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Abstract

We prove a generalization of von Neumann’s minmax
theorem to the class of separable multiplayer zero-
sum games, introduced in [Bregman and Fokin 1998].
These games are polymatrix—that is, graphical games
in which every edge is a two-player game between its
endpoints—in which every outcome has zero total sum
of players’ payoffs. Our generalization of the minmax
theorem implies convexity of equilibria, polynomial-
time tractability, and convergence of no-regret learning
algorithms to Nash equilibria. Given that Nash equi-
libria in 3-player zero-sum games are already PPAD-
complete, this class of games, i.e. with pairwise sep-
arable utility functions, defines essentially the broad-
est class of multi-player constant-sum games to which
we can hope to push tractability results. Our re-
sult is obtained by establishing a certain game-class
collapse, showing that separable constant-sum games
are payoff equivalent to pairwise constant-sum polyma-
trix games—polymatrix games in which all edges are
constant-sum games, and invoking a recent result of
[Daskalakis, Papadimitriou 2009] for these games.

We also explore generalizations to classes of non-
constant-sum multi-player games. A natural candidate
is polymatrix games with strictly competitive games on
their edges. In the two player setting, such games are
minmax solvable and recent work has shown that they
are merely affine transformations of zero-sum games
[Adler, Daskalakis, Papadimitriou 2009]. Surprisingly
we show that a polymatrix game comprising of strictly
competitive games on its edges is PPAD-complete to
solve, proving a striking difference in the complexity of
networks of zero-sum and strictly competitive games.
Finally, we look at the role of coordination in net-
worked interactions, studying the complexity of poly-
matrix games with a mixture of coordination and zero-
sum games. We show that finding a pure Nash equi-
librium in coordination-only polymatrix games is PLS-
complete; hence, computing a mixed Nash equilibrium
is in PLS ∩ PPAD, but it remains open whether the
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problem is in P. If, on the other hand, coordination and
zero-sum games are combined, we show that the prob-
lem becomes PPAD-complete, establishing that coordi-
nation and zero-sum games achieve the full generality
of PPAD.

1 Introduction

According to Aumann [3], two-person strictly compet-
itive games—these are affine transformations of two-
player zero-sum games [2]—are “one of the few areas in
game theory, and indeed in the social sciences, where
a fairly sharp, unique prediction is made.” The in-
tractability results on the computation of Nash equilib-
ria [9, 7] can be viewed as complexity-theoretic support
of Aumann’s claim, steering research towards the follow-
ing questions: In what classes of multiplayer games are
equilibria tractable? And when equilibria are tractable,
do there also exist decentralized, simple dynamics con-
verging to equilibrium?

Recent work [10] has explored these questions on the
following (network) generalization of two-player zero-
sum games: The players are located at the nodes of
a graph whose edges are zero-sum games between their
endpoints; every player/node can choose a unique mixed
strategy to be used in all games/edges she participates
in, and her payoff is computed as the sum of her pay-
off from all adjacent edges. These games, called pair-
wise zero-sum polymatrix games, certainly contain two-
player zero-sum games, which are amenable to linear
programming and enjoy several important properties
such as convexity of equilibria, uniqueness of values, and
convergence of no-regret learning algorithms to equi-
libria [18]. Linear programming can also handle star
topologies, but more complicated topologies introduce
combinatorial structure that makes equilibrium compu-
tation harder. Indeed, the straightforward LP formula-
tion that handles two-player games and star topologies
breaks down already in the triangle topology (see dis-
cussion in [10]).

The class of pairwise zero-sum polymatrix games
was studied in the early papers of Bregman and Fokin [5,
6], where the authors provide a linear programming
formulation for finding equilibrium strategies. The size



of their linear programs is exponentially large in both
variables and constraints, albeit with a small rank, and
a variant of the column-generation technique in the
simplex method is provided for the solution of these
programs. The work of [10] circumvents the large linear
programs of [6] with a reduction to a polynomial-sized
two-player zero-sum game, establishing the following
properties for these games:

(1) the set of Nash equilibria is convex;

(2) a Nash equilibrium can be computed in polynomial-
time using linear programming;

(3) if the nodes of the network run any no-regret
learning algorithm, the global behavior converges
to a Nash equilibrium. 1

In other words, pairwise zero-sum polymatrix games
inherit several of the important properties of two-player
zero-sum games. 2 In particular, the third property
above together with the simplicity, universality and
distributed nature of the no-regret learning algorithms
provide strong support on the plausibility of the Nash
equilibrium predictions in this setting.

On the other hand, the hope for extending the posi-
tive results of [10] to larger classes of games imposing no
constraints on the edge-games seems rather slim. Indeed
it follows from the work of [9] that general polymatrix
games are PPAD-complete. The same obstacle arises if
we deviate from the polymatrix game paradigm. If our
game is not the result of pairwise (i.e. two-player) in-
teractions, the problem becomes PPAD-complete even
for three-player zero-sum games. This is because every
two-player game can be turned into a three-player zero-
sum game by introducing a third player whose role is
to balance the overall payoff to zero. Given these ob-
servations it appears that pairwise zero-sum polymatrix
games are at the boundary of multi-player games with
tractable equilibria.

Games That Are Globally Zero-Sum. The
class of pairwise zero-sum polymatrix games was studied
in the papers of Bregman and Fokin [5, 6] as a special
case of separable zero-sum multiplayer games. These are
similar to pairwise zero-sum polymatrix games, albeit
with no requirement that every edge is a zero-sum game;
instead, it is only asked that the total sum of all players’

1The notion of a no-regret learning algorithm, and the type of
convergence used here is quite standard in the learning literature
and will be described in detail in Section 3.3.

2If the game is non-degenerate (or perturbed) it can also be
shown that the values of the nodes are unique. But, unlike

two-player zero-sum games, there are examples of (degenerate)
pairwise zero-sum polymatrix games with multiple Nash equilibria
that give certain players different payoffs [12].

payoffs is zero (or some other constant3) in every
outcome of the game. Intuitively, these games can be
used to model a broad class of competitive environments
where there is a constant amount of wealth (resources)
to be split among the players of the game, with no in-
flow or out-flow of wealth that may change the total
sum of players’ wealth in an outcome of the game.

A simple example of this situation is the following
game taking place in the wild west. A set of gold miners
in the west coast need to transport gold to the east
coast using wagons. Every miner can split her gold into
a set of available wagons in whatever way she wants
(or even randomize among partitions). Every wagon
uses a specific path to go through the Rocky mountains.
Unfortunately each of the available paths is controlled
by a group of thieves. A group of thieves may control
several of these paths and if they happen to wait on
the path used by a particular wagon they can ambush
the wagon and steal the gold being carried. On the
other hand, if they wait on a particular path they will
miss on the opportunity to ambush the wagons going
through the other paths in their realm as all wagons will
cross simultaneously. The utility of each miner in this
game is the amount of her shipped gold that reaches
her destination in the east coast, while the utility of
each group of thieves is the total amount of gold they
steal. Clearly, the total utility of all players in the wild
west game is constant in every outcome of the game (it
equals the total amount of gold shipped by the miners),
but the pairwise interaction between every miner and
group of thieves is not. In other words, the constant-
sum property is a global rather than a local property of
this game.

The reader is referred to [6] for further applications
and a discussion of several special cases of these games,
such as the class of pairwise zero-sum games discussed
above. Given the positive results for the latter, ex-
plained earlier in this introduction, it is rather appealing
to try to extend these results to the full class of separa-
ble zero-sum games, or at least to other special classes of
these games. We show that this generalization is indeed
possible, but for an unexpected reason that represents
a game-class collapse. Namely,

Theorem 1.1. There is a polynomial-time computable
payoff preserving transformation from every separable
zero-sum multiplayer game to a pairwise constant-sum
polymatrix game. 4

3In this case, the game is called separable constant-sum
multiplayer.

4Pairwise constant-sum games are similar to pairwise zero-
sum games, except that every edge can be constant-sum, for an
arbitrary constant that may be different for every edge.



In other words, given a separable zero-sum multiplayer
game GG, there exists a polynomial-time computable
pairwise constant-sum multiplayer game GG′ such that,
for any selection of strategies by the players, every
player receives the same payoff in GG and in GG′. (Note
that, for the validity of the theorem, it is important
that we allow constant-sum—as opposed to only zero-
sum—games on the edges of the game.) Theorem 1.1
implies that the class of separable zero-sum multiplayer
games, suggested in [6] as a superset of pairwise zero-
sum games, is only slightly larger, in that it is a subset,
up to different representations of the game, of the
class of pairwise constant-sum games. In particular,
all the classes of games treated as special cases of
separable zero-sum games in [6] can be reduced via
payoff-preserving transformations to pairwise constant-
sum polymatrix games. Since it is not hard to extend
the results of [10] to pairwise constant-sum games, as a
corollary we obtain:

Corollary 1.1. Pairwise constant-sum polymatrix
games and separable constant-sum multiplayer games
are payoff preserving transformation equivalent, and
satisfy properties (1), (2) and (3).

We provide the payoff preserving transformation from
separable zero-sum to pairwise constant-sum games in
Section 3.1. The transformation is quite involved, but
in essence it works out by unveiling the local-to-global
consistency constraints that the payoff tables of the
game need to satisfy in order for the global zero-sum
property to arise. Given our transformation, in order
to obtain Corollary 1.1, we only need a small extension
to the result of [10], establishing properties (1), (2) and
(3) for pairwise constant-sum games. This can be done
in an indirect way by subtracting the constants from
the edges of a pairwise constant-sum game GG to turn
it into a pairwise zero-sum game GG′, and then showing
that the set of equilibria, as well as the behavior of no-
regret learning algorithms in these two games are the
same. We can then readily use the results of [10] to
prove Corollary 1.1. The details of the proof are given
in Appendix B.2.

