying t−~π · ~w ≤ −δ. If such a point exists,
then clearly there is also a corner of P ′(S) satisfying
t − ~π · ~w ≤ −δ. Call this corner (t∗, ~w∗). Recall that
δ was chosen in the proof of Lemma 5.1 so that we are
actually guaranteed t − ~π · ~w ≤ −4δ. Therefore, the
point (t∗/2, ~w∗/2) is also clearly in P (S), and satisfies
t− ~π · ~w ≤ −2δ.

Now, consider the box B = [t
∗

2 + δ
2 ,

t∗

2 + 3δ
4] ×

(×di=1[w
∗
i

2 ,
w∗i
2 + δ

4d]). We claim that B ⊆ P (S). Let

11Since P ∈ [−1, 1]d, WLOG we can also assume ~π ∈ [−1, 1]d,
thus from the constraints of P (S) it follows that t ≤ d.

(t, ~w) denote an arbitrary point in B. It is clear that
we have ~w ∈ [−1, 1]d, as we had ~w∗/2 ∈ [−1/2, 1/2]d to
start with. As each coordinate of ~π and A(~w′) for all
~w′ is in [−1, 1], it is easy to see that:

(~w∗/2) · ~π − δ

4
≤ ~w · ~π ≤ (~w∗/2) · ~π +

δ

4
,

and for all ~w′ ∈ S,

(~w∗/2) · A(~w′)− δ

4
≤ ~w · A(~w′) ≤ (~w∗/2) · A(~w′) +

δ

4
.

As we must have t ≥ t∗

2 + δ
2 , and we started with

t∗ ≥ ~w∗ · A(~w′) for all ~w′ ∈ S, it is clear that we still
have t ≥ ~w · A(~w′) for all ~w′ ∈ S. Finally, since we
started with t∗/2− ~π · ~w∗/2 ≤ −2δ, and t ≤ t∗/2 + 3δ

4 ,
we still have t− ~π · ~w ≤ −δ.

Now, we simply observe that the volume of B is
δd+1

dd4d+1 , which is 2−poly(d,`,b). Therefore, if P (S) is non-
empty, it contains this box B, and therefore has volume
at least 2−poly(d,`,b). 2

Proof of Corollary 5.1: By Lemma G.1, if P (S) is non-
empty, P (S) has volume at least some V = 2−poly(d,`,b).
Since P ⊆ [−1, 1]d, the starting ellipsoid in the execu-
tion of WSO can be taken to have volume 2O(d). As the
volume of the maintained ellipsoid shrinks by a multi-
plicative factor of at least 1 − 1

poly(d) in every iteration
of the ellipsoid algorithm, after some N = poly(d, `, b)
iterations, we will have an ellipsoid with volume smaller
than V that contains P (S) (by the proof of Lemma 3.2),
a contradiction. Hence P (S) must be empty, if we use
the N chosen above for the definition of WSO and the
ellipsoid algorithm in the execution of WSO does not
find a feasible point after N iterations. 2

Proof of Corollary 5.2: By the choice of N in Corol-
lary 5.1, WSO only does poly(d, `, b) iterations of the
ellipsoid algorithm. Note that the starting ellipsoid can
be taken to be the sphere of radius

√
d centered at ~0,

as P ⊆ [−1, 1]d. Moreover, the hyperplanes output
by ŴSO have bit complexity O(`), while all other hy-
perplanes that may be used by the ellipsoid algorithm
have bit complexity poly(d, `, b) given our choice of δ.
So by [20], ŴSO will only be queried at points of bit
complexity poly(d, `, b), and every such query will take
time poly(poly(d, `, b), rtA(poly(d, `, b)) as it involves
checking one inequality for numbers of bit complexity
poly(d, `, b) and making one call to A on numbers of bit
complexity poly(d, `, b). Therefore, WSO terminates in
the promised running time. 2

G.2 Computing Reduced Forms of (Random-
ized) Allocation Rules. For distributions that are
explicitly represented (such as D′), it is easy to compute
the reduced form of a deterministic allocation rule: sim-
ply iterate over every profile in the support of D′, run
the allocation rule, and see who receives what items.
For randomized allocation rules, this is trickier as com-
puting the reduced form exactly would require enumer-
ating over the randomness of the allocation rule. One
approach is to approximate the reduced form. This ap-
proach works, but is messy to verify formally, due to the
fact that the bit complexity of reduced forms of random-
ized allocations takes effort to bound. The technically
cleanest approach is to get our hands on a deterministic
allocation rule instead.