We also present a direct reduction of separable
zero-sum games to linear programming, i.e. one that
does not go the round-about way of establishing our
payoff-preserving transformation, and then using the
result of [10] as a black-box. This poses interesting
challenges as the validity of the linear program proposed
in [10] depended crucially on the pairwise zero-sum
nature of the interactions between nodes in a pairwise
zero-sum game. Surprisingly, we show that the same
linear program works for separable zero-sum games by
establishing an interesting kind of restricted zero-sum

property satisfied by these games (Lemma B.3). The
resulting LP is simpler and more intuitive, albeit more
intricate to argue about, than the one obtained the
round-about way. The details are given in Section 3.2.

Finally, we provide a constructive proof of the
validity of Property (3). Interestingly enough, the
argument of [10] establishing this property used in its
heart Nash’s theorem (for non zero-sum games), giving
rise to a non-constructive argument. Here we rectify
this by providing a constructive proof based on first
principles. The details can be found in Section 3.3.

Allowing General Strict Competition. It is
surprising that the properties (1)–(3) of 2-player zero-
sum games extend to the network setting despite the
combinatorial complexity that the networked interac-
tions introduce. Indeed, zero-sum games are one of
the few classes of well-behaved two-player games for
which we could hope for positive results in the net-
worked setting. A small variation of zero-sum games
are strictly competitive games. These are two-player
games in which, for every pair of mixed strategy pro-
files s and s′, if the payoff of one player is better in s
than in s′, then the payoff of the other player is worse
in s than in s′. These games were known to be solvable
via linear programming [3], and recent work has shown
that they are merely affine transformations of zero-sum
games [2]. That is, if (R,C) is a strictly competitive
game, there exists a zero-sum game (R′, C ′) and con-
stants c1, c2 > 0 and d1, d2 such that R = c1R

′+d11 and
C = c2C

′ + d21, where 1 is the all-ones matrix. Given
the affinity of these classes of games, it is quite natu-
ral to suspect that Properties (1)–(3) should also hold
for polymatrix games with strictly competitive games
on their edges. Indeed, the properties do hold for the
special case of pairwise constant-sum polymatrix games
(Corollary 1.1). 5 Surprisingly we show that if we al-
low arbitrary strictly competitive games on the edges,
the full complexity of the PPAD class arises from this
seemingly benign class of games.

Theorem 1.2. Finding a Nash equilibrium in polyma-
trix games with strictly competitive games on their edges
is PPAD-complete.

The Role of Coordination. Another class of
tractable and well-behaved two-player games that we
could hope to understand in the network setting is the
class of two-player coordination games, i.e. two-player
games in which every mixed strategy profile results in

5Pairwise constant-sum polymatrix games arise from this

model if all c’s in the strictly competitive games are chosen equal
across the edges of the game, but the d’s can be arbitrary.



the same payoff for both players. If zero-sum games rep-
resent “perfect competition”, coordination games repre-
sent “perfect cooperation”, and they are trivial to solve
in the two-player setting. Given the positive results
on zero-sum polymatrix games, it is natural to inves-
tigate the complexity of polymatrix games containing
both zero-sum and coordination games. In fact, this was
the immediate question of Game Theorists (e.g. in [19])
in view of the earlier results of [10]. We explore this
thoroughly in this paper.

First, it is easy to see that coordination-only poly-
matrix games are (cardinal) potential games, so that a
pure Nash equilibrium always exists. We show however
that finding a pure Nash equilibrium is an intractable
problem.

Theorem 1.3. Finding a pure Nash equilibrium in
coordination-only polymatrix games is PLS-complete.

On the other hand, Nash’s theorem implies that finding
a mixed Nash equilibrium is in PPAD. From this
observation and the above, we obtain as a corollary the
following interesting result.

Corollary 1.2. Finding a Nash equilibrium in
coordination-only polymatrix games is in PLS∩PPAD.

So finding a Nash equilibrium in coordination-only poly-
matrix games is probably neither PLS- nor PPAD-
complete, and the above corollary may be seen as an in-
dication that the problem is in fact tractable. Whether
it belongs to P is left open by this work. Coincidentally,
the problem is tantamount to finding a coordinate-wise
local maximum of a multilinear polynomial of degree
two on the hypercube 6. Surprisingly no algorithm for
this very basic and seemingly simple problem is known
in the literature. . .

While we leave the complexity of coordination-only
polymatrix games open for future work, we do give a
definite answer to the complexity of polymatrix games
with both zero-sum and coordination games on their
edges, showing that the full complexity of PPAD can
be obtained this way.

Theorem 1.4. Finding a Nash equilibrium in polyma-
trix games with coordination or zero-sum games on their
edges is PPAD-complete.

It is quite remarkable that polymatrix games ex-
hibit such a rich range of complexities depending on the
types of games placed on their edges, from polynomial-
time tractability when the edges are zero-sum to PPAD-
completeness when general strictly competitive games

6i.e. finding a point x where the polynomial cannot be
improved by single coordinate changes to x.

or coordination games are also allowed. Moreover, it
is surprising that even though non-polymatrix three-
player zero-sum games give rise to PPAD-hardness, sep-
arable zero-sum multiplayer games with any number of
players remain tractable...

The results described above sharpen our under-
standing of the boundary of tractability of multiplayer
games. In fact, given the PPAD-completeness of three-
player zero-sum games, we cannot hope to extend pos-
itive results to games with three-way interactions. But
can we circumvent some of the hardness results shown
above, e.g. the intractability result of Theorem 1.4, by
allowing a limited amount of coordination in a zero-sum
polymatrix game? A natural candidate class of games
are group-wise zero-sum polymatrix games. These are
polymatrix games in which the players are partitioned
into groups so that the edges going across groups are
zero-sum while those within the same group are coordi-
nation games. In other words, players inside a group are
“friends” who want to coordinate their actions, while
players in different groups are competitors. It is conceiv-
able that these games are simpler (at least for a constant
number of groups) since the zero-sum and the coordina-
tion interactions are not interleaved. We show however
that the problem is intractable even for 3 groups of play-
ers.
Theorem 1.5. Finding a Nash equilibrium in group-
wise zero-sum polymatrix games with at most three
groups of players is PPAD-complete.

2 Definitions

A graphical polymatrix game is defined in terms of
an undirected graph G = (V,E), where V is the set
of players of the game and every edge is associated
with a 2-player game between its endpoints. Assuming
that the set of (pure) strategies of player v ∈ V is
[mv] := {1, . . . ,mv}, where mv ∈ N, we specify the
2-player game along the edge (u, v) ∈ E by providing
a pair of payoff matrices: a mu ×mv real matrix Au,v

and another mv × mu real matrix Av,u specifying the
payoffs of the players u and v along the edge (u, v)
for different choices of strategies by the two players.
Now the aggregate payoff of the players is computed
as follows. Let f be a pure strategy profile, that is
f(u) ∈ [mu] for all u. The payoff of player u ∈ V in
the strategy profile f is Pu(f) =

∑
(u,v)∈E A

u,v
f(u),f(v). In

other words, the payoff of u is the sum of the payoffs
that u gets from all the 2-player games that u plays with
her neighbors.

As always, a (mixed) Nash equilibrium is a collec-
tion of mixed—that is randomized—strategies for the
players of the game, such that every pure strategy
played with positive probability by a player is a best



response in expectation for that player given the mixed
strategies of the other players. A pure Nash equilibrium
is a special case of a mixed Nash equilibrium in which
the players’ strategies are pure, i.e deterministic. Be-
sides the concept of exact Nash equilibrium, there are
several different—but related—notions of approximate
equilibrium (see Appendix A). In this paper we focus
on exact mixed Nash equilibria. It is easy to see—and
is well-known—that polymatrix games have mixed Nash
equilibria in rational numbers and with polynomial de-
scription complexity in the size of the game.

3 Zero-sum Polymatrix Games

A separable zero-sum multiplayer game is a graphical
polymatrix game in which the sum of players’ payoffs
is zero in every outcome, i.e. in every pure strategy
profile, of the game. Formally,

Definition 3.1. (Separable zero-sum multi-
player games) A separable zero-sum multiplayer
game GG is a graphical polymatrix game in which,
for any pure strategy profile f , the sum of all players’
payoffs is zero. I.e., for all f ,

∑
u∈V Pu(f) = 0.

A simple class of games with this property are those
in which every edge is a zero-sum game. This special
class of games, studied in [10], are called pairwise zero-
sum polymatrix games, as the zero-sum property arises
as a result of pairwise zero-sum interactions between
the players. If the edges were allowed to be arbitrary
constant-sum games, the corresponding games would be
called pairwise constant-sum polymatrix games.

In this section, we are interested in understanding
the equilibrium properties of separable zero-sum multi-
player games. By studying this class of games, we cover
the full expanse of zero-sum polymatrix games, and
essentially the broadest class of multi-player zero-sum
games for which we could hope to push tractability re-
sults. Recall that if we deviate from edgewise separable
utility functions the problem becomes PPAD-complete,
as already 3-player zero-sum games are PPAD-complete.

We organize this section as follows: In section 3.1,
we present a payoff-preserving transformation from sep-
arable zero-sum games to pairwise constant-sum games.
This establishes Theorem 1.1, proving that separable
zero-sum games are not much more general—as were
thought to be [6]—than pairwise zero-sum games. This
can easily be used to show Corollary 1.1 (details in Ap-
pendix B.2). We proceed in Section 3.2 to provide a di-
rect reduction from separable zero-sum games to linear
programming, obviating the use of our payoff-preserving
transformation. In a way, our linear program corre-
sponds to the minmax program of a related two-player
game. The resulting LP formulation is similar to the

one suggested in (a footnote of) [10] for pairwise zero-
sum games, except that now its validity seems rather
slim as the resulting 2-player game is not zero-sum.
Surprisingly we show that it does work by uncovering
a restricted kind of zero-sum property satisfied by the
game. Finally, in Section 3.3 we provide an alternative
proof, i.e. one that does not go via the payoff-preserving
transformation, that no-regret dynamics convege Nash
equilibria in separable zero-sum games. The older proof
of this fact for pairwise zero-sum games [10] was us-
ing Brouwer’s fixed point theorem, and was hence non-
constructive. Our new proof rectifies this as it is based
on first principles and is constructive.

3.1 The Payoff Preserving Transformation.
Our goal in this section is to provide a payoff-preserving
transformation from a separable zero-sum game GG to a
pairwise constant-sum polymatrix game GG′. We start
by establishing a surprising consistency property satis-
fied by the payoff tables of a separable zero-sum game.
On every edge (u, v), the sum of u’s and v’s payoffs on
that edge when they play (1, 1) and when they play (i, j)
equals the sum of their payoffs when they play (1, j) and
when they play (i, 1). Namely,

Lemma 3.1. For any edge (u, v) of a separable zero-sum
multiplayer game GG, and for every i ∈ [mu], j ∈ [mv],

(Au,v1,1 +Av,u1,1 ) + (Au,vi,j +Av,uj,i ) =

(Au,v1,j +Av,uj,1 ) + (Au,vi,1 +Av,u1,i ).

The proof of Lemma 3.1 can be found in Appendix B.1.
Now for every ordered pair of players (u, v), let us
construct a new payoff matrix Bu,v based on Au,v and
Av,u as follows. First, we set Bu,v1,1 = Au,v1,1 . Then
Bu,vi,j = Bu,v1,1 +(Au,v1,j −A

u,v
1,1 )+(Av,uj,1 −A

v,u
j,i ). Notice that

Lemma 3.1 implies: (Au,v1,j − Au,v1,1 ) + (Av,uj,1 − Av,uj,i ) =
(Av,u1,1 − Av,u1,i ) + (Au,vi,j − Au,vi,1 ). So we can also write
Bu,vi,j = Bu,v1,1 + (Av,u1,1 − Av,u1,i ) + (Au,vi,j − Au,vi,1 ). Our
construction satisfies two important properties. (a) If
we use the second representation of Bu,v, it is easy to
see that Bu,vi,j − B

u,v
i,k = Au,vi,j − A

u,v
i,k . (b) If we use the

first representation, it is easy to see that Bu,vi,j −B
u,v
k,j =

Av,uj,k − Av,uj,i . Given these observations we obtain the
following (see Appendix B.1):

Lemma 3.2. For every edge (u, v), Bu,v + (Bv,u)T =
c{u,v}1, where 1 is the all-ones matrix.

We are now ready to describe the pairwise constant-
sum game GG′ resulting from GG: We preserve the graph
structure of GG, and we assign to every edge (u, v)
the payoff matrices Bu,v and Bv,u (for the players u
and v respectively). Notice that the resulting game



is pairwise-constant sum (by Lemma 3.2), and at the
same time separable zero-sum. 7 We show the following
lemmas, concluding the proof of Theorem 1.1.

Lemma 3.3. Suppose that there is a pure strategy pro-
file S such that, for every player u, u’s payoff in GG is
the same as his payoff in GG′ under S. If we modify
S to Ŝ by changing a single player’s pure strategy, then
under Ŝ every player’s payoff in GG′ equals the same
player’s payoff in GG.

Lemma 3.4. In every pure strategy profile, every player
has the same payoff in games GG and GG′

3.2 A Direct Reduction to Linear Program-
ming. We describe a direct reduction of separable zero-
sum games to linear programming, which obviates the
use of our payoff-preserving transformation from the
previous section. Our reduction can be described in the
following terms. Given an n-player zero-sum polymatrix
game we construct a 2-player game, called the lawyer
game. The lawyer game is not zero-sum, so we cannot
hope to compute its equilibria efficiently. In fact, its
equilibria may be completely unrelated to the equilibria
of the underlying polymatrix game. Nevertheless, we
show that a certain kind of “restricted equilibrium” of
the lawyer game can be computed with linear program-
ming; moreover, we show that we can map a “restricted
equilibrium” of the lawyer game to a Nash equilibrium
of the zero-sum polymatrix-game in polynomial time.
We proceed to the details of the lawyer-game construc-
tion.

Let GG := {Au,v, Av,u}(u,v)∈E be an n-player sepa-
rable zero-sum multiplayer game, such that every player
u ∈ [n] has mu strategies, and set Au,v = Av,u = 0
for all pairs (u, v) /∈ E. Given GG, we define the cor-
responding lawyer game G = (R,C) to be a symmet-
ric
∑
umu ×

∑
umu bimatrix game, whose rows and

columns are indexed by pairs (u : i), of players u ∈ [n]
and strategies i ∈ [mu]. For all u, v ∈ [n] and i ∈ [mu],
j ∈ [mv], we set

R(u:i),(v:j) = Au,vi,j and C(u:i),(v:j) = Av,uj,i .

Intuitively, each lawyer can chose a strategy belonging
to any one of the nodes of GG. If they happen to
choose strategies of adjacent nodes, they receive the
corresponding payoffs that the nodes would receive in
GG from their joint interaction. For a fixed u ∈ V , we

7Indeed, let all players play strategy 1. Since Bu,v
1,1 = Au,v

1,1 , for
all u, v, the sum of all players’ payoffs in GG′ is the same as the
sum of all players’ payoffs in GG, i.e. 0. But GG′ is a constant-sum

game. Hence in every other pure strategy profile the total sum of
all players’ payoffs will also be 0.

call the strategies {(u : i)}i∈[mu] the block of strategies
corresponding to u, and proceed to define the concepts
of a legitimate strategy and a restricted equilibrium in
the lawyer game.

Definition 3.2. (Legitimate Strategy) Let x be a
mixed strategy for a player of the lawyer game and let
xu :=

∑
i∈[mu] xu:i. If xu = 1/n for all u, we call x a

legitimate strategy.

Definition 3.3. (Restricted Equilibrium) Let
x, y be legitimate strategies for the row and column
players of the lawyer game. If for any legitimate strate-
gies x′, y′: xT ·R·y ≥ x′T ·R·y and xT ·C ·y ≥ xT ·C ·y′,
we call (x, y) a restricted equilibrium of the lawyer
game.

Given that the lawyer game is symmetric, it has a
symmetric Nash equilibrium [17]. We observe that it
also has a symmetric restricted equilibrium; moreover,
that these are in one-to-one correspondence with the
Nash equilibria of the polymatrix game.

Lemma 3.5. If S = (x1; . . . ;xn) is a Nash equilib-
rium of GG, where the mixed strategies x1, . . . , xn of
nodes 1, . . . , n have been concatenated in a big vector,(

1
nS,

1
nS
)

is a symmetric restricted equilibrium of G,
and vice versa.

We now have the ground ready to give our linear pro-
gramming formulation for computing a symmetric re-
stricted equilibrium of the lawyer game and, by virtue of
Lemma 3.5, a Nash equilibrium of the polymatrix game.
Our proposed LP is the following. The variables x and
z are (

∑
umu)-dimensional, and ẑ is n-dimensional. We

show how this LP implies tractability and convexity of
the Nash equilibria of GG in Appendix B.3 (Lemmas B.5
and B.6).

max
1
n

∑
u

ẑu

s.t. xT ·R ≥ zT ;
zu:i = ẑu, ∀u, i;∑

i∈[mu]

xu:i =
1
n
, ∀u and xu:i ≥ 0, ∀u, i.

Remark 3.1. (a) It is a priori not clear why the linear
program shown above computes a restricted equilibrium
of the lawyer game. The intuition behind its formulation
is the following: The last line of constraints is just
guaranteeing that x is a legitimate strategy. Exploiting
the separable zero-sum property we can establish that,
when restricted to legitimate strategies, the lawyer game
is actually a zero-sum game. I.e., for every pair of



legitimate strategies (x, y), xT ·R ·y+xT ·C ·y = 0 (see
Lemma B.3 in Appendix B.3). Hence, if the row player
fixed her strategy to a legitimate x, the best response
for the column player would be to minimize xT · R · y.
But the minimization is over legitimate strategies y; so
the minimum of xT ·R · y coincides with the maximum
of 1

n

∑
u ẑu, subject to the first two sets of constraints

of the program; this justifies our choice of objective
function.

(b) Notice that our program looks similar to the
standard program for zero-sum bimatrix games, except
for a couple of important differences. First, it is crucial
that we only allow legitimate strategies x; otherwise the
lawyer game would not be zero-sum and the hope to
solve it efficiently would be slim. Moreover, we average
out the payoffs from different blocks of strategies in the
objective function instead of selecting the worst payoff,
as is done by the standard program.