Let A be a randomized allocation rule that obtains
an α-fraction of the maximum welfare in expectation.
Because the welfare of the allocation output byA cannot
be larger than the maximum welfare, the probability
that A obtains less than an (α − γ)-fraction of the
maximum welfare is at most 1 − γ. So let A′ be
the allocation rule that runs several independent trials
of A and chooses (of the allocations output in each
trial) the one with maximum welfare. If the number
of trials is x/γ, we can guarantee that A′ obtains
at least an (α − γ)-fraction of the maximum welfare
with probability 1 − e−x. From this it follows that, if
O((`+τ)/γ) independent trials of A are used for A′, then
A′ obtains an (α− γ)-fraction of the maximum welfare
for all input vectors of bit complexity `, with probability
at least 1− 2−τ . This follows by taking a union bound
over all 2` possible vectors of bit complexity `. For
`, τ to be determined later, we fix the randomness used
by A′ in running A ahead of time so that A′ is a
deterministic algorithm. Define A′ using A′ in the same
way that A is defined using A.

As A′ is a deterministic algorithm and D′ a uni-
form distribution over poly(n, T, 1/ε) profiles, we can
compute RA

′

D′(~w) for a given ~w by enumerating over the
support of D′ as described above. The resulting RA

′

D′(~w)
has bit complexity polynomial in the dimension T and
the logarithm of poly(n, T, 1/ε).12

Now let us address the choice of `. We basically
want to guarantee the following. Suppose that we
use A′ inside WSO. We want to guarantee that A′
will work well for any vector ~w that our algorithm
will possibly ask A′.13 We argue in the proof of

12This is because the probability that bidder i gets item j

conditioned on being type B is just the number of profiles in the
support of D′ where ti = B and bidder i receives item j divided

by the number of profiles where ti = B. The definition of D′
(see [12]) makes sure that the latter is non-zero.

13Namely, we want that A′ approximately optimizes the linear

Lemma 5.2 that, regardless of the bit complexity of the
hyperplanes output by WSO, throughout the execution
of our algorithm WSO will only be queried on points
of bit complexity poly(n, T, ˆ̀, log 1/ε), where ˆ̀ is the
bit complexity of the coordinates of the points in ×iTi.
From Corollary 5.2 it follows then that A′ will only be
queried on inputs of bit complexity poly(n, T, ˆ̀, log 1/ε).
This in turns implies that A′ will only be queried
on inputs of bit complexity poly(n, T, ˆ̀, log 1/ε). So
setting ` to some poly(n, T, ˆ̀, log 1/ε) guarantees that
A′ achieves an (α−γ)-fraction of the maximum welfare,
for all possible inputs it may be queried simultaneously,
with probability at least 1− 2−τ .

Finally, for every input ~w of bit complexity x, the
running time of A′ is polynomial in x, the support size
and the bit complexity of D′ (which is poly(n, T, ˆ̀, 1/ε)),
and the running time of A′ on inputs of bit complex-
ity poly(n, T, ˆ̀, log 1/ε, x). The latter is just a factor of
poly(n, T, ˆ̀, log 1/ε, τ, 1/γ) larger than that of A on in-
puts of bit complexity poly(n, T, ˆ̀, log 1/ε, x). Overall,

rtA′(x) = poly(n, T, ˆ̀, 1/ε, τ, 1/γ, x)

· rtA(poly(n, T, ˆ̀, log 1/ε, x)).

G.3 Omitted Proofs on the Runtime of the
Revenue-Maximizing LP from Section 5. Proof
of Lemma 5.2: Ignoring computational efficiency, we
can use the construction of [12] to build a separation
oracle for P0, defined as in Section 4. Suppose that we
built this separation oracle, SO, and used it to solve
the LP of Figure 2 with P0 in place of F (F ,D′) using
the ellipsoid algorithm. It follows from [20] that the
ellipsoid algorithm using SO would terminate in time
polynomial in n, T, ˆ̀, log 1/ε and the running time of
SO on points of bit complexity poly(n, T, ˆ̀, log 1/ε).14

As we are running exactly this algorithm (i.e. with
the same parameters and criterion for deeming the
feasible region lower-dimensional), except replacing the
separation oracle for P0 with WSO, our solution will
also terminate in time polynomial in n, T, ˆ̀, log 1/ε
and the runtime of WSO on points of bit complexity
poly(n, T, ˆ̀, log 1/ε). Indeed, for every guess on the
revenue and as long as the Ellipsoid algorithm for that
guess has not terminated, it must be that WSO has
been rejecting the points that it has been queried,
and by Corollary 3.1 in this case it acts as a valid
separation oracle for P0, and hence is input points of

objective ~w ·~x over ~x ∈ F (F ,D′) to within a multiplicative factor

α− γ.
14Note that for any guess x on the revenue, we can upper bound

the volume of the resulting polytope by 2O(T) and lower bound it

by some 2−poly(n,T,ˆ̀,log 1/ε), whatever its dimension is. We can
also take the precision to be poly(n, T, ˆ̀, log 1/ε).

the same bit complexity that could have been input to
SO, namely poly(n, T, ˆ̀, log 1/ε). Corollary 5.2 shows
that the runtime of WSO on points of bit complexity
poly(n, T, ˆ̀, log 1/ε) is

poly(n, T, ˆ̀, 1/ε, log 1/η, 1/γ)

· rtA(poly(n, T, ˆ̀, log 1/ε)),

so the entire running time of our algorithm is as
promised. 2