(c) It was pointed out to us by Ozan Candogan
that the linear program produced above via the lawyer
construction can be re-written in terms of the payoffs of
the nodes of GG as follows:

min
∑
u

wu

s.t. wu ≥ Pu(j ; x−u), ∀u,∀j ∈ [mu];∑
i∈[mu]

xu:i = 1, ∀u and xu:i ≥ 0, ∀u, i,

where Pu(j ; x−u) represents the expected payoff of
node u if she plays strategy j and the other nodes
play the mixed strategy profile x−u. In this form, it
is easy to argue that the optimal value of the program
is 0, because a Nash equilibrium achieves this value,
and any other mixed strategy profile achieves value ≥ 0
(using the zero-sum property of the game). Moreover,
it is not hard to see that any mixed strategy profile
achieving value 0 (i.e. any optimal solution of the LP)
is a Nash equilibrium. Indeed, the sum of payoffs of
all players in any mixed strategy profile of the game is
zero; hence, if at the same time the sum of the best
response payoffs of the players is zero (as is the case at
an optimal solution of the LP), no player can improve
her payoff. This argument is a nice simplification of
the argument provided above for the validity of the LP
and the reduction to the lawyer game. Nevertheless,
we chose to keep the lawyer-based derivation of the
program, since we think it will be instructive in other
settings.

3.3 A Constructive Proof of the Convergence
of No-Regret Algorithms. An attractive property
of 2-player zero-sum games is that a large variety of

learning algorithms converge to a Nash equilibrium of
the game. In [10], it was shown that pairwise zero-
sum polymatrix games inherit this property. In this
paper, we have generalized this result to the class of
separable zero-sum multiplayer games by employing the
proof of [10] as a black box. Nevertheless, the argument
of [10] had an undesired (and surprising) property, in
that it was employing Brouwer’s fixed point theorem as
a non-constructive step. Our argument here is based on
first principles and is constructive. But let us formally
define the notion of no-regret behavior first.

Definition 3.4. (No-Regret Behavior) Let every
node u ∈ V of a graphical polymatrix game choose a
mixed strategy x

(t)
u at every time step t = 1, 2, . . .. We

say that the sequence of strategies 〈x(t)
u 〉 is a no-regret

sequence, if for every mixed strategy x of player u and
at all times T

T∑
t=1

 ∑
(u,v)∈E

(x(t)
u )T ·Au,v · x(t)

v

 ≥
T∑
t=1

 ∑
(u,v)∈E

xT ·Au,v · x(t)
v

− o(T ),

where the constants hidden in the o(T ) notation could
depend on the number strategies available to player u,
the number of neighbors of u and magnitude of the
maximum in absolute value entry in the matrices Au,v.
The function o(T ) is called the regret of player u at time
T .

We note that obtaining a no-regret sequence of strate-
gies is far from exotic. If a node uses any no-regret
learning algorithm to select strategies (for a multitude
of such algorithms see, e.g., [4]), the output sequence of
strategies will constitute a no-regret sequence. A com-
mon such algorithm is the multiplicative weights-update
algorithm (see, e.g., [13]). In this algorithm every player
maintains a mixed strategy. At each period, each prob-
ability is multiplied by a factor exponential in the util-
ity the corresponding strategy would yield against the
opponents’ mixed strategies (and the probabilities are
renormalized).

We give a constructive proof of the following (see
proof in Appendix B.4).

Lemma 3.6. Suppose that every node u ∈ V of a
separable zero-sum multiplayer game GG plays a no-
regret sequence of strategies 〈x(t)

u 〉t=1,2,..., with regret
g(T ) = o(T ). Then, for all T , the set of strategies
x̄

(T )
u = 1

T

∑T
t=1 x

(t)
u , u ∈ V , is a

(
n · g(T )

T

)
-approximate

Nash equilibrium of GG.



4 Coordination Polymatrix Games

A pairwise constant-sum polymatrix game models a
network of competitors. What if the endpoints of every
edge are not competing, but coordinating? We model
this situation by assigning to every edge (u, v) a two-
player coordination game, i.e. Au,v = (Av,u)T . That
is, on every edge the two endpoints receive the same
payoff from the joint interaction. For example, games
of this sort are useful for modeling the spread of ideas
and technologies over social networks [15]. Clearly
the modification changes the nature of the polymatrix
game. We explore the result of this modification to the
computational complexity of the new model.

Two-player coordination games are well-known to
be potential games. We observe that coordination
polymatrix games are also (cardinal) potential games
(Proposition 4.1).

Proposition 4.1. Coordination polymatrix games are
cardinal potential games.

Moreover, a pure Nash equilibrium of a two-player coor-
dination game can be found trivially by inspection. We
show instead that in coordination polymatrix games the
problem becomes PLS-complete; our reduction is from
the Max-Cut Problem with the flip neighborhood. The
proof of the following can be found in Appendix C.2.

Theorem 1.3 Finding a pure Nash equilibrium in
coordination-only polymatrix games is PLS-complete.

Because our games are potential games, best re-
sponse dynamics converge to a pure Nash equilibrium,
albeit potentially in exponential time. It is fairly stan-
dard to show that, if only ε-best response steps are al-
lowed, a pseudo-polynomial time algorithm for approx-
imate pure Nash equilibria can be obtained. See Ap-
pendix C.1 for a proof of the following.

Proposition 4.2. Suppose that in every step of the
dynamics we only allow a player to change her strategy
if she can increase her payoff by at least ε. Then in
O(n·dmax·umax

ε ) steps, we will reach an ε-approximate
pure Nash equilibrium, where umax is the magnitude of
the maximum in absolute value entry in the payoff tables
of the game, and dmax the maximum degree.

Finally, combining Theorem 1.3 with Nash’s theo-
rem [17] we obtain Corollary 4.1.

Corollary 4.1. Finding a Nash equilibrium of a co-
ordination polymatrix game is in PLS ∩ PPAD.

Corollary 4.1 may be viewed as an indication that co-
ordination polymatrix games are tractable, as a PPAD-

or PLS-completeness result would have quite remark-
able complexity theoretic implications. On the other
hand, we expect the need of quite novel techniques to
tackle this problem. Hence, coordination polymatrix
games join an interesting family of fixed point problems
that are not known to be in P, while they belong to
PLS ∩ PPAD; other important problems in this inter-
section are Simple Stochastic Games [8] and P -Matrix
Linear Complementarity Problems [16]. See [11] for a
discussion of PLS∩PPAD and its interesting problems.

5 Combining Coordination and Zero-sum
Games

We showed that, if a polymatrix game is zero-sum,
we can compute an equilibrium efficiently. We also
showed that, if every edge is a 2-player coordination
game, the problem is in PPAD ∩ PLS. Zero-sum and
coordination games are the simplest kinds of two-player
games. This explains the lack of hardness results for the
above models. A question often posed to us in response
to these results (e.g. in [19]) is whether the combination
of zero-sum and coordination games is well-behaved.
What is the complexity of a polymatrix game if every
edge can either be a zero-sum or a coordination game?

We eliminate the possibility of a positive result by
establishing a PPAD-completeness result for this seem-
ingly simple model. A key observation that makes our
hardness result plausible is that if we allowed double
edges between vertices, we would be able to simulate a
general polymatrix game. Indeed, suppose that u and
v are neighbors in a general polymatrix game, and the
payoff matrices along the edge (u, v) are Cu,v and Cv,u.
We can define then a pair of coordination and zero-sum
games as follows. The coordination game has payoff
matrices Au,v = (Av,u)T = (Cu,v + (Cv,u)T )/2, and the
zero-sum game has payoff matrices Bu,v = −(Bv,u)T =
(Cu,v − (Cv,u)T )/2. Hence, Au,v + Bu,v = Cu,v and
Av,u + Bv,u = Cv,u. Given that general polymatrix
games are PPAD-complete [9], the above decomposition
shows that double edges give rise to PPAD-completeness
in our model. We show next that unique edges suf-
fice for PPAD-completeness. In fact, seemingly sim-
ple structures comprising of groups of friends who co-
ordinate with each other while participating in zero-
sum edges against opponent groups are also PPAD-
complete. These games, called group-wise zero-sum
polymatrix games, are discussed in Section 5.3.

We proceed to describe our PPAD-completeness
reduction from general polymatrix games to our model.
The high level idea of our proof is to make a twin of
each player, and design some gadgetry that allows us
to simulate the double edges described above by single
edges. Our reduction will be equilibrium preserving. In



the sequel we denote by G a general polymatrix game
and by G∗ the game output by our reduction. We start
with a polymatrix game with 2 strategies per player,
and call these strategies 0 and 1. Finding an exact
Nash equilibrium in such a game is known to be PPAD-
complete [9].

5.1 Gadgets. To construct the game G∗, we intro-
duce two gadgets. The first is a copy gadget. It is used
to enforce that a player and her twin always choose the
same mixed strategies. The gadget has three nodes, u0,
u1 and ub, and the nodes u0 and u1 play zero-sum games
with ub. The games are designed to make sure that u0

and u1 play strategy 0 with the same probability. The
payoffs on the edges (u0, ub) and (u1, ub) are defined as
follows (we specify the value of M later):

• ub’s payoff
– on edge (u0, ub):

u0:0 u0:1
ub:0 M 0
ub:1 −2M −M

– on edge (u1, ub):
u1:0 u1:1

ub:0 −2M −M
ub:1 M 0

The payoff of u0 on (u0, ub) and of u1 on (u1, ub) are
defined by taking respectively the negative transpose of
the first and second matrix above so that the games on
these edges are zero-sum.

The second gadget is used to simulate in G∗ the
game played in G. For an edge (u, v) of G, let us assume
that the payoffs on this edge are the following:

• u’s payoff:
v:0 v:1

u:0 x1 x2

u:1 x3 x4

• v’s payoff:
v:0 v:1

u:0 y1 y2
u:1 y3 y4

It’s easy to see that for any i, there exists ai and bi,
such that ai + bi = xi and ai − bi = yi. To simulate
the game on (u, v), we use u0, u1 to represent the two
copies of u, and v0, v1 to represent the two copies of v.
Coordination games are played on the edges (u0, v0) and
(u1, v1), while zero-sum games are played on the edges
(u0, v1) and (u1, v0). We only write down the payoffs for
u0, u1. The payoffs of v0, v1 are then determined, since
we have already specified what edges are coordination
and what edges are zero-sum games.

• u0’s payoff
– on edge (u0, v0):

v0:0 v0:1
u0:0 a1 a2

u0:1 a3 a4

– on edge (u0, v1):
v1:0 v1:1

u0:0 b1 b2
u0:1 b3 b4

• u1’s payoff
– on edge (u1, v0):

v0:0 v0:1
u1:0 b1 b2
u1:1 b3 b4

– on edge (u1, v1):
v1:0 v1:1

u1:0 a1 a2

u1:1 a3 a4

5.2 Construction of G∗. For every node u in G, we
use a copy gadget with u0, u1, ub to represent u in G∗.
And for every edge (u, v) in G, we build a simulating
gadget on u0, u1, v0, v1. The resulting game G∗ has
either a zero-sum game or a coordination game on every
edge, and there is at most one edge between every pair
of nodes. For an illustration of the construction see
Figure 1 of Appendix D.1. It is easy to see that G∗
can be constructed in polynomial time given G. We are
going to show that given a Nash equilibrium of G∗, we
can find a Nash equilibrium of G in polynomial time.

5.3 Correctness of the Reduction. For any ui
and any pair v0, v1, the absolute value of the payoff
of ui from the interaction against v0, v1 is at most
Mu,v := maxj,k(|aj |+ |bk|), where the aj ’s and bk’s are
obtained from the payoff tables of u and v on the edge
(u, v). Let P = n · maxu maxvMu,v. Then for every
ui, the payoff collected from all players other than ub is
in [−P, P ]. We choose M = 3P + 1. We establish the
following (proof in Appendix D).

Lemma 5.1. In every Nash equilibrium S∗ of G∗, and
any copy gadget u0, u1, ub, the players u0 and u1 play
strategy 0 with the same probability.

Assume that S∗ is a Nash equilibrium of G∗. Ac-
cording to Lemma 5.1, any pair of players u0, u1 use the
same mixed strategy in S∗. Given S∗ we construct a
strategy profile S for G by assigning to every node u
the common mixed strategy played by u0 and u1 in G∗.
For u in G, we use Pu(u : i, S−u) to denote u’s pay-
off when u plays strategy i and the other players play



S−u. Similarly, for uj in G∗, we let P̂∗uj
(uj : i, S∗−uj

) de-
note the sum of payoffs that uj collects from all players
other than ub, when uj plays strategy i, and the other
players play S∗−uj

. We show the following lemmas (see
Appendix D), resulting in the proof of Theorem 1.4.

Lemma 5.2. For any Nash equilibrium S∗ of G∗, any
pair of players u0, u1 of G∗ and the corresponding player
u of G, P̂∗u0

(u0 : i, S∗−u0
) = P̂∗u1

(u1 : i, S∗−u1
) = Pu(u :

i, S−u).

Lemma 5.3. If S∗ is a Nash equilibrium of G∗, S is a
Nash equilibrium of G.

Theorem 1.4. Finding a Nash equilibrium in poly-
matrix games with coordination or zero-sum games on
their edges is PPAD-complete.

Theorem 1.4 follows from Lemma 5.3 and the PPAD-
completeness of polymatrix games with 2 strategies per
player [9]. In fact, our reduction shows a stronger re-
sult. In our reduction, players can be naturally divided
into three groups. Group A includes all u0 nodes, group
B includes all ub nodes and group C all u1 nodes. It is
easy to check that the games played inside the groups
A, B and C are only coordination games, while the
games played across groups are only zero-sum (recall
Figure 1). Such games in which the players can be par-
titioned into groups such that all edges within a group
are coordination games and all edges across different
groups are zero-sum games are called group-wise zero-
sum polymatrix games. Intuitively these games should
be simpler since competition and coordination are not
interleaving with each other. Nevertheless, our reduc-
tion shows that group-wise zero-sum polymatrix games
are PPAD-complete, even for 3 groups of players, estab-
lishing Theorem 1.5.

6 Strictly Competitive Polymatrix Games

Two-player strictly competitive games are a commonly
used generalization of zero-sum games. A 2-player
game is strictly competitive if it has the following
property [3] : if both players change their mixed
strategies, then either their expected payoffs remain the
same, or one player’s expected payoff increases and the
other’s decreases. It was recently shown that strictly
competitive games are merely affine transformations of
two-player zero-sum games [2]. That is, if (R,C) is a
strictly competitive game, there exists a zero-sum game
(R′, C ′) and constants c1, c2 > 0 and d1, d2 such that
R = c1R

′ + d11 and C = c2C
′ + d21, where 1 is the

all-ones matrix. Given this result it is quite natural to
expect that polymatrix games with strictly competitive
games on their edges should be tractable. Strikingly we
show that this is not the case.

Theorem 1.2. Finding a Nash equilibrium in poly-
matrix games with strictly competitive games on their
edges is PPAD-complete.

The proof is based on the PPAD-completeness of poly-
matrix games with coordination and zero-sum games
on their edges. The idea is that we can use strictly
competitive games to simulate coordination games. In-
deed, suppose that (A,A) is a coordination game be-
tween nodes u and v. Using two parallel edges we can
simulate this game by assigning game (2A,−A) on one
edge and (−A, 2A) on the other. Both games are strictly
competitive games, but the aggregate game between u
and v is the original coordination game. In our setting,
we do not allow parallel edges between nodes. We go
around this using our copy gadget from the previous
section which only has zero-sum games. The details of
our construction are in Appendix E.

Acknowledgements We thank Ozan Candogan and
Adam Kalai for useful discussions.
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Omitted Details
A Approximate Notions of Nash Equilibrium

Two widely used notions of approximate Nash equilib-
rium are the following: (1) In an ε-Nash equilibrium, all
pure strategies played with positive probability should
give the corresponding player expected payoff that lies
to within an additive ε from the expected payoff guar-
anteed by the best mixed strategy against the other
players’ mixed strategies. (2) A related, but weaker,
notion of approximate equilibrium is the concept of an
ε-approximate Nash equilibrium, in which the expected
payoff achieved by every player through her mixed strat-
egy lies to within an additive ε from the optimal payoff
she could possibly achieve via any mixed strategy given
the other players’ mixed strategies. Clearly, an ε-Nash
equilibrium is also a ε-approximate Nash equilibrium,
but the opposite need not be true. Nevertheless, the
two concepts are computationally equivalent as the fol-
lowing proposition suggests.

Proposition A.1. [9] Given an ε-approximate Nash
equilibrium of an n-player game, we can compute in
polynomial time a

√
ε · (
√
ε + 1 + 4(n − 1)αmax)-Nash

equilibrium of the game, where αmax is the magnitude
of the maximum in absolute value possible utility of a
player in the game.

B Separable Zero-Sum Multiplayer Games

B.1 The Payoff-Preserving Transformation.
Proof of Lemma 3.1: Let all players except u and v
fix their strategies to S−{u,v}. For w ∈ {u, v}, k ∈ [mw],
let

P(w:k) =
∑

r∈N(w)\{u,v}

(sTw ·Aw,r · sr + sTr ·Ar,w · sw),

where in the above expression take sw to simply be the
deterministic strategy k. Using that the game is zero-
sum, the following must be true:

• suppose u plays strategy 1, v plays strategy j; then

P(u:1) + P(v:j) +Au,v1,j +Av,uj,1 = α (1)

• suppose u plays strategy i, v plays strategy 1; then

P(u:i) + P(v:1) +Au,vi,1 +Av,u1,i = α (2)

• suppose u plays strategy 1, v plays strategy 1; then

P(u:1) + P(v:1) +Au,v1,1 +Av,u1,1 = α (3)

• suppose u plays strategy i, v plays strategy j; then

P(u:i) + P(v:j) +Au,vi,j +Av,uj,i = α (4)

In the above, −α represents the total sum of players’
payoffs on all edges that do not involve u or v as one of
their endpoints. Since S−{u,v} is held fixed here for our
discussion, α is also fixed. By inspecting the above, we
obtain that (1) + (2) = (3) + (4). If we cancel out the
common terms in the equation, we obtain

(Au,v1,1 +Av,u1,1 ) + (Au,vi,j +Av,uj,i ) =

(Au,v1,j +Av,uj,1 ) + (Au,vi,1 +Av,u1,i ).

�

Proof of Lemma 3.2:

• Using the second representation for Bu,vi,j ,

Bu,vi,j = Bu,v1,1 + (Av,u1,1 −A
v,u
1,i ) + (Au,vi,j −A

u,v
i,1 ).

• Using the first representation for Bv,uj,i ,

Bv,uj,i = Bv,u1,1 + (Av,u1,i −A
v,u
1,1 ) + (Au,vi,1 −A

u,v
i,j ).

So we have Bu,vi,j +Bv,uj,i = Bu,v1,1 +Bv,u1,1 =: c{u,v}. �

Proof of Lemma 3.3: Suppose that, in going from S to
Ŝ, we modify player v’s strategy from i to j. Notice that
for all players that are not in v’s neighborhood, their
payoffs are not affected by this change. Now take any
player u in the neighborhood of v and let u’s strategy be
k in both S and Ŝ. The change in u’s payoff when going
from S to Ŝ in GG is Au,vk,j −A

u,v
k,i . According to property

(a), this equals Bu,vk,j −B
u,v
k,i , which is exactly the change

in u’s payoff in GG′. Since the payoff of u is the same
in the two games before the update in v’ s strategy, the
payoff of u remains the same after the change. Hence,



all players except v have the same payoffs under Ŝ in
both GG and GG′. Since both games have zero total sum
of players’ payoffs, v should also have the same payoff
under Ŝ in the two games. �

Proof of Lemma 3.4: Start with the pure strategy
profile S where every player is playing her first strategy.
Since Bu,v1,1 = Au,v1,1 , every player gets the same payoff
under S in both games GG and GG′. Now Lemma 3.3
implies that for any other pure strategy profile S′, every
player gets the same payoff in the games GG and GG′.
Indeed, change S into S′ player-after-player and apply
Lemma 3.3 at every step. �

B.2 Proof of Corollary 1.1. First, it is easy to
check that the payoff preserving transformation of The-
orem 1.1 also works for transforming separable constant-
sum multiplayer games to pairwise constant-sum games.
It follows that two classes of games are payoff preserving
transformation equivalent.

Let now GG be a separable constant-sum multi-
player game, and GG′ be GG’s payoff-equivalent pair-
wise constant-sum game, with payoff matrices Bu,v.
Then Bu,v + (Bv,u)T = c{u,v}1 (from Lemma 3.2).
We create a new game, GG′′, by assigning payoff ta-
bles Du,v = Bu,v − cu,v

2 1 on each edge (u, v). The new
game GG′′ is a pairwise zero-sum game. Moreover, it is
easy to see that, under the same strategy profile S, for
any player u, the difference between her payoff in games
GG,GG′ and the game GG′′ is a fixed constant. Hence,
the three games share the same set of Nash equilibria.
From this and the result of [10] Properties (1) and (2)
follow.

Now let every node u ∈ V of the original game
GG choose a mixed strategy x

(t)
u at every time step

t = 1, 2, . . ., and suppose that each player’s sequence
of strategies 〈x(t)

u 〉 is no-regret against the sequences
of the other players. 8 It is not hard to see that the
same no-regret property must also hold in the games GG′
and GG′′, since for every player u her payoffs in these
three games only differ by a fixed constant under any
strategy profile. But GG′′ is a pairwise zero-sum game.
Hence, we know from [10] that the round-average of
the players’ mixed strategy sequences are approximate
Nash equilibria in GG′′, with the approximation going to
0 with the number of rounds. But, since for every player
u her payoffs in the three games only differ by a fixed
constant under any strategy profile, it follows that the
round-average of the players’ mixed strategy sequences
are also approximate Nash equilibria in GG, with the
same approximation guarantee. Property (3) follows.

8A reader who is not familiar with the definition of no-regret

sequences is referred to Section 3.3.

The precise quantitative guarantee of this statement can
be found in Lemma 3.6 of Section 3.3, where we also
provide a different, constructive, proof of this statement.
The original proof in [10] was non-constructive.

B.3 LP Formulation. Proof of Lemma 3.5: We
show the following lemmas.

Lemma B.1. Every Nash equilibrium of the separable
zero-sum multiplayer game GG can be mapped to a
symmetric restricted equilibrium of the lawyer game G.

Proof of Lemma B.1: Let S be a Nash equilibrium
of GG. Denote by Su(i) the probability that u places
on strategy i ∈ [mu] and Su the mixed strategy of
u. We construct a legitimate strategy x̄ by setting
x̄u:i = Su(i)/n. We claim that (x̄, x̄) is a symmetric
restricted equilibrium. Indeed let us fix the row player’s
strategy to x̄. For every block of the column player’s
strategies indexed by u, it is optimal for the column
player to distribute the 1/n available probability mass
for this block proportionally to Su. This is because Su
is a best response for player u to the mixed strategies
of the other players. �

Lemma B.2. From any symmetric restricted equilib-
rium of the lawyer game G, we can recover a Nash equi-
librium of GG in polynomial time.

Proof of Lemma B.2: Let (x, x) be a symmetric re-
stricted equilibrium of the lawyer game. We let

x̂u(i) = n · xu:i

and we denote by S the strategy profile in GG where
every player u plays strategy i ∈ [mu] with probability
x̂u(i). We show that S is a Nash equilibrium of GG.

We prove this by contradiction. If S is not a Nash
equilibrium, there exists a player u who can increase her
payoff by deviating from strategy Su to some strategy
S′u. Let us then define a new legitimate strategy x′ for
the row player of the lawyer game. x′ is the same as x,
except that xu:i = S′u(i)/n, for all i ∈ [mu]. It is easy
to see that

x′T ·R · x− xT ·R · x =
1
n2

(Pu(S′)− Pu(S)) > 0

Therefore, (x, x) is not a restricted equilibrium of the
lawyer game, a contradiction. �

Combining the above we conclude the proof of
Lemma 3.5. �

Lemma B.3. (Restricted Zero-Sum Property)
If x and y are respectively legitimate strategies for the
row and column players of G,

xT ·R · y + xT · C · y = 0.



Proof of Lemma B.3: We start with the following.

Lemma B.4. Let u be a node of GG and v1, v2, . . . , vk
be u’s neighbors. Let yu represent a mixed strategy for
u and xvi mixed strategies for vi, i = 1, . . . , k. For any
fixed collection {xvi}ki=1, as we range yu,∑
i

xTvi
·Avi,u · yu +

∑
i

yTu ·Au,vi ·xvi
remains constant.

Proof of Lemma B.4: Assume that the xvi
, i = 1, . . . , k,

are held fixed. As we change yu the only payoffs that
are affected are those on the edges incident to u. The
sum of these payoffs is∑

i

xTvi
·Avi,u · yu +

∑
i

yTu ·Au,vi · xvi

Since the sum of all payoffs in the game should be 0 and
the payoffs on all the other edges do not change, it must
be that, as yu varies, the quantity∑

i

xTvi
·Avi,u · yu +

∑
i

yTu ·Au,vi · xvi

remains constant. �

We use Lemma B.4 to establish the (restricted)
zero-sum property of the lawyer game G. To do this,
we employ a hybrid argument. Before proceeding
let us introduce some notation: If z is a legitimate
strategy, then for any node w ∈ GG we let z̄w :=
(zw:1, zw:2, · · · , zw:mw

)T .
Let y′ be a legitimate strategy, such that y′v:i = yv:i

for all v 6= u and i ∈ [mv]. Assume that v1, v2, · · · , vk
are u’s neighbors. Then

(xT ·R · y + xT · C · y)

− (xT ·R · y′ + xT · C · y′)

=

(∑
i

x̄Tvi
·Avi,u · ȳu +

∑
i

x̄Tvi
· (Au,vi)T · ȳu

)

−

(∑
i

x̄Tvi
·Avi,u · ȳ′u +

∑
i

x̄Tvi
· (Au,vi)T · ȳ′u

)

=

(∑
i

x̄Tvi
·Avi,u · ȳu +

∑
i

ȳTu ·Au,vi · x̄vi

)

−

(∑
i

x̄Tvi
·Avi,u · ȳ′u +

∑
i

ȳ′Tu ·Au,vi · x̄vi

)
=0 (making use of Lemma B.4)

We established that if we change strategy y on a
single block u, the sum of the lawyers’ payoffs remains
unaltered. By doing this n times, we can change y to x

without changing the sum of lawyers’ payoffs. On the
other hand, we know that xT · R · x is 1/n2 times the
sum of all nodes’ payoffs in GG, if every node u plays
n · x̄u. We know that GG is zero-sum and that R = CT .
It follows that xT · R · x = xT · C · x = 0. We conclude
that

xT ·R · y + xT · C · y = xT ·R · x+ xT · C · x = 0.

�

We conclude with a proof that a Nash equilibrium
in GG can be computed efficiently, and that the set of
Nash equilibria is convex. This is done in two steps as
follows.

Lemma B.5. Using our LP formulation we can com-
pute a symmetric restricted equilibrium of the lawyer
game G in polynomial time. Moreover, the set of sym-
metric restricted equilibria of G is convex.

Proof of Lemma B.5: We argue that a solution of
the linear program will give us a symmetric restricted
equilibrium of G. By Nash’s theorem [17], GG has a
Nash equilibrium S. Using S define x̄ as in the proof
of Lemma B.1. Since (x̄, x̄) is a restricted equilibrium
of the lawyer game, x̄T · C · y ≤ x̄T · C · x̄ = 0, for any
legitimate strategy y for the column player. 9 Using
Lemma B.3 we obtain then that x̄T · R · y ≥ 0, for
all legitimate y. So if we hold x := x̄ fixed in the linear
program, and optimize over z, ẑ we would get value ≥ 0.
So the LP value is ≥ 0. Hence, if (x′, z, ẑ) is an optimal
solution to the LP, it must be that 1

n

∑
u ẑu ≥ 0, which

means that for any legitimate strategy y, x′T ·R · y ≥ 0.
Therefore, x′T · C · y ≤ 0 for any legitimate y, using
Lemma B.3 again. So if the row player plays x′,
the payoff of the column player is at most 0 from any
legitimate strategy. On the other hand, if we set y = x′,
x′T · C · x′ = 0. Thus, x′ is a (legitimate strategy) best
response for the column player to the strategy x′ of the
row player. Since G is symmetric, x′ is also a (legitimate
strategy) best response for the row player to the strategy
x′ of the column player. Thus, (x′, x′) is a symmetric
restricted equilibrium of the lawyer game.

We show next that the optimal value of the LP
is 0. Indeed, we already argued that the LP value is
≥ 0. Let then (x′, z, ẑ) be an optimal solution to the
LP. Since x′ is a legitimate strategy for G, we know
that x′T · R · x′ = 0 (see our argument in the proof of
Lemma B.3). It follows that if we hold x = x′ fixed in
the LP and try to optimize the objective over the choices
of z, ẑ we would get objective value ≤ x′T · R · x′ = 0.

9In the proof of Lemma B.3 we show that, for any legitimate
strategy x in the lawyer game, xT ·R · x = xT · C · x = 0.



But x′ is an optimal choice for x. Hence the optimal
value of the LP is ≤ 0. Combining the above we get
that the LP value is 0.

We showed above that if (x′, z, ẑ) is an optimal so-
lution of the LP, then (x′, x′) is a restricted equilibrium
of G. We show next the opposite direction, i.e. that if
(x′, x′) is a restricted equilibrium of G then (x′, z, ẑ) is
an optimal solution of the LP for some z, ẑ. Indeed, we
argued above that for any restricted equilibrium (x′, x′),
x′T · R · y ≥ 0, for every legitimate strategy y. Hence,
holding x = x′ fixed in the LP, and optimizing over z, ẑ,
the objective value is at least 0 for the optimal choice
of z = z(x′), ẑ = ẑ(x′). But the LP-value is 0. Hence,
(x′, z(x′), ẑ(x′)) is an optimal solution. But the set of
optimal solutions of the LP is convex. Hence, the set
{x′ | ∃z, ẑ such that (x′, z, ẑ) is an optimal solution of
the LP} is also convex. Hence, the set {(x′, x′) | ∃z, ẑ
such that (x′, z, ẑ) is an optimal solution of the LP} is
also convex. But this set, as we argued above, is pre-
cisely the set of symmetric restricted equilibria of G.�

Lemma B.6. For any separable zero-sum multiplayer
game GG, we can compute a Nash equilibrium in poly-
nomial time using linear programming, and the set of
Nash equilibria of GG is convex.

Proof of Lemma B.6: Given GG, we can construct
the corresponding lawyer game G efficiently. By
Lemma B.5, we can compute a symmetric restricted
equilibrium of G in polynomial time, and using the map-
ping in Lemma B.2, we can recover a Nash equilibrium
of GG in polynomial time. Moreover, from the proof of
Lemma B.5 it follows that the set{

x′
∣∣∣ (x′, x′) is a symmetric restricted equi-

librium of G

}
is convex. Hence, the set{

nx′
∣∣∣ (x′, x′) is a symmetric restricted equi-

librium of G

}
is also convex. But the latter set is by Lemma 3.5
precisely the set of Nash equilibria of GG. �

B.4 Convergence of No-Regret Dynamics.
Proof of Lemma 3.6: We have the following

T∑
t=1

 ∑
(u,v)∈E

xT ·Au,v · x(t)
v


=

∑
(u,v)∈E

(
xT ·Au,v ·

(
T∑
t=1

x(t)
v

))

=T ·
∑

(u,v)∈E

xT ·Au,v · x̄(T )
v .

Let zu be the best response of u, if for all v in u’s
neighborhood v plays strategy x̄(T )

v . Then for all u, and
any mixed strategy x for u, we have,∑
(u,v)∈E

zTu ·Au,v · x̄(T )
v ≥

∑
(u,v)∈E

xT ·Au,v · x̄(T )
v . (1)

Using the No-Regret Property

T∑
t=1

 ∑
(u,v)∈E

(x(t)
u )T ·Au,v · x(t)

v


≥

T∑
t=1

 ∑
(u,v)∈E

zTu ·Au,v · x(t)
v

− g(T )

= T ·
∑

(u,v)∈E

zTu ·Au,v · x̄(T )
v − g(T )

Let us take a sum over all u ∈ V on both the left and
the right hand sides of the above. The LHS will be

∑
u∈V

(
T∑
t=1

( ∑
(u,v)∈E

(x(t)
u )T ·Au,v · x(t)

v

))

=
T∑
t=1

(∑
u∈V

( ∑
(u,v)∈E

(x(t)
u )T ·Au,v · x(t)

v

))

=
T∑
t=1

(∑
u∈V
Pu

)
=

T∑
t=1

0 = 0

(by the zero-sum property)

The RHS is

T ·
∑
u∈V

 ∑
(u,v)∈E

zTu ·Au,v · x̄(T )
v

− n · g(T )

The LHS is greater than the RHS, thus

0 ≥ T ·
∑
u∈V

 ∑
(u,v)∈E

zTu ·Au,v · x̄(T )
v

− n · g(T )

⇒ n · g(T )
T
≥
∑
u∈V

 ∑
(u,v)∈E

zTu ·Au,v · x̄(T )
v

 .

Recall that the game is zero-sum. So if every player u
plays x̄(T )

u , the sum of players’ payoffs is 0. Thus

∑
u∈V

 ∑
(u,v)∈E

(x̄(T )
u )T ·Au,v · x̄(T )

v

 = 0.



Hence:

n·g(T )
T

≥
∑
u∈V

( ∑
(u,v)∈E

zTu ·Au,v · x̄(T )
v

−
∑

(u,v)∈E

(x̄(T )
u )T ·Au,v · x̄(T )

v

)
.

But (1) impies that ∀u:∑
(u,v)∈E

zTu ·Au,v · x̄(T )
v −

∑
(u,v)∈E

(x̄(T )
u )T ·Au,v · x̄(T )

v ≥ 0.

So we have that the sum of positive numbers is bounded
by n · g(T )

T . Hence ∀u,

n · g(T )
T
≥

∑
(u,v)∈E

zTu ·Au,v · x̄(T )
v

−
∑

(u,v)∈E

(x̄(T )
u )T ·Au,v · x̄(T )

v .

So for all u, if all other players v play x̄
(T )
v , the

payoff given by the best response is at most
(
n · g(T )

T

)
better than payoff given by playing (x̄(T )

u ). Thus, it
is a

(
n · g(T )

T

)
-approximate Nash equilibrium for every

player u to play (x̄(T )
u ). �

C Coordination-Only Polymatrix games

Proof of Proposition 4.1: Using ui(S) to denote player
i’s payoff in the strategy profile is S, we show that the
scaled social welfare function

Φ(S) =
1
2

∑
i

ui(S)(3.1)

is an exact potential function of the game.

Lemma C.1. Φ is an exact potential function of the
game.

Proof of Lemma C.1: Let us fix a pure strategy profile
S and consider the deviation of player i from strategy
Si to strategy S′i. If j1, j2, · · · , j` are i’s neighbors, we
have that

ui(S′i, S−i)− ui(S) =
∑
k

ujk(S′i, S−i)−
∑
k

ujk(S),

since the game on every edge is a coordination game. On
the other hand, the payoffs of all the players who are not
in i’s neighborhood remain unchanged. Therefore,

Φ(S′i, S−i)− Φ(S) = ui(S′i, S−i)− ui(S).

Hence, Φ is an exact potential function of the game. �

�

C.1 Best Response Dynamics and Approxi-
mate Pure Nash Equilibria. Since Φ(S) (defined
in Equation (3.1) above) is an exact potential function
of the coordination polymatrix game, it is not hard
to see that the best response dynamics converge to a
pure Nash equilibrium. Indeed, the potential function
is bounded, every best response move increases the
potential function, and there is a finite number of pure
strategy profiles. However, the best response dynamics
need not converge in polynomial time. On the other
hand, if we are only looking for an approximate pure
Nash equilibrium, a modified kind of best response
dynamics allowing only moves that improve a player’s
payoff by at least ε converges in pseudo-polynomial
time. This fairly standard fact, stated in Proposi-
tion 4.2, is proven below.

Proof of Proposition 4.2: As showed in Lemma C.1, if
a player u increases her payoff by ε, Φ will also increase
by ε. Since every player’s payoff is at least −dmax ·umax,
and at most dmax ·umax, Φ lies in [− 1

2n ·dmax ·umax,
1
2n ·

dmax · umax]. Thus, there can be at most n·dmax·umax
ε

updates to the potential function before no player can
improve by more than ε. �

C.2 PLS-Completeness.
Proof of Theorem 1.3: We reduce the Max-Cut problem
with the flip neighborhood to the problem of computing
a pure Nash equilibrium of a coordination polymatrix
game. If the graph G = (V,E) in the instance of
the Max-Cut problem has n nodes, we construct a
polymatrix game on the same graph G = (V,E), such
that every node has 2 strategies 0 and 1. For any edge
(u, v) ∈ E, the payoff is wu,v if u and v play different
strategies, otherwise the payoff is 0.

For any pure strategy profile S, we can construct a
cut from S in the natural way by letting the nodes who
play strategy 0 comprise one side of the cut, and those
who play strategy 1 the other side. Edges that have
endpoints in different groups are in the cut and we can
show that Φ(S) equals the size of the cut. Indeed, for
any edge (u, v), if the edge is in the cut, u and v play
different strategies, so they both receive payoff wu,v on
this edge. So this edge contributes wu,v to Φ(S). If the
edge is not in the cut, u and v receive payoff of 0 on this
edge. In this case, the edge contributes 0 to Φ(S). So
the size of the cut equals Φ(S). But Φ(S) is an exact
potential function of the game, so pure Nash equilibria
are in one-to-one correspondence to the local maxima of
Φ under the neighborhood defined by one player (node)
flipping his strategy (side of the cut). Therefore, every
pure Nash equilibrium is a local Max-Cut under the flip
neighborhood. �



D Polymatrix Games with Coordination and
Zero-Sum Edges

Proof of Lemma 5.1: We use P∗u(u : i, S−u) to denote
the payoff for u when u plays strategy i, and the other
players’ strategies are fixed to S−u. We also denote
by x the probability with which u0 plays 0, and by
y the corresponding probability of player u1. For a
contradiction, assume that there is a Nash equilibrium
S∗ in which x 6= y. Then

P∗ub
(ub : 0, S∗−ub

)
= M · x+ (−2M) · y + (−M) · (1− y)
= M · (x− y)−M

P∗ub
(ub : 1, S∗−ub

)
= (−2M) · x+ (−M) · (1− x) +M · y
= M · (y − x)−M

Since u0 and u1 are symmetric, we assume that
x > y WLOG. In particular, x − y > 0, which implies
P∗ub

(ub : 0, S∗−ub
) > P∗ub

(ub : 1, S∗−ub
). Hence, ub plays

strategy 0 with probability 1. Given this, if u0 plays
strategy 0, her total payoff should be no greater than
−M +P = −2P − 1. If u0 plays 1, the total payoff will
be at least −P . −2P − 1 < −P , thus u0 should play
strategy 1 with probability 1. In other words, x = 0.
This is a contradiction to x > y. �

Proof of Lemma 5.2: We first show

P̂∗u0
(u0 : i, S∗−u0

) = P̂∗u1
(u1 : i, S∗−u1

).

Since G∗ is a polymatrix game, it suffices to show that
the sum of payoffs that u0 collects from v0, v1 is the same
with the payoff that u1 collects. Since S∗ is a Nash
equilibrium, according to Lemma 5.1, we can assume
that v0 and v1 play strategy 0 with the same probability
q. We use u∗(ui : j, v0, v1) to denote ui’s payoff when
playing j.

u∗(u0 : 0, v0, v1)
= a1 · q + a2 · (1− q) + b1 · q + b2 · (1− q)
= (a1 + b1) · q + (a2 + b2) · (1− q)

u∗(u0 : 1, v0, v1)
= a3 · q + a4 · (1− q) + b3 · q + b4 · (1− q)
= (a3 + b3) · q + (a4 + b4) · (1− q)

u∗(u1 : 0, v0, v1)
= a1 · q + a2 · (1− q) + b1 · q + b2 · (1− q)
= (a1 + b1) · q + (a2 + b2) · (1− q)

u∗(u1 : 1, v0, v1)
= a3 · q + a4 · (1− q) + b3 · q + b4 · (1− q)
= (a3 + b3) · q + (a4 + b4) · (1− q)

So u∗(u0 : i, v0, v1) = u∗(u1 : i, v0, v1). Thus,
P̂∗u0

(u0 : i, S∗−u0
) = P̂∗u1

(u1 : i, S∗−u1
).

Next we show

P̂∗u0
(u0 : i, S∗−u0

) = Pu(u : i, S−u)

Since G is also a polymatrix game, we can just show that
the payoff that u collects from v is the same as the payoff
that u0 collects from v0 and v1. By the construction
of S, v plays strategy 0 with probability q. Letting
u(u : i, v) be the payoff for u, if u plays strategy i, we
have

u(u : 0, v) = (a1 + b1) · q + (a2 + b2) · (1− q)

u(u : 1, v) = (a3 + b3) · q + (a4 + b4) · (1− q)
So u∗(u0 : i, v0, v1) = u(u : i, v). Therefore,

P̂∗u0
(u0 : i, S∗−u0

) = Pu(u : i, S−u).�

Proof of Lemma 5.3: We only need to show that, for
any player u in G, playing the same strategy that u0, u1

use in G∗ is indeed a best response for u. According to
Lemma 5.2,

P̂∗u0
(u0 : i, S∗−u0

) = P̂∗u1
(u1 : i, S∗−u1

) = Pu(u : i, S−u).

Let

Pi := P̂∗u0
(u0 : i, S∗−u0

)

=P̂∗u1
(u1 : i, S∗−u1

) = Pu(u : i, S−u).

Also let r be the probability that ub assigns to strategy
0 and let u∗(ui : j) be the payoff of ui along the edge
(ui, ub) when playing strategy j.

u∗(u0 : 0) = −M · r + 2M · (1− r) = 2M − 3M · r
u∗(u0 : 1) = M · (1− r) = M −M · r
u∗(u1 : 0) = 2M · r + (−M) · (1− r) = 3M · r −M
u∗(u1 : 1) = M · r

Let p be the probability with which u0, u1, u play
strategy 0. Since S∗ is a Nash equilibrium of G∗, if
p ∈ (0, 1), then we should have the following equalities:

u∗(u0 : 0) + P0 = 2M − 3M · r + P0

=u∗(u0 : 1) + P1 = M −M · r + P1 (1)
u∗(u1 : 0) + P0 = 3M · r −M + P0

=u∗(u1 : 1) + P1 = M · r + P1 (2)

Then

2M − 3M · r + P0 + 3M · r −M + P0

=M −M · r + P1 +M · r + P1



⇒M + 2P0 = M + 2P1

⇒ P0 = P1.

Therefore, it is a best response for u to play strategy
0 with probability p. We can show the same for the
extremal case that u0, u1 play pure strategies (p = 0 or
p = 1).

Therefore, for any u, Su is a best response to the
other players’ srtategy S−u. So S is a Nash equilibrium
of G. �

D.1 An Illustration of the Reduction.

u0

u1

v0

v1

ub vb

u v

Figure 1: An illustration of the PPAD-completeness
reduction. Every edge (u, v) of the original polymatrix
game G corresponds to the structure shown at the
bottom of the figure. The dashed edges correspond to
coordination games, while the other edges are zero-sum
games.

E Polymatrix Games with Strictly
Competitive Games on the Edges

Proof of Theorem 1.2: We reduce a polymatrix game G
with either coordination or zero-sum games on its edges
to a polymatrix game G∗ all of whose edges are strictly
competitive games. For every node u, we use a copy
gadget (see Section 5) to create a pair of twin nodes
u0, u1 representing u. By the properties of the copy
gadget u0 and u1 use the same mixed strategy in all
Nash equilibria of G∗. Moreover, the copy gadget only
uses zero-sum games.

Having done this, the rest of G∗ is defined as follows.

• If the game between u and v in G is a zero-
sum game, it is trivial to simulate it in G∗. We
can simply let both (u0, v0) and (u1, v1) carry the
same game as the one on the edge (u, v); clearly
the games on (u0, v0) and (u1, v1) are strictly
competitive. An illustration is shown in Figure 2.

• If the game between u and v in G is a coordination
game (A,A), we let the games on the edges (u0, v1)
and (u1, v0) be (2A,−A), and the games on the
edges (u0, v0) and (u1, v1) be (−A, 2A) as shown in

Figure 2: Simulation of a zero-sum edge in G (shown at
the top) by a gadget comprising of only zero-sum games
(shown at the bottom).

Figure 3. All the games in the gadget are strictly
competitive.

Figure 3: Simulation of a coordination edge (A,A) in G.
At the top we have broken (A,A) into two parallel edges.
At the bottom we show the gadget in G∗ simulating
these edges.

The rest of the proof proceeds by showing the
following lemmas that are the exact analogues of the
Lemmas 5.1, 5.2 and 5.3 of Section 5.

Lemma E.1. In every Nash equilibrium S∗ of G∗, and
any copy gadget u0, u1, ub, the players u0 and u1 play
strategy 0 with the same probability.

Assume that S∗ is a Nash equilibrium of G∗. Given
S∗ we construct a mixed strategy profile S for G by
assigning to every node u the common mixed strategy
played by u0 and u1 in G∗. For u in G, we use
Pu(u : i, S−u) to denote u’s payoff when u plays strategy
i and the other players play S−u. Similarly, for uj in
G∗, we let P̂∗uj

(uj : i, S∗−uj
) denote the sum of payoffs

that uj collects from all players other than ub, when uj
plays strategy i, and the other players play S∗−uj

. Then:

Lemma E.2. For any Nash equilibrium S∗ of G∗, any
pair of players u0, u1 of G∗ and the corresponding player
u of G, P̂∗u0

(u0 : i, S∗−u0
) = P̂∗u1

(u1 : i, S∗−u1
) = Pu(u :

i, S−u).



Lemma E.3. If S∗ is a Nash equilibrium of G∗, S is a
Nash equilibrium of G.

We omit the proofs of the above lemmas as they
are essentially identical to the proofs of Lemmas Lem-
mas 5.1, 5.2 and 5.3 of Section 5. By combining Theo-
rem 1.4 and Lemma E.3 we conclude the proof of The-
orem 1.2. �


