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Abstract

We study revenue maximization in multi-item multi-bidder auctions under the natural item-independence

assumption – a classical problem in Multi-Dimensional Bayesian Mechanism Design. One of the biggest

challenges in this area is developing algorithms to compute (approximately) optimal mechanisms that are

not brute-force in the size of the bidder type space, which is usually exponential in the number of items

in multi-item auctions. Unfortunately, such algorithms were only known for basic settings of our problem

when bidders have unit-demand [CHMS10b, CMS15] or additive valuations [Yao15].

In this paper, we significantly improve the previous results and design the first algorithm that runs in

time polynomial in the number of items and the number of bidders to compute mechanisms that are O(1)-
approximations to the optimal revenue when bidders have XOS valuations, resolving the open problem

raised in [CM16, CZ17]. Moreover, the computed mechanism has a simple structure: It is either a posted

price mechanism or a two-part tariff mechanism. As a corollary of our result, we show how to compute

an approximately optimal and simple mechanism efficiently using only sample access to the bidders’

value distributions. Our algorithm builds on two innovations that allow us to search over the space of

mechanisms efficiently: (i) a new type of succinct representation of mechanisms – the marginal reduced

forms, and (ii) a novel Lift-and-Round procedure that concavifies the problem.
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1 Introduction

Revenue-maximization in multi-item auctions has been recognized as a central problem in Economics and

more recently in Computer Science. While Myerson’s celebrated work showed that a simple mechanism

is optimal in single-item settings [Mye81], the optimal multi-item mechanism is known to be prohibitively

complex and notoriously difficult to characterize even in basic settings. Facing the challenge, a major re-

search effort has been dedicated to understanding the computational complexity for finding an approximately

revenue-optimal mechanism in multi-item settings. Despite significant progress, there is still a substantial gap

in our understanding of the problem, for example, in the natural and extensively studied item-independent

setting, first introduced in the influential paper by Chawla, Hartline, and Kleinberg [CHK07].

Formally, the item-independent setting is defined as follows: A seller is selling m heterogeneous items to

n bidders, where the i-th bidder’s type is drawn independently from an m-dimensional product distribution

Di =×j∈[m]Dij .1 We only understand the computational complexity of finding the revenue-optimal mecha-

nism in the item-independent setting for the two most basic valuations: unit-demand and additive valuations.

First, we know that finding an exactly optimal mechanism is computationally intractable even for a single

bidder with either unit-demand [CDO+15] or additive valuation [DDT14]. Second, there exists a polyno-

mial time algorithm that computes a mechanism whose revenue is at least a constant fraction of the optimal

revenue when bidders have unit-demand [CHMS10b, CMS15] or additive valuations [Yao15]. However, unit-

demand and additive valuations are only two extremes within a broader class of value functions known as the

constrained additive valuations, where the bidder’s value is additive subject to a downward-closed feasibil-

ity constraint.2 Furthermore, all constrained additive valuations are contained in an even more general class

known as the XOS valuations. Beyond unit-demand and additive valuations, our understanding was limited,

and we only knew how to compute an approximately optimal mechanism when bidders are symmetric, i.e.,

all Di’s are identical [CM16, CZ17]. Finding a polynomial time algorithm for asymmetric bidders was thus

raised as a major open problem in both [CM16, CZ17]. In this paper, we resolve this open problem.

Result I: For the item-independent setting with (asymmetric) XOS bidders, there exists an algorithm

that computes a Dominant Strategy Incentive Compatible (DSIC) and Individually Rational

(IR) mechanism that achieves at least c · OPT for some absolute constant c > 0, where OPT

is the optimal revenue achievable by any Bayesian Incentive Compatible (BIC) and IR mech-

anism. Our algorithm has running time polynomial in
∑

i∈[n],j∈[m] |Tij |, where Tij is the sup-

port of Dij . See Theorem 1 for the formal statement.

Computing Approximately Optimal Mechanisms under Structured Distributions. When the bidders’

types are drawn from arbitrary distributions, a line of works provide algorithms for finding almost revenue-

optimal mechanisms in multi-item settings in time polynomial in the total number of types, i.e.,
∑

i∈[n] |SUPP(Di)|

(SUPP(Di) denotes the support of Di) [AFH+12, CDW12a, CDW12b, CDW13a, CDW13b, COVZ21]. How-

ever, the total number of types could be exponential in the number of items, e.g., there are
∑

i∈[n]

(∏
j∈[m] |Tij|

)

types in the item-independent case, making these algorithms unsuitable. For unstructured type distributions,

such dependence is unavoidable as even describing the distributions requires time Ω
(∑

i∈[n] |SUPP(Di)|
)

.

What if the type distributions are structured and permit a more succinct description, e.g., product measures?

Arguably, high-dimensional distributions that arise in practice (such as bidders’ type distributions in multi-

item auctions) are rarely arbitrary, as arbitrary high-dimensional distributions cannot be represented or learned

efficiently; see e.g. [DDK18] for a discussion. Indeed, one of the biggest challenges in Bayesian Algorith-

mic Mechanism Design is designing algorithms to compute (approximately) optimal mechanisms that are not

brute-force in the size of the bidder type space when the type distributions are structured. In this paper, we

1[m] denotes {1, 2, ..., m}. Dij is the distribution of bidder i’s value for item j. The definition is extended to XOS in Section 2.
2A bidder has constrained-additive valuation if the bidder’s value for a bundle S is defined as maxV ∈2S∩I

∑
j∈V

tj , where tj
is the bidder’s value for item j, and I is a downward-closed set system over the items specifying the feasible bundles. Note that

constrained-additive valuations contain familiar valuations such as additive, unit-demand, or matroid-rank valuations.
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develop computational tools to exploit the item-independence to obtain an exponential speed-up in running

time.

Simple vs. Optimal. An additional feature of our algorithm is that the mechanisms computed have a simple

structure. It is either a posted price mechanism or a two-part tariff mechanism. Given the description of the

two mechanisms, it is clear that both of them are DSIC and IR.

Rationed Posted Price Mechanism (RPP). There is a price pij for bidder i to purchase item j. The bidders

arrive in some arbitrary order, and each bidder can purchase at most one item among the available ones at the

given price.3

Two-part Tariff Mechanism (TPT). All bidders face the same set of prices {pj}j∈[m]. Bidders arrive in

some arbitrary order. For each bidder, we show her the available items and the associated price for each item,

then ask her to pay an entry fee depending on the bidder’s identity and the available items. If the bidder

accepts the entry fee, she proceeds to purchase any of the available items at the given prices; if she rejects the

entry fee, then she pays nothing and receives nothing.

A recent line of works focus on designing simple and approximately optimal mechanisms [CHK07,

CHMS10b, Ala11, HN12, KW12, CH13, BILW14, Yao15, RW15, CDW16, CM16, CZ17]. The main take-

away of these results is that in the item-independent setting, there exists a simple mechanism that achieves a

constant fraction of the optimal revenue. The most general setting where such a simple O(1)-approximation

is known is exactly the setting in Result I, where bidders have XOS valuations [CZ17]. More specifically,

[CZ17] show that there is a RPP or TPT that achieves a constant fraction of the optimal revenue, however

their result is purely existential and does not suggest how to compute these simple mechanisms. Our result

makes their existential result constructive.

Finally, combining our result with the learnability result for multi-item auctions in [CD17], we can extend

our algorithm to the case when we only have sample access to the distributions.

Result II: For constrained-additive bidders, there exists an algorithm that computes a simple, DSIC, and

IR mechanism whose revenue is at least c · OPT − O(ε · poly(n,m)) for some absolute con-

stant c > 0 in time polynomial in n, m, and 1/ε, given sample access to bidders’ type distri-

butions, and assuming each bidder’s value for each item lies in [0, 1]. See Theorem 4 for the

formal statement.

1.1 Our Approach and Techniques

Our main technical contribution is a novel relaxation of the revenue optimization problem that can be solved

approximately in polynomial time and an accompanying rounding scheme that converts the solution to a

simple and approximately optimal mechanism.4 Our first step is to replace the objective of revenue with a

duality-based benchmark of the revenue proposed in [CZ17]. One can view the new objective as maximizing

the virtual welfare, similar to Myerson’s elegant solution for the single-item case. The main difference is

that, while one can use a fixed set of virtual valuations for any allocation in the single-item case, due to

the multi-dimensionality of our problem, the virtual valuations must depend on the allocation, causing the

virtual welfare to be a non-concave function in the allocation. In this paper, we develop algorithmic tools to

concavify and approximately optimize the virtual welfare maximization problem. We believe our techniques

will be useful to address other similar challenges in Multi-Dimensional Mechanism Design.

More specifically, for every BIC and IR mechanismM with allocation rule σ and payment rule p, one can

choose a set of dual parameters θ(σ) based on σ to construct an upper bound U(σ, θ(σ)) for the revenue ofM.

We refer to θ as the dual parameters because θ corresponds to a set of “canonical” dual variables, which can be

used to derive the virtual valuations via the Cai-Devanur-Weinberg duality framework [CDW16]. The upper

3Usually, posted price mechanisms do not restrict the maximum number of items a bidder can buy. We consider a rationed version

of posted price mechanism to make the computational task easy.
4An influential framework known as the ex-ante relaxation has been widely used in Mechanism Design, but is insufficient for our

problem. See Appendix B.2 for a detailed discussion.
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bound U(σ, θ(σ)) is then simply the corresponding virtual welfare. The computational problem is to find an

allocation σ that (approximately) maximizes U(σ, θ(σ)). With such a σ, we could use the result in [CZ17]

to convert it to a simple and approximately optimal mechanism. Unfortunately, the function U(σ, θ(σ)) is

highly non-concave in σ,5 and thus hard to maximize efficiently. See Section 3.1 for a detailed discussion.

LP Relaxation via Lifting. We further relax our objective, i.e., U(σ, θ(σ)), to obtain a computationally

tractable problem. One specific difficulty in optimizing U(σ, θ(σ)) comes from the fact that θ(σ) is highly

non-linear in σ. We address this difficulty in two steps. In the first step of our relaxation, we flip the depen-

dence of σ and θ by relaxing the problem to the following two-stage optimization problem (Figure 1):

- Stage I: Maximize H(θ) subject to some constraints. H(θ) is the optimal value of the Stage II problem.

- Stage II: Maximize an LP over σ with θ-dependent constraints.

This makes the problem much more structured and significantly disentangles the complex dependence be-

tween σ and θ. Yet we still do not know how to solve it efficiently. In the second step of our relaxation, we

merge the two-stage optimization into a single LP. In particular, we lift the problem to a higher dimensional

space and optimize over joint distributions of the allocation σ and the dual parameters θ via an LP (Figure 3).

Since the number of dual parameters is already exponential in the number of bidders and the number of items,

it is too expensive to represent such a joint distribution explicitly. We show it is unnecessary to search over all

joint distributions. By leveraging the independence across bidders and items, it suffices for us to consider a

set of succinctly representable distributions – the ones whose marginals over the dual parameters are product

measures. See Section 3.1 for a more detailed discussion on the development of our relaxation.

“Rounding” any Feasible Solution to a Simple Mechanism. Can we still approximate the optimal solution

of the LP relaxation using a simple mechanism? Unfortunately, the result from [CZ17] no longer applies. We

provide a generalization of [CZ17], that is, given any feasible solution of our LP relaxation, we can construct

in polynomial time a simple mechanism whose revenue is at least a constant fraction of the objective value

of the feasible solution (Theorem 3). Our proof (in Appendix C.6) provides several novel ideas to handle the

new challenges due to the relaxation, which may be of independent interest.

Marginal Reduced Forms. We deliberately postpone the discussion on how we represent the allocation of

a mechanism until now. A widely used succinct representation a mechanismM is known as the reduced form

or the interim allocation rule: {rij(ti)}i∈[n],j∈[m],ti∈×j∈[m] Tij
where rij(ti) is the probability for bidder i to

receive item j when her type is ti = (ti1, . . . , tim) [CDW12a]. Despite being more succinct than the ex-post

allocation rule, the reduced form is still too expensive to store in our setting, as its size is exponential in m.

A key innovation in our relaxation is the introduction of an even more succinct representation – the marginal

reduced forms and a multiplicative approximation to the polytope of all feasible marginal reduced forms.

Although this is a natural concept, to the best of our knowledge, we are the first to introduce and make use of

it. The marginal reduced form is represented as :
{
wij(tij)

}
i∈[n],j∈[m],tij∈Tij

, where wij(tij) is the probability

for bidder i to receive item j inM and her value for item j is tij .6 Importantly, the size of a marginal reduced

form is polynomial in the input size of our problem. As our LP relaxation uses marginal reduced forms as

decision variables, it is crucial for us to be able to optimize over the polytope P that contains all feasible

marginal reduced forms. To the best of our knowledge, P does not have a succinct explicit description or an

efficient separation oracle. To overcome the obstacle, we provide an efficient separation oracle for a different

polytope Q that is a multiplicative approximation to P , i.e., c · P ⊆ Q ⊆ P for some absolute constant

c ∈ (0, 1) (Theorem 2). Using the separation oracle for Q, we can find a c-approximation to the optimum

of the LP relaxation efficiently. Note that a sampling technique was developed in [CDW12b] to approximate

the polytope of feasible reduced forms. However, their technique only provides an “additive approximation

5See Appendix B.1 for an example of the non-concavity of the function.
6We refer to {wij(tij)}i∈[n],j∈[m],tij∈Tij

as the marginal reduced forms as they are the marginals of the reduced forms multiplied

by the probability that tij is bidder i’s value for item j, i.e.,
wij (tij)

PrDij
[tij ]

= Eti,−j∼×ℓ 6=j Diℓ

[
rij (tij , ti,−j)

]
.
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to the polytope”, which is insufficient for our purpose. Indeed, our multiplicative approximation holds for a

wide class of polytopes that frequently appear in Mechanism Design (Theorem 8). We believe our technique

has further applications, for example, to convert the additive FPRAS of Cai-Daskalakis-Weinberg [CDW12a,

CDW12b, CDW13a, CDW13b] to a multiplicative FPRAS.

1.2 Related Work

Simple vs. Optimal. We provide an algorithm for the most general setting where an O(1)-approximation

to the optimal revenue is known using simple mechanisms. It is worth mentioning that a recent result by

Dütting et al. [DKL20] shows that simple mechanisms can be used to obtain a O(log logm)-approximation

to the optimal revenue even when the bidders have subadditive valuations. We leave it as an interesting open

problem to extend our algorithm to bidders with subadditive valuations.

(1 − ε)-Approximation in Item-Independent Settings. We focus on constant factor approximations for

general valuations. For more specialized valuations, e.g., unit-demand/additive, there are several interesting

results for finding (1− ε)-approximation to the “optimal mechanism”. For example, PTASes are known if we

restrict our attention to finding the optimal simple mechanism for a single bidder, e.g., item-pricing [CD11] or

partition mechanisms [Rub16]. For multiple bidders, PTASes are known for bidders with additive valuations

under extra assumptions on distributions (such as i.i.d., MHR,7 etc.) [DW12, CH13]. The only result that

does not require simplicity of the mechanism or extra assumptions on the distribution is [KSM+19], but

their algorithm is only a quasi-polynomial time approximation scheme (QPTAS) and computes a (1 − ε)-
approximation to the optimal revenue for a single unit-demand bidder.

Structured Distributions beyond Item-Independence. When the type distributions can be represented as

other structured distributions such as Bayesian networks, Markov Random Fields, or Topic Models, recent

results show how to utilize the structure to improve the learnability, approximability, and communication com-

plexity of multi-item auctions [BCD20, CO21, CD21]. We believe that tools developed in this work would be

useful to obtain similar improvement in terms of the computational complexity for computing approximately

optimal mechanisms for structured distributions beyond item-independence.

2 Preliminaries

We focus on revenue maximization in the combinatorial auction with n independent bidders and m hetero-

geneous items. We denote bidder i’s type ti as {tij}j∈[m], where tij is bidder i’s private information about

item j. For each i, j, we assume tij is drawn independently from the distribution Dij . Let Di = ×
m
j=1Dij be

the distribution of bidder i’s type and D = ×n
i=1Di be the distribution of the type profile. We only consider

discrete distributions in this paper. We use Tij (or Ti,T ) and fij (or fi, f ) to denote the support and the prob-

ability mass function of Dij (or Di,D). For notational convenience, we let t−i to be the types of all bidders

except i and t<i (or t≤i) to be the types of the first i− 1 (or i) bidders. Similarly, we define D−i, T−i and f−i

for the corresponding distribution, support of the distribution, and probability mass function.

Valuation Functions. For every bidder i, denote her valuation function as vi(·, ·) : Ti × 2[m] → R+. For

every ti ∈ Ti, S ⊆ 2[m], vi(ti, S) is bidder i’s value for receiving a set S of items, when her type is ti. In

the paper, we are interested in constrained-additive and XOS valuations. For every i ∈ [n], bidder i’s valua-

tion vi(·, ·) is constrained-additive if the bidder can receive a set of items subject to some downward-closed

feasibility constraint Fi. Formally, vi(ti, S) = maxR∈2S∩F

∑
j∈R tij for every type ti and set S. It contains

classic valuations such as additive (Fi = 2[m]) and unit-demand (Fi = ∪j∈[m]{j}). For constrained-additive

valuations, we use tij to denote bidder i’s value for item j. For every i ∈ [n], bidder i’s valuation vi(·, ·) is

XOS (or fractionally-subadditive) if each tij represents a set of K non-negative numbers {α
(k)
ij (tij)}k∈[K],

for some integer K , and vi(ti, S) = maxk∈[K]

∑
j∈S α

(k)
ij (tij), for every type ti and set S. We denote by

7That is, fij(v)/1− Fij(v) is monotone non-decreasing (MHR) for each i, j, where fij is the pdf and Fij is the cdf.
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Vij(ti) = vi(ti, {j}) the value for a single item j. Since the value of the bidder for item j only depends on

tij , we denote Vij(tij) as the singleton value.

Mechanisms. A mechanism M can be described as a tuple (σ, p), where σ is the interim allocation rule

of M and p stands for the payment rule. Formally, for every bidder i, type ti and set S, σiS(ti) is the

interim probability that bidder i with type ti receives exact bundle S. We use standard concepts of BIC, DSIC

and IR for mechanisms. See Appendix A for the formal definitions. For any BIC and IR mechanism M,

denote REV(M) the revenue of M. Denote OPT the optimal revenue among all BIC and IR mechanisms.

Throughout this paper, the two classes of simple mechanisms we focus on are rationed posted price (RPP)

mechanisms and two-part tariff (TPT) mechanisms, which are both described in Section 1. We denote PREV

the optimum revenue achievable among all RPP mechanisms.

Access to the Bidders’ Valuations. We define several ways to access a bidder’s valuation.

Definition 1 (Value and Demand Oracle). A value oracle for a valuation v(·, ·) takes a type t and a set of

items S ⊆ [m] as input, and returns the bidder’s value v(t, S) for the bundle S. A demand oracle for a

valuation v(·, ·) takes a type t and a collection of non-negative prices {pj}j∈[m] as input, and returns a

utility-maximizing bundle, i.e. S∗ ∈ argmaxS⊆[m]

(
v(t, S)−

∑
j∈S pj

)
. In this paper, we use DEMi(·, ·) to

denote the demand oracle for bidder i’s valuation vi(·, ·).

For constrained-additive valuations, our result only requires query access to a value oracle and a demand

oracle for every bidder i’s valuation vi(·, ·). For XOS valuations, we need a stronger demand oracle that

allows “scaled types” as input. We refer to the stronger oracle as the adjustable demand oracle.

Definition 2 (Adjustable Demand Oracle). An adjustable demand oracle for bidder i’s XOS valuation vi(·, ·)
takes a type t, a collection of non-negative coefficients {bj}j∈[m], and a collection of non-negative prices

{pj}j∈[m] as input. For every item j, bj is a scaling factor for tij , meaning that each of the K numbers

{α
(k)
ij (tij)}k∈[K], i.e. the contribution of item j under each additive function, is multiplied by bj . The ora-

cle outputs a favorite bundle S∗ with respect to the adjusted contributions and the prices {pj}j∈[m], as well

as the additive function {α
(k∗)
ij (tij)}j∈[m] for some k∗ ∈ [K] that achieves the highest value on S∗. For-

mally, (S∗, k∗) ∈ argmaxS⊆[m],k∈[K]

{∑
j∈S bjα

(k)
ij (tij)−

∑
j∈S pj

}
. We use ADEMi(·, ·, ·) to denote the

adjustable demand oracle for bidder i’s XOS valuation vi(·, ·).

The adjustable demand oracle can be viewed as a generalization of the demand oracle for XOS valuations.

In the above definition, if every coefficient bj is 1, then the adjustable demand oracle outputs the utility-

maximizing bundle S∗ (as in the demand oracle) and the additive function that achieves the value for this set.

For general bj’s, the adjustable demand oracle scales item j’s contribution to bidder i’s value by a bj factor.

The output bundle S∗ maximizes the adjusted utility.8

Definition 3 (Bit Complexity of an Instance). Given any instance of our problem represented as the tuple

(T ,D, v = {vi(·, ·)}i∈[n]), Denote as bf the bit complexity of elements in {fij(tij)}i∈[n],j∈[m],tij∈Tij . For

constrained-additive valuations, denote as bv the bit complexity of elements in {tij}i∈[n],j∈[m],tij∈Tij . For

XOS valuations, denote as bv the bit complexity of elements in {α
(k)
ij (tij)}i∈[n],j∈[m],tij∈Tij ,k∈[K]. We define

the value max(bv, bf ) to be the bit complexity of the instance.

3 Linear Program Relaxation via Lifting

In this section, we present the linear program relaxation for computing an approximately optimal simple

mechanism. The main result of our paper is as follows:

8Note that for every collection of scaling factors, the query to the adjusted demand oracle is simply a demand query for a different

XOS valuation. If all additive functions of ti are explicitly given, then the adjusted demand oracle can be simulated in time O(mK).
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Theorem 1. Let T =
∑

i,j |Tij| and b be the bit complexity of the problem instance (Definition 3). For any

δ > 0, there exists an algorithm that computes a RPP mechanism or a TPT mechanism, such that the revenue

of the mechanism is at least c · OPT for some absolute constant c > 0 with probability 1 − δ − 2
nm . For

constrained-additive valuations, our algorithm assumes query access to a value oracle and a demand oracle

of bidders’ valuations. For XOS valuations, our algorithm assumes query access to a value oracle and an

adjustable demand oracle. The algorithm has running time poly(n,m, T, b, log(1/δ)).

For any matroid-rank valuation, i.e., the downward-closed feasibility constraint is a matroid, the value and

demand oracle can be simulated in polynomial time using greedy algorithms. For more general constraints, it

is standard to assume access to the value and demand oracle. We also show that the adjustable demand oracle

(rather than a demand oracle) is necessary to obtain our XOS result. In Theorem 14, we prove that (even

an approximation of) ADEMi can not be implemented in polynomial time, given access to the value oracle,

demand oracle, and XOS oracle.

As most of the technical barriers already exist in the constrained-additive case, for exposition purposes,

we focus on constrained-additive valuations in the main body (unless explicitly stated).9 Before stating our

LP, we first provide a brief recap of the existential result by Cai and Zhao [CZ17] summarized in Lemma 1.10

Definition 4. For any i ∈ [n], j ∈ [m], and any feasible11 interim allocation σ, and non-negative numbers

β̃ = {β̃ij ∈ Tij}i∈[n],j∈[m], c = {ci}i∈[n] and r = {rij}i∈[n],j∈[m] ∈ [0, 1]nm (referred to as the dual param-

eters), let CORE(σ, β̃, c, r) be the welfare under allocation σ truncated at β̃ij + ci for every i, j. Formally,

CORE(σ, β̃, c, r) =
∑

i

∑

ti

fi(ti) ·
∑

S⊆[m]

σiS(ti)
∑

j∈S

tij ·
(
1[tij < β̃ij + ci] + rij · 1[tij = β̃ij + ci]

)
.

Lemma 1. [CZ17] Given any BIC and IR mechanism M with interim allocation σ, where σiS(ti) is the

interim probability for bidder i to receive exactly bundle S when her type is ti, there exist non-negative

numbers β̃(σ) = {β̃
(σ)
ij ∈ Tij}i∈[n],j∈[m], c

(σ) = {c
(σ)
i }i∈[n] and r

(σ) ∈ [0, 1]nm that satisfy12

1.
∑

i∈[n]

(
Prtij [tij > β̃

(σ)
ij ] + r

(σ)
ij · Prtij [tij = β̃

(σ)
ij ]
)
≤ 1

2 ,∀j,

2. 1
2 ·
∑

ti∈Ti
fi(ti) ·

∑
S:j∈S σiS(ti) ≤ Prtij [tij > β̃

(σ)
ij ] + r

(σ)
ij · Prtij [tij = β̃

(σ)
ij ],∀i, j,

3.
∑

i∈[n] c
(σ)
i ≤ 8 · PREV,

and the corresponding CORE(σ, β̃(σ), c(σ), r(σ)) satisfies the following inequalities:

4. REV(M) ≤ 28 · PREV + 4 · CORE(σ, β̃(σ), c(σ), r(σ)),

5. CORE(σ, β̃(σ), c(σ), r(σ)) ≤ 64 · PREV + 8 · REV(M
(σ)
1 ), whereM

(σ)
1 is some TPT mechanism.

Remark 1. For continuous type distributions, there exists β̃(σ) that satisfy both Property 1 and 2 of Lemma 1

with r
(σ)
ij = 1,∀i, j for every σ. For discrete distributions, such a β̃(σ) may not exist. This is simply a tie-

breaking issue, and the role of r(σ) is to fix it. Roughly speaking, r
(σ)
ij is the probability that bidder i wins item

j, when she is indifferent between purchasing or not. Readers can treat r(σ) as the all-one vector to get the

intuition behind our approach.

9The linear program for XOS valuations can be found in Figure 4 in Appendix C.3.
10The statement is for constrained-additive bidders. See Appendix C.1 for the statement for XOS bidders.
11For constrained-additive bidders, an interim allocation σ is feasible if it can be implemented by a mechanism whose allocation

rule always respects all bidders’ feasibility constraints. It is without loss of generality to consider feasible interim allocations.
12[CZ17] provides an explicit way to calculate β̃(σ), c(σ), r(σ). We only include the crucial properties of these parameters here.
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By combining Property 4 and 5 of Lemma 1, Cai and Zhao [CZ17] proved that the revenue of any BIC, IR

mechanismM is bounded by a constant number of PREV and the revenue of some TPT mechanism. Recall

that PREV is the optimal revenue achieved by an RPP mechanism, which is exactly the Sequential Posted

Price mechanism if we restrict the bidders’ valuations to unit-demand. Thus we can compute a set of posted

prices that approximates PREV by Chawla et al. [CHMS10a].

3.1 Tour to Our Relaxation

To facilitate our discussion about the key components and the intuition behind the relaxation, we present the

development of our relaxation and along the way examine several failed attempts. In Theorem 3, we show that

the optimal solution of the relaxed problem can indeed be approximated by simple mechanisms. Due to space

limitations, we do not include details on the approximation analysis in this section, but focus on our intuition

behind each step of our relaxation. Interested readers can find the proof of Theorem 3 in Appendix C.6. We

also assume rij to be 1 for every i and j to keep the notation light.

Step 0: Replace Revenue with the Duality-Based Benchmark. Instead of optimizing the revenue, we

optimize the upper bound of revenue. As guaranteed by Lemma 1, for any BIC and IR mechanism M =
(σ, p), its revenue is upper bounded by O(PREV + CORE(σ, θ(σ))), where we use θ(σ) to denote the set of

dual parameters (β̃(σ), c(σ)) guaranteed to exist by Lemma 1. Since we can approximate PREV, it suffices to

first approximately maximize CORE(σ, θ(σ)) over all feasible interim allocations σ, then compute the TPT in

Lemma 1 based on the computed σ. CORE(σ, θ(σ)) is the truncated welfare, but the truncation depends on σ
in a complex way, causing the function to be highly non-concave in σ (Example 1).

Step 1: Two-Stage Optimization. To overcome the barrier mentioned above, we consider a two-stage

optimization problem (Figure 1) by switching the order of dependence between the interim allocation σ and

dual parameters θ = (β, c). In Stage I, we optimize some function H over the dual parameters θ = (β, c),
where H(β, c) is the optimum of the Stage II problem for every fixed set of parameters (β, c). Constraint (1)

and (2) in the Stage I problem are due to Property 1 and 3 of Lemma 1 respectively. In Stage II, for any fixed

set of parameters θ = (β, c), we optimize CORE(σ, θ) over all feasible σ such that the tuple (σ,β, c) satisfy

Property 1, 2, and 3 of Lemma 1. We choose the interim allocation σ as the variables, CORE(σ,β, c) as the

objective, and include Constraint (4), which corresponds to Property 2 of Lemma 1. Why is the two-stage

optimization a relaxation? For any interim allocation σ, (i) the corresponding set of dual parameters θ(σ) is a

feasible solution of the first-stage optimization problem, and (ii) σ is feasible in the second-stage optimization

w.r.t. θ(σ), so (θ(σ), σ) is a feasible solution of the two-stage optimization problem.

Stage I:

max H(β, c)

s.t. (1)
∑

i∈[n]

Pr
tij

[tij ≥ βij ] ≤
1

2
∀j

(2)
∑

i∈[n]

ci ≤ 8 · PREV

Stage II:

H(β, c) =max
∑

i∈[n]

∑

ti∈Ti

fi(ti)·
∑

S⊆[m]

σiS(ti)
∑

j∈S

tij ·1[tij ≤ βij+ci]

s.t. (3) σ is feasible

(4)
1

2

∑

ti∈Ti

fi(ti) ·
∑

S:j∈S

σiS(ti) ≤ Pr
tij

[tij ≥ βij ] ∀i, j

Figure 1: Two-stage Optimization over θ = (β, c) and the allocation σ

We now focus on the Stage II problem and try to solve it efficiently for a fixed set of parameters θ. The

objective is a linear function of the variables σ, yet the set of variables σ = {σiS(ti)}i∈[n],S⊆[m],ti∈Ti has

exponential size. Luckily, the problem can be expressed more succinctly. For any interim allocation σ and

7



dual parameters θ = (β, c), the objective (CORE(σ, θ)) can be simplified as follows:

CORE(σ, θ) =
∑

i∈[n]
ti∈Ti

fi(ti)
∑

S⊆[m]

σiS(ti)
∑

j∈S

tij · 1[tij ≤ βij + ci] =
∑

i∈[n],j∈[m]
tij∈Tij

ŵij(tij)tij · 1[tij ≤ βij + ci],

(1)

where ŵij(tij) = fij(tij) ·
∑

ti,−j
fi,−j(ti,−j) ·

∑
S:j∈S σiS(tij, ti,−j) for every i ∈ [n], j ∈ [m], tij ∈ Tij . We

refer to {ŵij(tij)}i∈[n],j∈[m],tij∈Tij as the marginal reduced form of the interim allocation rule σ. ŵij(tij)
represents the probability that bidder i’s value for item j is tij and she receives item j, and the probability

is taken over the randomness of the allocation, other bidders’ types, as well as her own values for all the

other items. Now for every fixed dual parameters θ, CORE is expressed as a linear function of the much

more succinct representation ŵ = {ŵij(tij)}i,j,tij that has polynomial description size. We rewrite the Stage

II problem as an LP using the variables ŵ. Denote CORE(ŵ, θ) the last term of Equation (1), which is the

objective of the problem. By the definition of ŵ, Constraint (4) is equivalent to

1

2
·
∑

tij∈Tij

ŵij(tij) ≤ Pr
tij
[tij ≥ βij], ∀i, j (2)

which is a linear constraint on ŵ. Let P1 be the convex polytope that contains all marginal reduced forms ŵ
that can be implemented by some feasible allocation σ (corresponds to Constraint (3)) and P2 be the set of all

ŵ that satisfy all constraints in Equation (2). The Stage II problem is equivalent to the LPmaxŵ∈P1∩P2
CORE(ŵ, θ).

Unfortunately, since P1 does not have an explicit succinct description or an efficient separation oracle, it is

unclear if the problem can be solved efficiently.

Step 2: Marginal Reduced Form Relaxation. To overcome this barrier, we consider a relaxation of P1,

where the feasibility constraint is only enforced on each bidder separately. We refer to this step as the marginal

reduced form relaxation. We use ŵi = {ŵij(tij)}j∈[m],tij∈Tij to denote a feasible single-bidder marginal

reduced form for bidder i. Formally, we define the feasible region Wi of ŵi in Definition 5.

Definition 5 (Constrained-additive valuations: single-bidder marginal reduced form polytope). For every

i ∈ [n], suppose bidder i has a constrained-additive valuation with feasibility constraint Fi. Bidder i’s

single-bidder marginal reduced form polytope Wi ⊆ [0, 1]
∑

j∈[m] |Tij | is defined as follows: ŵi ∈ Wi if and

only if there exists an allocation rule {σS(ti)}ti∈Ti,S∈Fi
, i.e., σS(ti) is the probability that i receives set S

when her type is ti, such that (i)
∑

S∈Fi
σS(ti) ≤ 1, ∀ti ∈ Ti, and (ii) ŵij(tij) = fij(tij) ·

∑
ti,−j

fi,−j(ti,−j) ·∑
S:j∈S σS(ti), for all j ∈ [m] and tij ∈ Tij .

Throughout this section, we assume access to a separation oracle of Wi for every bidder i. In Theorem 2,

we present an efficient separation oracle for another polytope Ŵi that is a multiplicative approximation to

Wi, i.e., Ŵi is sandwiched between c ·Wi and Wi for some absolute constant c ∈ (0, 1), using only queries

to bidder i’s demand oracle. We will argue later that we can efficiently approximate our problem with the

separation oracle for Ŵi.

Here is our relaxation to the (rewritten) Stage II problem: Instead of forcing ŵ to be implementable jointly

(ŵ ∈ P1), we consider the relaxed region P ′ ⊇ P1: ŵ ∈ P ′ if and only if: (i) ŵi ∈Wi, for all bidder i ∈ [n],
and (ii)

∑
i

∑
tij

ŵij(tij) ≤ 1,∀j ∈ [m]. In other words, P ′ guarantees that, for every bidder i, ŵi is a feasible

single-bidder marginal reduced form for i, and the supply constraint is met in terms of marginal reduced forms

(rather than ex-post allocations).

The main benefit of this relaxation is computational. Without the relaxation, we need a multiplicative approx-

imation of P1. Theorem 2 provides such an approximation if we can exactly maximizes the social welfare –

a computational task that is substantially harder than answering demand queries. Indeed, we are not aware of

any efficient algorithm that exactly maximizes the social welfare with only access to demand oracles of every

bidder. The relaxed problem maxŵ∈P ′∩P2
CORE(ŵ, θ) is captured by the LP in Figure 2.13

13We omit the supply constraint
∑

i

∑
tij

ŵij(tij) ≤ 1 as it is implied by Constraint (1) in the Stage I problem and Constraint (4).
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Relaxed Stage II:

H(β, c) =max
∑

i∈[n]

∑

j∈[m]

∑

tij∈Tij

ŵij(tij) · tij · 1[tij ≤ βij + ci]

s.t. (3) ŵi ∈ Wi ∀i

(4)
1

2

∑

tij

ŵij(tij) ≤ Pr
tij

[tij ≥ βij ] ∀i, j

ŵij(tij) ≥ 0 ∀i, j, tij

Figure 2: The Relaxed Stage II Problem over the Marginal Reduced Forms

Consider the two-stage optimization with the relaxed Stage II problem. For every fixed parameters θ,

the relaxed Stage II problem can be solved efficiently (assuming a separation oracle of Wi for every i).
Unfortunately, we do not know how to solve the two-stage optimization problem efficiently, as the number

of different dual parameters is exponential in n and m, and enumerating through all possible choices of dual

parameters is not an option. To overcome this obstacle, we need ideas explained in the following step.

Step 3: Lifting the problem to a higher dimensional space. Instead of enumerating all possible dual

parameters θ, we optimize over distributions of the parameters. To guarantee that the number of decision

variables in our program is polynomial, we focus on product distributions over the parameters. Formally, for

every i, j, let Cij be a distribution over Vij ×∆, where Vij and ∆ are the set of possible values of βij and ci
accordingly, after discretization (See Footnote a in Figure 3 for a formal definition). All Cij’s are independent.

In our program, we use decision variables {λ̂ij(βij , δij)}i∈[n],j∈[m],βij∈Vij ,δij∈∆ to represent the distribution

Cij , i.e., λ̂ij(a, b) = Pr(βij ,δij)∼Cij [βij = a∧ δij = b]. Notice that if the parameters are drawn from a product

distribution, the parameter “ci” may be different for each item j. To distinguish them, we use δij to replace

the original parameter ci in our program.

Now we maximize the expected value of the CORE function over all product distributions ×i,jCij (rep-

resented by decision variables λ̂) and the allocations (represented by the marginal reduced form ŵ). If the

parameters θ and allocation ŵ are generated independently, the expected CORE is not a linear objective, since

the contributed truncated welfare in CORE is ŵij(tij) ·λ̂ij(βij , δij) ·tij ·1[tij ≤ βij+δij] for every tij , βij , δij .

To linearize the objective, we lift the problem to a higher dimensional space and consider joint distributions

over the parameters and allocations. We do not consider arbitrary joint distributions, and only focus on the

ones that correspond to the following generative process: first draw (β, δ) from a product distribution (ac-

cording to λ̂), then choose a feasible allocation ŵ(β,δ) = {ŵ
(β,δ)
ij (tij)}i,j,tij conditioned on (β, δ). Since there

are too many parameters (β, δ), we certainly cannot afford to store all ŵ(β,δ)’s explicitly. Instead, for each

bidder i and item j we introduce a new set of decision variables {λij(tij, βij , δij)}tij∈Tij ,βij∈Vij ,δij∈∆, where

λij(tij, βij , δij) is the marginal probability for the following three events to happen simultaneously in our

generative process: (a) (βij , δij) are the parameters for i and j. (b) Bidder i receives item j. (c) Bidder i’s
value for item j is tij . Formally,

λij(tij , βij , δij) = λ̂ij(βij , δij) ·
∑

{(βi′j′ ,δi′j′ )}(i′,j′) 6=(i,j)

(
ŵ

(β,δ)
ij (tij)/fij(tij)

)
·

∏

(i′,j′)6=(i,j)

λ̂i′j′(βi′j′ , δi′j′) (3)

With the new variables λij(tij , βij , δij)’s, we can express the objective as an linear function:∑

i∈[n]

∑

j∈[m]

∑

tij∈Tij

fij(tij) · tij ·
∑

βij∈Vij ,δij∈∆

λij(tij , βij , δij) · 1[tij ≤ βij + δij ].

Our program can be viewed as an “expected version” of the the two-stage optimization, when the parameters

θ = (β, δ) ∼×i,j Cij . In other words, we only require the constraints to be satisfied in expectation. We

discuss our relaxation in more details in Section 3.2.
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3.2 Our LP and a Sketch of the Proof of Theorem 1

We present a sketch of the proof of Theorem 1 for constrained-additive bidders and our main linear program

(Figure 3). Although the LP has many constraints and may seem intimidating at first, all constraints follow

quite naturally from our derivation in Section 3.1. See Section 3.3 for more details.

The first step of our proof is to estimate PREV using Lemma 2 from [CHMS10a].

Lemma 2 (Theorem 14 and Appendix F in [CHMS10a]). There exists an algorithm that with probability at

least 1− 2
nm , computes a Rationed Posted Price mechanismM such that REV(M) ≥ 1

6.75 (1−
1

nm) · PREV.

The algorithm runs in time poly(n,m,
∑

i,j |Tij|).

Denote E the event that an RPP in Lemma 2 is computed successfully. For simplicity, we will condition

on the event E for the rest of this section. Let P̃REV be the revenue of the RPP mechanism found in Lemma 2.

Next, we argue that the LP in Figure 3 (or Figure 4 when the valuations are XOS) can be solved efficiently.

Note that there are poly(n,m,
∑

i,j |Tij|) constraints except for Constraint (1), where we need to enforce the

feasibility of single-bidder marginal reduced forms. It suffices to construct an efficient separation oracle for

Wi for every i. However, to the best of our knowledge, Wi does not have a succinct explicit description or an

efficient separation oracle. For constrained-additive valuations, we construct another polytope Ŵi such that:

(i) Ŵi is a multiplicative approximation of Wi, i.e., c ·Wi ⊆ Ŵi ⊆Wi for some absolute constant c ∈ (0, 1),

and (ii) There exists an efficient separation oracle for Ŵi given access to the demand oracle.

Theorem 2. Let T =
∑

i,j |Tij| and b be the bit complexity of the problem instance (Definition 3). For any

i ∈ [n] and δ ∈ (0, 1), there is an algorithm that constructs a convex polytope Ŵi ∈ [0, 1]
∑

j∈[m] |Tij | using

poly(n,m, T, log(1/δ)) samples from Di, such that with probability at least 1− δ,

1. 1
12 ·Wi ⊆ Ŵi ⊆Wi, and the vertex-complexity (Definition 10) of Ŵi is poly(n,m, T, b, log(1/δ)).

2. There exists a separation oracle SO for Ŵi, given access to the demand oracle for bidder i’s valuation.

The running time of SO on any input with bit complexity b′ is poly(n,m, T, b, b′, log(1/δ)) and makes

poly(n,m, T, b, b′, log(1/δ)) queries to the demand oracle.

The algorithm constructs the polytope and the separation oracle SO in time poly(n,m, T, b, log(1/δ)).

Indeed, we prove a more general result regarding polytopes that can be expressed as a “mixture of polytopes”

(Theorem 8), which can be viewed as a generalization of the technique developed in [CDW12c] for approxi-

mating the polytope of all feasible reduced forms. We postpone the proof of Theorem 2 to Appendix D.2.

To solve the LP relaxation, we replace Wi by Ŵi in the LP in Figure 3 for every i ∈ [n], and solve the

LP in polynomial time using the ellipsoid method. Clearly, this solution is also feasible for the original LP

in Figure 3. Moreover, since Ŵi contains c ·Wi, we can show that the objective value of the solution we

computed is at least c · OPTLP, where OPTLP the optimum of the LP in Figure 3. Our proof of Theorem 2

heavily relies on the fact that Wi is a down-monotone polytope,14 which does not hold in the XOS case. For

XOS valuations, we construct the polytope Ŵi with a weaker guarantee: For every vector x in Wi, there exists

another vector x′ in Ŵi such that for every coordinate j, xj/x
′
j ∈ [a, b] for some absolute constant 0 < a < b,

and vice versa. See Appendix E for a complete proof of Theorem 1 (including the XOS case).

Next, we argue that the LP optimum can be approximated by simple mechanisms. [CZ17] shows that

for any BIC and IR mechanism M, CORE(σ, β̃(σ), c(σ), r(σ)) (as stated in Lemma 1) can be bounded by a

constant number of PREV and the revenue of a TPT (see Property 5 of Lemma 1). We generalize their result by

proving that for any feasible solution of the LP, its objective can be bounded by (a constant times) the revenue

of a RPP or TPT mechanism, and the mechanism can be computed efficiently given the feasible solution.

Definition 6. Let (w, λ, λ̂,d = (di)i∈[n]) be any feasible solution of the LP in Figure 3. For every j ∈ [m],

define Qj =
1
2 ·
∑

i∈[n]

∑
tij∈Tij

fij(tij) · tij ·
∑

βij∈Vij ,δij∈∆
λij(tij, βij , δij) · 1[tij ≤ βij + δij ].

15

14A polytope P ⊆ [0, 1]d is down-monotone if and only if for every x ∈ P and 0 ≤ x′ ≤ x, we have x′ ∈ P .
15Recall that λij(tij , βij , δij) is introduced in Step 3 of Section 3.1. See Figure 3 for the formal definition.
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Clearly, for any feasible solution of the LP, the objective function is 2·
∑

j∈[m]Qj . We prove in Theorem 3

that 2 ·
∑

j∈[m]Qj can be bounded by the revenue ofMTPT (Mechanism 1) and the RPPMPP (Lemma 2).

As we can efficiently compute a feasible solution whose objective is Ω(OPTLP), Theorem 3 implies that we

can compute in polynomial time a simple mechanism whose revenue is at least Ω(OPTLP + PREV).

Theorem 3. Let (w, λ, λ̂,d) be any feasible solution of the LP in Figure 3. LetMPP be the rationed posted

price mechanism computed in Lemma 2. Let MTPT be the two-part tariff mechanism shown in Mecha-

nism 1 with prices {Qj}j∈[m]. Then the objective function of the solution 2 ·
∑

j∈[m]Qj is bounded by

c1 · REV(MPP) + c2 · REV(MTPT), for some absolute constant c1, c2 > 0. Moreover, bothMPP andMTPT

can be computed in time poly(n,m,
∑

i,j |Tij|) with access to the demand oracle for the bidders’ valuations.

The proof of Theorem 3 combines the “shifted CORE” technique by Cai and Zhao [CZ17] with several

novel ideas to handle the new challenges due to the relaxation. We postpone it to Appendix C.6.

Mechanism 1 Two-part Tariff MechanismMTPT

0: Before the mechanism starts, the seller computes the price Qj (Definition 6) for every item j.

1: Bidders arrive sequentially in the lexicographical order.

2: When bidder i arrive, the seller shows her the set of available items Si(t<i) ⊆ [m], as well as their prices.

Note that Si(t<i) is the set of items that are not purchased by the first i − 1 bidders, which depends on

t<i. We use S1(t<1) to denote [m].
3: Bidder i is asked to pay an entry fee. The seller samples a type t′i ∼ Di, and sets the entry fee as:

ξi(Si(t<i), t
′
i) = maxS′⊆Si(t<i)

(
vi(t

′
i, S

′)−
∑

j∈S′ Qj

)
. The entry fee is bidder i’s utility for her fa-

vorite set under prices Qj’s if her type is t′i.
4: If bidder i (with type ti) agrees to pay the entry fee ξi(Si(t<i), t

′
i), then she can enter the mechanism and

take her favorite set S∗ ∈ argmaxS′⊆Si(t<i)

(
vi(ti, S

′)−
∑

j∈S′ Qj

)
, by paying

∑
j∈S∗ Qj . Otherwise,

the bidder gets nothing and pays 0.

Remark 2. Theorem 3 indeed holds even if the bidders arrive in an arbitrary order inMTPT. We choose the

lexicographical order only to keep the notation light.

We complete the last step of our proof by showing OPT = O(OPTLP + PREV) in Lemma 3. More

specifically, we show that for any mechanism M = (σ, p), the tuple (σ, β̃(σ), c(σ), r(σ)) stated in Lemma 1

corresponds to a feasible solution of the LP in Figure 3 whose objective is at least CORE(σ, β̃(σ), c(σ), r(σ)).
Hence, the revenue ofM is upper bounded by PREV and OPTLP. The proof is postponed to Appendix C.4.

Indeed, for both Theorem 3 and Lemma 3, we prove a general statement that applies to XOS valuations, which

requires a generalized LP and definitions. See Theorem 6 and Lemma 5 in Appendix C for details.

Lemma 3. For any BIC and IR mechanismM, REV(M) ≤ 28 · PREV + 4 · OPTLP.

3.3 Interpretation of Our LP in Figure 3.

We explain our LP in this section. The objective is the expected CORE, as explained in Step 3 in Section 3.1.

According to our definition of λij(tij, βij , δij) and Constraint (3), {wij(tij)}i,j,tij corresponds to the expected

marginal reduced form, that is, wij(tij) is the expected probability for bidder i to receive item j and her

value for item j is tij . Constraints (1) and (2) simply sets the feasible region of the expected marginal

reduced form w. They follow directly from the fact that every realized ŵ(β,δ) is feasible (see Step 3 in

Section 3.1). Constraint (4) follows from Equation (3) and the fact that every ŵ
(β,δ)
ij (tij)/fij(tij) is in [0, 1].

Constraint (5) implies that {λ̂ij(βij , δij)}βij ,δij correspond to a distribution Cij .
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max
∑

i∈[n]

∑

j∈[m]

∑

tij∈Tij

fij(tij) · tij ·
∑

βij∈Vij ,δij∈∆

λij(tij , βij , δij) · 1[tij ≤ βij + δij ]

s.t.

Allocation Feasibility Constraints:

(1) wi ∈ Wi ∀i

(2)
∑

i

∑

tij∈Tij

wij(tij) ≤ 1 ∀j

Natural Feasibility Constraints:

(3) fij(tij) ·
∑

βij∈Vij

∑

δij∈∆

λij(tij , βij , δij) = wij(tij) ∀i, j, tij ∈ Tij

(4) λij(tij , βij , δij) ≤ λ̂ij(βij , δij) ∀i, j, tij , βij ∈ Vij , δij

(5)
∑

βij∈Vij ,δij∈∆

λ̂ij(βij , δij) = 1 ∀i, j

Problem Specific Constraints:

(6)
∑

i∈[n]

∑

βij∈Vij

∑

δij∈∆

λ̂ij(βij , δij) · Pr
tij∼Dij

[tij ≥ βij ] ≤
1

2
∀j

(7)
1

2

∑

tij∈Tij

fij(tij)
(
λij(tij , βij , δij) + λij(tij , β

+
ij , δij)

)
≤

λ̂ij(βij , δij) · Pr
tij
[tij ≥ βij ] + λ̂ij(β

+
ij , δij) · Pr

tij
[tij ≥ β+

ij ] ∀i, j, βij ∈ V
0
ij , δij ∈ ∆

(8)
∑

βij∈Vij ,δij∈∆

δij · λ̂ij(βij , δij) ≤ di ∀i, j

(9)
∑

i∈[n]

di ≤ 111 · P̃REV

λij(tij , βij , δij) ≥ 0, λ̂ij(βij , δij) ≥ 0, wij(tij) ≥ 0, di ≥ 0 ∀i, j, tij , βij ∈ Vij , δij

Variables: a

- λij(tij , βij , δij), for all i, j and tij ∈ Tij , βij ∈ Vij , δij ∈ ∆. See Step 3 of Section 3.1 for an explanation of this

variable.

- λ̂ij(βij , δij), for all i, j, βij ∈ Vij , δij ∈ ∆, denoting the distribution Cij over Vij ×∆.

- wij(tij), for all i ∈ [n], j ∈ [m], tij ∈ Tij , denoting the expected marginal reduced form. We denote wi =
{wij(tij)}j∈[m],tij∈Tij

the vector of all variables associated with bidder i.

- di, for all i ∈ [n], denoting an upper bound of the expectation of δij over distribution Cij for all j.

aFor every i, j, let V0
ij = Tij be the set of all possible values of tij . To address the tie-breaking issue in Remark 1, let εr > 0

be an arbitrarily small number,and define V+
ij = {tij + εr : tij ∈ Tij} and Vij = V0

ij ∪ V+
ij . Let ∆ be a geometric discretization

of range [P̃REV/n, 55 · P̃REV]. Formally, δ ∈ ∆ if and only if δ = 2x

n
· P̃REV for some integer x such that 0 ≤ x ≤ ⌈log(55n)⌉.

Finally, for each β ∈ V0
ij , let β+ = β + εr ∈ V+

ij . Note that the LP (or the LP in Figure 4) do not depend on the choice of εr , so

we can choose εr to be sufficiently small. In fact, let b be an upper bound of the bit complexity of the problem instance, and the

bit complexity of any feasible solution of our LP. Our proof works as long as εr < min{ 1

2poly(b) ,
PREV∑
i,j |Tij |

}.

Figure 3: LP Relaxation for Constrained-Additive Bidders

Constraints (6) - (9) are specialized for our problem, which guarantees that the LP optimum can be

bounded by simple mechanisms. Constraint (6) follows from taking expectation on both sides of Con-
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straint (1) in Figure 1, over the randomness of βij . Constraints (8) and (9) correspond to Constraint (2) in Fig-

ure 1. Here we bound the expectation of δij by a unified upper bound di for every j.16 It is worth emphasizing

Constraint (7), which corresponds to Constraint (4) in Figure 1 (and Figure 2). Instead of taking expectations

over the dual parameters, we force the constraint to hold for every βij and δij . This is an important property

that is crucial in our analysis (see Footnote 22 in Lemma 9). Readers may notice that Constraint (2) is implied

by Constraints (3), (6) and (7). We keep Constraint (2) so that it is clear that the supply constraint is enforced

over the (expected) marginal reduced form. The Problem Specific Constraints (6)-(9) in the LP in Figure 3

are expected versions of the constraints in the two-stage optimization problem in Figure 1, which are directly

inspired by the Properties 1, 2, and 3 in Lemma 1. They are crucial to guarantee that optimal value of the LP

in Figure 3 is still approximable by simple mechanisms.

4 Sample Access to the Distribution

In this section, we focus on the case where we have only access to the bidders’ distribution. Our goal is again

to compute an approximately optimal mechanism. Our plan is as follows: (i) for each i ∈ [n] and j ∈ [m],
take O(log(1/δ)/ε2) samples from Dij , and let D̂ be the uniform distribution over the samples. By the DKW

inequality [DKW56], D̂ij and Dij have Kolmogorov distance (Definition 30) no more than ε with probability

at least 1− δ. (ii) We then apply our algorithm in Theorem 1 to compute an RPP or TPT that is approximately

optimal w.r.t. distributions {D̂ij}i∈[n],j∈[m]. We show that the computed simple mechanism is approximately

optimal for the true distributions as well. The proof of Theorem 4 is postponed to Appendix F.

Theorem 4. Suppose all bidders’ valuations are constrained additive. If for each i ∈ [n] and j ∈ [m], Dij

is supported on numbers in [0, 1] with bit complexity no more than b, then for any ε > 0 and δ > 0, with

probability 1 − δ, we can compute in time poly(n,m, 1/ε, log(1/δ), b) a rationed posted price mechanism

or a two-part tariff mechanism, whose revenue is at least c · OPT − O(nm2ε) for some absolute constant c.

The algorithm takes O
(
log(nm/δ)

ε2

)
samples from each Dij and assumes query access to a demand oracle for

each bidder.

16This corresponds to the fact that in Lemma 1 (and Figure 1), there is a single ci that represents δij .
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A Additional Preliminaries

Definition 7. [RW15] Let Di be the type distribution of bidder i and denote by Vi her distribution over

valuations vi(ti, ·) where ti ∼ Di. We say that Vi is subadditiver over independent items if

• vi(·, ·) has no externalities, that is for any S ⊆ [m], ti, t
′
i ∈ Ti such that tij = t′ij for j ∈ S, then

vi(ti, S) = vi(t
′
i, S).

• vi(·, ·) is monotone, that is for each ti ∈ Ti and S ⊆ T ⊆ [m], vi(ti, S) ≤ vi(ti, T )

• vi(·, ·) is subadditive function, that is for all ti ∈ Ti and S1, S2 ⊆ [m], vi(ti, S1 ∪ S2) ≤ vi(ti, S1) +
vi(ti, S2)

Mechanisms: A mechanism M in multi-item auctions can be described as a tuple (x, p). For every type

profile t, buyer i and bundle S ⊆ [m], xiS(t) is the probability of buyer i receiving the exact bundle S at

profile t, pi(t) is the payment for buyer i at the same type profile. To ease notations, for every buyer i and

types ti, we use pi(ti) = Et−i
[pi(ti, t−i)] as the interim price paid by buyer i and σiS(ti) = Et−i

[xiS(ti, t−i)]
as the interim probability of receiving the exact bundle S.

IC and IR constraints: A mechanism M = (x, p) is BIC if:

∑

S⊆[m]

σiS(ti) · vi(ti, S)− pi(ti) ≥
∑

S⊆[m]

σiS(t
′
i) · vi(ti, S)− pi(t

′
i),∀i, ti, t

′
i ∈ Ti.

The mechanism is DSIC if:
∑

S⊆[m]

xiS(ti, t−i) ·vi(ti, S)−pi(ti, t−i) ≥
∑

S⊆[m]

xiS(t
′
i, t−i) ·vi(ti, S)−pi(t

′
i, t−i),∀i, ti, t

′
i ∈ Ti, t−i ∈ T−i.

The mechanism is (interim) IR if:
∑

S⊆[m]

σiS(ti) · vi(ti, S)− pi(ti) ≥ 0,∀i, ti ∈ Ti.

The mechanism is ex-post IR if:
∑

S⊆[m]

xiS(ti, t−i) · vi(ti, S)− pi(ti, t−i) ≥ 0,∀i, ti ∈ Ti, t−i ∈ T−i.

Definition 8 (Separation Oracle for Convex Polytope P). A Separation Oracle SO for a convex polytope

P ⊆ Rd, takes as input a point x ∈ Rd and if x ∈ P, then the oracle says that the point is in the polytope. If

x /∈ P, then the oracle output a separating hyperplane, that is it outputs a vector y ∈ Rd and c ∈ R such that

yTx ≤ c, but for z ∈ P, yT z > c.

Definition 9 (Polytopes and Facet-Complexiy). We say P has facet-complexity at most b if it can be written

as P := {~x | ~x · ~w(i) ≤ ci, ∀i ∈ I}, where each ~w(i) and ci has bit complexity at most b for all i ∈ I .

We use the term convex polytope to refer to a set of points that is closed, convex, bounded,17 and has finite

facet-complexity.

Definition 10 (Vertex-Complexity). We use the term corner to refer to non-degenerate extreme points of a

convex polytope. In other words, ~y is a corner of the d-dimensional convex polytope P if ~y ∈ P and there

exist d linearly independent directions ~w(1), . . . , ~w(d) such that ~x · ~w(i) ≤ ~y · ~w(i) for all ~x ∈ P, 1 ≤ i ≤ d.

We use CORNER(P ) to denote the set of corners of a convex polytope P . We say P has vertex-complexity at

most b if all vectors in CORNER(P ) have bit complexity no more than b.

17P ⊆ Rd is bounded if it is contained in [−x, x]d for some x ∈ R.
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The following fact states that the vertex-complexity and facet-complexity of a polytope in Rd are off by

at most a d2 multiplicative factor.

Fact 1 (Lemma 6.2.4 of [GLS12]). Let P be a convex polytope in Rd. If P has facet-complexity at most b, its

vertex-complexity is at most O(b · d2). Similarly, if P has vertex-complexity at most ℓ, its facet-complexity is

at most O(ℓ · d2).

Theorem 5. [Ellipsoid Algorithm for Linear Programming [GLS12]18] Let P be a convex polytope in Rd

specified via a separation oracle SO, and ~c is any fixed vector in Rd. Assume that P ’s facet-complexity and

the bit complexity of ~c are no more than b. Then we can run the ellipsoid algorithm to optimize ~c · ~x over P ,

maintaining the following properties:

1. The algorithm will only query SO on rational points with bit complexity poly(d, b).

2. The algorithm will solve the linear program in time poly(d, b,RTSO(poly(d, b))), where RTSO(x) is the

running time of the SO on any input of bit complexity x.

3. The output optimal solution is a corner of P .

B Some Examples

B.1 Non-Concavity of CORE

In this section, we show that the CORE(σ, θ(σ)) function is non-concave in the interim allocation rule σ. We

first provide the formal definition of θ(σ) for a single-bidder two-item instance, and we use CORE
CZ(σ) to

denote CORE(σ, θ(σ)).

Definition 11 (Core for a single additive bidder over two items with continuous distributions - [CZ17]).

Consider a single bidder interested in two items, whose value is sampled from continuous distribution D
with support T = SUPP(D) and density function f(t) for t ∈ T . Consider a feasible interim allocation

σ = {σ1(t), σ2(t)}t∈SUPP(D), that is σ1(t) (σ2(t) resp.) is the probability that the allocation rule awards item

1 (item 2 resp.) to a bidder with type t. Define

β1(σ) = argmin
β≥0

[
Pr

t1∼D1

[t1 ≥ β] = E
t∼D

[
σ1(t)

]]
β2(σ) = argmin

β≥0

[
Pr

t2∼D2

[t2 ≥ β] = E
t∼D

[
σ2(t)

]]

and

c(σ) = argmin
a≥0

{
Pr
t∼D

[
t1 ≤ β1(σ) + a

]
+ Pr

t∼D

[
t2 ≤ β2(σ) + a

]
≥

1

2

}

The term CORE
CZ for interim allocation σ is defined as follows:

CORE
CZ(σ) = E

t∼D

[
σ1(t)t1 · 1[t1 ≤ β1(σ) + c(σ)]

]
+ E

t∼D

[
σ2(t)t2 · 1[t2 ≤ β2(σ) + c(σ)]

]

In Example 1 we show that CORE
CZ(σ) is a non-concave function even in the setting with a single bidder

and two items. The reason for the CORE
CZ being non-concave lies in the fact that the interval which we

truncate depends on the interim allocation σ. Computing the concave hull of CORE
CZ(σ) in the worst case

requires exponential time in the dimension of the space, which is m is our case.

Example 1. Consider a single additive bidder interested in two items whose values are both drawn from the

uniform distribution U [0, 1]. Consider two interim allocation rules σ and σ′:

18Properties 1 and 2 follow from Theorem 6.4.9 of [GLS12] and Property 3 follows from Remark 6.5.2 of [GLS12].
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• σ: Award the first item to the buyer if her value for it lies in the interval [0, 1/2] and never award the

second item to the buyer.

• σ′: Always award the first item to the buyer and never award the second item to the buyer.

According to Definition 12, for allocation rule σ, the dual parameters are β1(σ) = 1/2, β2(σ) = 1 and

c(σ) = 0, which implies CORE
CZ(σ) = 1/8. Similarly for allocation rule σ′ we have β1(σ

′) = 0, β2(σ
′) = 1

and c(σ′) = 0, which implies that CORE
CZ(σ′) = 0.

Consider the interim allocation σ′′ that uses allocation rule σ with probability 50% and σ′ with 50%. Note

that σ′′ is in the convex combination of σ and σ′ and more specifically σ′′ = σ+σ′

2 . For interim allocation σ′′

we have that β1(σ
′′) = 1/4, β2(σ

′′) = 1 and c(σ′′) = 0, which implies that CORE
CZ(σ′′) = 1

32 . We notice

that the second item contributes nothing to the CORE
CZ , but it ensures that c = 0 regardless of the allocation

of the first item. Thus CORE
CZ
(
σ′′
)
< 1

2(CORE
CZ(σ) + CORE

CZ(σ′)), which implies that CORE
CZ(·) is

not a concave function.

B.2 Why can’t we use the Ex-Ante Relaxation?

An influential framework known as the ex-ante relaxation has been widely used in Mechanism Design, but

is insufficient for our problem. Informally speaking, ex-ante relaxation reduces a multi-bidder objective to

the sum of single-bidder objectives subject to some global supply constraints over ex-ante allocation proba-

bilities. To solve the ex-ante relaxation program efficiently, the single-bidder objective has to be concave and

efficiently computable given the ex-ante probabilities [Ala11].

In revenue maximization, the single-bidder objective – the optimal revenue subject to ex-ante probabili-

ties – is indeed a concave function. However, we do not have a polynomial time algorithm to even compute

the single-bidder objective given a set of fixed ex-ante probabilities.19 To fix this issue, one can try to find

a concave function that is always a good approximation to the single-bidder objective for any ex-ante prob-

abilities. To the best of our knowledge, such a concave function only exists for unit-demand bidders via the

copies setting technique [CHMS10b]. Alternatively, one can replace the global objective – optimal revenue

by the upper bound of revenue proposed in [CZ17]. Yet the corresponding single-bidder objective for one

term CORE in the upper bound is highly non-concave, which makes the ex-ante relaxation not applicable.

Although the term CORE was originally defined for interim allocation rules (as in Definition 11), it can also

be defined for ex-ante probabilities. We only define it for the single-bidder two-item case. Let q = {q1, q2} ∈
[0, 1]2, and MAX-CORE = maxσ∈Σ(q) CORE

CZ(σ), where Σ(q) is the set of feasible interim allocations that

awards the first item with probability at most q1 and the second item with probability at most q2. Example 2

also shows that MAX-CORE(·) is a non-concave function by observing that σ ∈ Σ(1/2, 0),σ′ ∈ Σ(1, 0) and

σ′′ ∈ Σ(3/4, 0).

Definition 12 (Core for a single additive bidder over two items - [CZ17]). Consider a single bidder interested

in two items, whose value is sampled from D1 ×D2. Consider a supply constraints q1, q2 ∈ [0, 1]. Note that

q1 (or q2) is the probability that a mechanism awards the first item (or the second item) to the bidder. Define

β1 = argmin
β≥0

[
Pr

t1∼D1

[t1 ≥ β] = q1

]
β2 = argmin

β≥0

[
Pr

t2∼D2

[t2 ≥ β] = q2

]

and

c = argmin
a≥0

{
Pr

t1∼D1

[t1 ≤ β1 + a] + Pr
t2∼D2

[t2 ≤ β2 + a] ≥
1

2

}

19The closest thing we know is a QPTAS for a unit-demand bidder. See Section 1.2.
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The term MAX-CORE is defined as follows:

MAX-CORE (q) = max
x1:T1→[0,1]∑

t1∈T1
f1(t1)x1(t1)=q1

∑

t1∈T1
t1≤β1+c

f1(t1)·t1·x1(t1)+ max
x2:T2→[0,1]∑

t2∈T2
f2(t2)x2(t2)=q2

∑

t2∈T2
t2≤β2+c

f2(t2)·t2·x2(t2)

In Example 2 we show that MAX-CORE(q) is a non-concave function even in the setting with a single

bidder and two items. The reason for the MAX-CORE being non-concave lies in the fact that the interval

which we truncate depends on the supply constraints q. Computing the concave hull of MAX-CORE(q) in the

worst case requires exponential time in the dimension of the space, which is m is our case. These facts make

the ex-ante relaxation approach not applicable to solve our problem.

Example 2. Consider a single additive bidder interested in two items whose values are both drawn from the

uniform distribution U [0, 1]. Consider the values q = (1/2, 0) and q′ = (1, 0). According to Definition 12,

for q we have that β
(q)
1 = 1/2, β

(q)
2 = 1 and c(q) = 0 and for q′ we have β

(q′)
1 = 0, β

(q′)
2 = 1 and c(q

′) = 0.

We notice that the second item contributes nothing to the MAX-CORE, but it ensures that c = 0 regardless

of the supply demand for the first item. Observe that MAX-CORE(q) = 1/8 and MAX-CORE(q′) = 0.

Let q′′ = (q + q′)/2 = (3/4, 0). For q′′, observe that β
(q′′)
1 = 1/4, β

(q′′)
2 = 1 and c(q

′′) = 0. We have

MAX-CORE(q′′) = 1/32. Thus MAX-CORE
(
q′′
)
< 1

2(MAX-CORE(q) + MAX-CORE(q′)), which implies

that MAX-CORE(·) is not a concave function.

C Missing Details from Section 3

In this section, we provide a proof of Theorem 3. Indeed, we prove a generalization that works for XOS

buyers (Theorem 6), with the generalized of the single-bidder marginal reduced form polytope Definition 14

and a generalized LP (Figure 4).

Theorem 6. Let (w, λ, λ̂,d) (or (π,w, λ, λ̂,d)) be any feasible solution of the LP in Figure 3 (or Figure 4).

Let MPP be the rationed posted price mechanism computed in Lemma 2. Let MTPT be the two-part tariff

mechanism shown in Mechanism 1 with prices {Qj}j∈[m] (Definition 15). Then the objective function of the

solution 2 ·
∑

j∈[m]Qj is bounded by c1 · REV(MPP) + c2 · REV(MTPT), for some constant c1, c2 > 0.

Moreover, bothMPP andMTPT can be computed in time poly(n,m,
∑

i,j |Tij|), with access to the demand

oracle for the buyers’ valuations.

C.1 Result by Cai and Zhao [CZ17] for XOS Valuations

The result by Cai and Zhao [CZ17] applies also to XOS valuations. Here we state their result for this general

case. Note that this is a generalized definition and lemma for Definition 4 and Lemma 1.

Definition 13. For any i ∈ [n], j ∈ [m], let V0ij = {Vij(tij) : tij ∈ Tij}. For any feasible interim allocation

σ, and non-negative numbers β̃ = {β̃ij ∈ V
0
ij}i∈[n],j∈[m], c = {ci}i∈[n] and r = {rij}i∈[n],j∈[m] ∈ [0, 1]nm

(which we refer to as the dual parameters), define CORE(σ, β̃, c, r) as the welfare under allocation σ trun-

cated at β̃ij + ci for every i, j. Formally,

CORE(σ, β̃, c, r) =
∑

i

∑

ti

fi(ti) ·
∑

S⊆[m]

σiS(ti)
∑

j∈S

tij ·
(
1[tij < β̃ij + ci] + rij · 1[tij = β̃ij + ci]

)

if the buyers have constrained-additive valuations, and

CORE(σ, β̃, c, r) =
∑

i

∑

ti

fi(ti)·
∑

S⊆[m]

σiS(ti)
∑

j∈S

γSij(ti)·
(
1[Vij(tij) < β̃ij + ci] + rij1[Vij(tij) = β̃ij + ci]

)

if the buyers have XOS valuations. Here γSij(ti) = α
k∗(ti,S)
ij (tij), where k∗(ti, S) = arg max

k∈[K]

(∑

j∈S

αk
ij(tij)

)
.
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Lemma 4. [CZ17] Given any BIC and IR mechanism M, there exists (i) a feasible interim allocation σ,20

where σiS(ti) is the interim probability for buyer i to receive exactly bundle S when her type is ti, (ii) non-

negative numbers β̃(σ) = {β̃
(σ)
ij ∈ V

0
ij}i∈[n],j∈[m], c

(σ) = {c
(σ)
i }i∈[n] and r

(σ) ∈ [0, 1]nm that depend on σ,

and (iii) a two-part tariff mechanismM
(σ)
1 such that

1.
∑

i∈[n]

(
Prtij [Vij(tij) > β̃

(σ)
ij ] + r

(σ)
ij · Prtij [Vij(tij) = β̃

(σ)
ij ]
)
≤ 1

2 .

2. 1
2 ·
∑

ti∈Ti
fi(ti) ·

∑
S:j∈S σiS(ti) ≤ Prtij [Vij(tij) > β̃

(σ)
ij ] + r

(σ)
ij · Prtij [Vij(tij) = β̃

(σ)
ij ],∀i, j.

3. REV(M) ≤ 28 · PREV + 4 · CORE(σ, β̃(σ), c(σ), r(σ)).

4.
∑

i∈[n] c
(σ)
i ≤ 8 · PREV.

5. CORE(σ, β̃(σ), c(σ), r(σ)) ≤ 64 · PREV + 8 · REV(M
(σ)
1 ).

C.2 Single-Bidder Marginal Reduced Form Polytope for XOS Valuations

In Definition 14 we define the single-bidder marginal reduced form polytope Wi for XOS buyers, which

differs from the single-bidder marginal reduced form polytope for constrained-additive valuation is several

ways. In Definition 14, we define a distribution σk
S over all possible subset of items S ⊆ [m] and over the

finite number k ∈ [K] over additive functions that can be chosen when we evaluate the value that the buyer

has for a set of items. In Definition 5, the distribution σS was only over sets in the set of feasible allocations.

Similar to Definition 5, πij(tij) is equal to fij(tij) times the probability that the i-th buyer receives the

j-th item. In contrast to Definition 5, in Definition 14, the value of wij(tij) is
fij(tij )
Vij(tij)

times the expected value

that the buyer has for the item when we are allowed to choose which additive functions in k ∈ [K] we count

the value of the buyer, or we are even allowed to allocate an item to the buyer but count zero value for it (that

is equivalent to just throwing away the item).

Definition 14 (XOS valuations: single-bidder marginal reduced form polytope). For every i ∈ [n], the single-

bidder marginal reduced form polytope Wi ⊆ [0, 1]2·
∑

j |Tij | is defined as follows. Let πi = (πij(tij))j,tij∈Tij

and wi = (wij(tij))j,tij∈Tij . Then (πi, wi) ∈Wi if and only if there exist a number σ
(k)
S (ti) ∈ [0, 1] for every

ti ∈ Ti, S ⊆ [m], k ∈ [K], such that

1.
∑

S,k σ
(k)
S (ti) ≤ 1, ∀ti ∈ Ti.

2. πij(tij) =fij(tij) ·
∑

ti,−j
fi,−j(ti,−j) ·

∑
S:j∈S

∑
k∈[K] σ

(k)
S (tij , ti,−j), for all i, j, tij ∈ Tij .

3. wij(tij) ≤fij(tij) ·
∑

ti,−j
fi,−j(ti,−j) ·

∑
S:j∈S

∑
k∈[K] σ

(k)
S (tij, ti,−j) ·

α
(k)
ij (tij )

Vij(tij )
, for all i, j, tij ∈ Tij .

20Note that when buyers have constrained-additive valuations, it suffice to take σ to be the interim allocation rule of M. For XOS

valuations, σ will be the interim allocation of a modified version of M. See Section 5 in [CZ16] for details.
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C.3 The Linear Program for XOS valuations

max
∑

i∈[n]

∑

j∈[m]

∑

tij∈Tij

fij(tij) · Vij(tij) ·
∑

βij∈Vij

δij∈∆

λij(tij , βij , δij) · 1[Vij(tij) ≤ βij + δij ]

s.t.

Allocation Feasibility Constraints:

(1) (πi, wi) ∈Wi ∀i

(2)
∑

i

∑

tij∈Tij

πij(tij) ≤ 1 ∀j

Natural Feasibility Constraints:

(3) fij(tij) ·
∑

βij∈Vij

∑

δij∈∆

λij(tij , βij , δij) = wij(tij) ∀i, j, tij ∈ Tij

(4) λij(tij , βij , δij) ≤ λ̂ij(βij , δij) ∀i, j, tij , βij ∈ Vij , δij

(5)
∑

βij∈Vij

δij∈∆

λ̂ij(βij , δij) = 1 ∀i, j

Problem Specific Constraints:

(6)
∑

i∈[n]

∑

βij∈Vij

∑

δij∈∆

λ̂ij(βij , δij) · Pr
tij∼Dij

[Vij(tij) ≥ βij ] ≤
1

2
∀j

(7)
1

2

∑

tij∈Tij

fij(tij)
(
λij(tij , βij , δij) + λij(tij , β

+
ij , δij)

)
≤

λ̂ij(βij , δij) · Pr
tij
[Vij(tij) ≥ βij ] + λ̂ij(β

+
ij , δij) · Pr

tij
[Vij(tij) ≥ β+

ij ] ∀i, j, βij ∈ V
0
ij , δij ∈ ∆

(8)
∑

βij∈Vij

δij∈∆

δij · λ̂ij(βij , δij) ≤ di ∀i, j

(9)
∑

i∈[n]

di ≤ 111 · P̃REV

λij(tij , βij , δij) ≥ 0, λ̂ij(βij , δij) ≥ 0, πij(tij) ≥ 0, wij(tij) ≥ 0, di ≥ 0 ∀i, j, tij , βij ∈ Vij , δij

Figure 4: LP for XOS Valuations

The LP for XOS valuations can be found in Figure 4. Here V 0
ij = {Vij(tij) : tij ∈ Tij}, V

+
ij = {Vij(tij)+εr :

tij ∈ Tij} and Vij = V
0
ij ∪ V

+
ij . We notice that this is consistent with our LP for constrained-additive buyers

(Figure 3), as Vij(tij) = tij for constrained-additive buyers.

Denote OPTLP the optimum objective of the LP in Figure 4. Similar to the constrained-additive case, we

have the following lemma.

Lemma 5. When buyers have XOS valuations, for any BIC and IR mechanismM, REV(M) ≤ 28 · PREV +
4 · OPTLP.

C.4 Proof of Lemma 3 and Lemma 5

Proof. The proof is stated for XOS buyers, whose LP contains a new set of variables π compared to the LP

for constrained-additive buyers. When the buyers have constrained-additive valuations, we can simply treat π
to be the same as w. Also, note that Vij(tij) = tij for constrained-additive valuations.
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Let tuple (σ̂, β̃, c, r) be the one stated in Lemma 4 forM. Consider the following choice of variables of

the LP in Figure 3 (or Figure 4). For every i, j, tij , let

wij(tij) = fij(tij) ·
∑

ti,−j∈Ti,−j

fi,−j(ti,−j)
∑

S:j∈S

σ̂iS(tij , ti,−j)

if the buyers’ have constrained-additive valuations. Let

πij(tij) = fij(tij) ·
∑

ti,−j∈Ti,−j

fi,−j(ti,−j)
∑

S:j∈S

σ̂iS(tij, ti,−j)

wij(tij) = fij(tij) ·
∑

ti,−j∈Ti,−j

fi,−j(ti,−j)
∑

S:j∈S

σ̂iS(tij , ti,−j) ·
γSij(ti)

Vij(tij)
.

if the buyers’ have XOS valuation. For each ci, we notice that by Lemma 4 and Lemma 2, 0 ≤ ci ≤

8 · PREV ≤ 55 · P̃REV when n ·m ≥ 110. We round it up to the closest number in ∆, and we denote it using

ĉi. Clearly,

CORE(σ, β̃, c, r) ≤ CORE(σ, β̃, ĉ, r).

λij(tij, βij , δij) and λ̂ij(βij , δij) can be set to non-zero only if βij ∈ {β̃ij , β̃
+
ij} and δij = ĉi. More

specifically, we choose the variables as follows.

• λij(tij , β̃ij , ci) := rij · wij(tij)/fij(tij),

• λij(tij , β̃
+
ij , ci) := (1− rij) · wij(tij)/fij(tij),

• λ̂ij(β̃ij , ci) = rij ,

• λ̂ij(β̃
+
ij , ci) = 1− rij;

• di = ĉi.

We show that this is indeed a feasible solution of the LP in Figure 3 by verifying each constraint. We first

prove that (πi, wi) ∈ Wi for every i. This is clear for constrained-additive valuations. For XOS valuations,

consider the mapping σ
(k)
iS (ti) = σ̂iS(ti) · 1[k = argmaxk′∈[K]

∑
j∈S α

(k′)
ij (tij)] for every ti (we break ties

arbitrarily). Thus by the definition of γSij , we have σ̂iS(ti) · γ
S
ij(ti) =

∑
k σ

(k)
iS (ti) · α

(k)
ij (ti). Then clearly

(πi, wi) satisfies all of the conditions in Definition 14.

For Constraint (3), LHS equals to fij(tij)·
(
λij(tij , β̃ij , ci) + λij(tij , β̃

+
ij , ci)

)
= wij(tij). Constraint (2) fol-

lows from the fact that σ̂ is a feasible interim allocation rule, and each item j can be allocated to at most one

buyer for every type profile. Thus

∑

i

∑

tij

πij(tij) =
∑

i

∑

ti

fi(ti)
∑

S:j∈S

σ̂iS(ti) ≤ 1

By property 1 of Lemma 4 and the choice of εr, we have that for every j,

∑

i∈[n]

∑

βij∈Vij

λ̂ij(βij) · Pr
tij∼Dij

[Vij(tij) ≥ βij ]

=
∑

i∈[n]

(
rij · Pr

tij
[Vij(tij) ≥ β̃ij ] + (1− rij) · Pr

tij
[Vij(tij) ≥ β̃+

ij ]

)

=
∑

i∈[n]

(
Pr
tij
[Vij(tij) > β̃ij ] + rij · Pr

tij
[Vij(tij) = β̃ij ]

)
≤

1

2
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Thus, Constraint (6) is satisfied. For Constraint (7), we only need to verify the constraint for βij = β̃ij ∈ V
0
ij .

LHS equals to 1
2

∑
tij

wij(tij). We notice that γSij(ti) ≤ Vij(tij) for all i, j, S (for XOS valuations). Thus

∑

tij∈Tij

wij(tij) ≤
∑

tij∈Tij

fij(tij) ·


 ∑

ti,−j∈Ti,−j

fi,−j(ti,−j)
∑

S:j∈S

σ̂iS(tij , ti,−j)


 =

∑

ti∈Ti

fi(ti) ·
∑

S:j∈S

σ̂iS(ti)

Since rij ∈ [0, 1] for all i, j, by property 2 of Lemma 4 and the choice of εr, we have

LHS of Constraint (7) ≤
1

2

∑

ti∈Ti

fi(ti) ·
∑

S:j∈S

σ̂iS(ti) = Pr
tij
[Vij(tij) > β̃ij ] + rij · Pr

tij
[Vij(tij) = β̃ij ]

=λ̂ij(β
+
ij ) · Prtij

[Vij(tij) ≥ β+
ij ] + λ̂ij(βij) · Pr

tij
[Vij(tij) ≥ βij ]

For Constraint (4), since γSij(ti) ≤ Vij(tij) for all i, j, S and
∑

S∈[m] σ̂iS(ti) ≤ 1, we have wij(tij) ≤
fij(tij). Thus

λij(tij , β̃ij , ci) = rij ·
wij(tij)

fij(tij)
≤ rij = λ̂ij(β̃ij , ci).

and

λij(tij, β̃
+
ij , ci) = (1− rij) ·

wij(tij)

fij(tij)
≤ 1− rij = λ̂ij(β̃

+
ij , ci).

Constraint (8) and (5) are straightforward since λ̂ij(βij , δi) = rij · 1[βij = β̃ij ∧ δij = ĉi], λ̂ij(βij , δi) =
(1− rij) · 1[βij = β̃+

ij ∧ δij = ĉi], and di = ĉi.

Lastly, for Constraint (9), we notice that for every i ∈ [n], ĉi ≤ max{ P̃REV

n , 2ci}. Thus by property 4 of

Lemma 4, when n ·m ≥ 110,

∑

i∈[n]

ci ≤ 2 ·
∑

i∈[n]

ci + P̃REV ≤ 16 · PREV + P̃REV ≤ 111 · P̃REV

Thus the solution is feasible. We are left to show that the objective of the above solution is at least

CORE(σ̂, β̃, ĉ, r). In fact, by the definition of wij(tij),

CORE(σ̂, β̃, ĉ, r) =
∑

i∈[n]

∑

j∈[m]

∑

tij∈Tij

wij(tij) · Vij(tij) ·
(
1[Vij(tij) < β̃ij + ĉi] + rij · 1[Vij(tij) = β̃ij + ĉi]

)

≤
∑

i

∑

j

∑

tij

wij(tij) · Vij(tij) · 1[Vij(tij) ≤ β̃ij + ĉi].

This is exactly the objective of the LP in Figure 3 according to the choice of εr, since

λij(tij , β̃ij , δij) · 1[Vij(tij) ≤ β̃ij + ĉi] + λij(tij , β̃
+
ij , δij)·1[Vij(tij) ≤ β̃+

ij + ĉi]

=
wij(tij)

fij(tij)
· 1[Vij(tij) ≤ β̃ij + ĉi]

The proof is complete by invoking property 3 of Lemma 4.

21



C.5 Bounding the Difference between the Shifted CORE and the Original CORE

We first give the following definition as a generalization of Definition 6.

Definition 15. Let (π,w, λ, λ̂,d = (di)i∈[n]) be any feasible solution of the LP in Figure 4. For every j ∈ [m],
define

Qj =
1

2
·
∑

i∈[n]

∑

tij∈Tij

fij(tij) · Vij(tij) ·
∑

βij∈Vij

δij∈∆

λij(tij , βij , δij) · 1[Vij(tij) ≤ βij + δij ].

Recall that by Constraint (5), for every i, j, λ̂ij(·, ·) can be viewed as a joint distribution Cij over Vij ×∆,

i.e. Pr(βij ,δij)∼Cij [βij = a ∧ δij = b] = λ̂ij(βij = a, δij = b). Denote Bij the marginal distribution of

βij with respect to Cij . Inspired by the “shifted core” technique by Cai and Zhao [CZ17], we need further

definitions to describe the welfare contribution by each item under a smaller threshold.

Definition 16. For every i ∈ [n], define21

τi = inf
x≥0




∑

j∈[m]

Pr
tij∼Dij ,βij∼Bij

[Vij(tij) ≥ max(βij , Qj + x)] ≤
1

2





Then for every j ∈ [m], define

Q̂j =
1

2
·
∑

i∈[n]

∑

tij∈Tij

fij(tij) · Vij(tij) ·
∑

βij∈Vij

δij∈∆

λij(tij , βij , δij) · 1[Vij(tij) ≤ min{βij + δij , Qj + τi}]

We prove in Lemma 6 that the difference between
∑

j∈[m]Qj and
∑

j∈[m] Q̂j can be bounded using

PREV.

Lemma 6. For every j ∈ [m], Qj ≥ Q̂j . Moreover, there exists some absolute constant c > 0 such that

∑

j∈[m]

Qj ≤
∑

j∈[m]

Q̂j + c · PREV

To prove Lemma 6, we consider the following variant of the RPP mechanism, where the posted prices are

allowed to be randomized.

Rationed Randomized Posted Price Mechanism (RRPP). Before the auction starts, the seller first draws

a posted price pij from some distribution Gij , for every buyer i and item j. All Gijs are independent. The

buyers then arrive in some arbitrary order, and each buyer i can purchase at most one item among the available

ones at the realized posted price pij for every item j.

Clearly any RRPP mechanism is also DSIC and IR. We notice that any RRPP mechanism can be viewed

as a distribution of RPP mechanisms, as the seller can draw all the posted prices before the auction starts, and

use the realized (and deterministic) set of posted prices to sell the items. Thus the highest revenue achievable

among all RRPP mechanisms is the same as the optimum revenue among all RPP mechanisms, which is

PREV.

Before giving the proof of Lemma 6, we first prove a useful lemma that analyzes the revenue of RRPP.

It’s a generalization of Lemma 17 of [CZ17], which allows randomized posted prices.

21If all Dijs are continuous, then for every i there exists τi that satisfies the following property:∑
j∈[m] Prtij∼Dij ,βij∼Bij

[Vij(tij) ≥ max(βij , Qj + x)] ≤ 1
2

and the inequality is achieved as equality for all τi > 0. However,

this property might not be satisfied for discrete distributions. This is again a tie-breaking issue addressed in Remark 1. We refer the

readers to Lemma 5 of [CZ17] for a fix. For simplicity, in our proof we will assume that all τis satisfy the property mentioned above.
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Lemma 7. [CZ17] For every i, j, let Gij be any distribution over R+. All Gij’s are independent from each

other. Suppose both of the following inequalities hold, for some constant a, b ∈ (0, 1):

1.
∑

i∈[n] Prtij∼Dij ,xij∼Gij

[
Vi(tij) ≥ xij

]
≤ a,∀j ∈ [m].

2.
∑

j∈[m] Prtij∼Dij ,xij∼Gij

[
Vi(tij) ≥ xij

]
≤ b,∀i ∈ [n].

Then
∑

i∈[n]

∑

j∈[m]

E
xij∼Gij

[
xij · Pr

tij∼Dij

[
Vi(tij) ≥ xij

]
]
≤

1

(1− a)(1 − b)
· PREV.

Proof. Consider an RRPP that sells item j to buyer i at price xij ∼ Gij . The mechanism visits the buyers in

some arbitrary order. For every i, j and every realized xij , we will bound the probability of buyer i purchasing

item j, over the randomness of {Di′j′}i′∈[n],j′∈[m] and {Gi′j′}(i′,j′)6=(i,j). Notice that when it is buyer i’s turn,

she purchases exactly item j and pays xij if all of the following three conditions hold: (i) j is still available,

(ii) Vi(tij) ≥ xij and (iii) ∀k 6= j, Vi(tik) < xik. The second condition means buyer i can afford item j. The

third condition means she cannot afford any other item k 6= j. Therefore, buyer i purchases exactly item j.

Now let us compute the probability that all three conditions hold, when tij ∼ Dij and xij ∼ Gij for all

i, j. Since every buyer’s valuation is subadditive over the items, item j is purchased by someone else only if

there exists a buyer k 6= i who has Vk(tkj) ≥ xkj . By the union bound, the event described above happens

with probability at most
∑

k 6=i Prtkj ,xkj

[
Vk(tkj) ≥ xkj

]
, which is less than a by Inequality 1 of the statement.

Therefore, condition (i) holds with probability at least 1 − a. Clearly, condition (ii) holds with probability

Prtij
[
Vi(tij) ≥ xij

]
. Finally, condition (iii) holds with at least probability 1 − b, because the probability

that there exists any item k 6= j such that Vi(tik) ≥ xik is no more than
∑

k 6=j Prtik ,xik
[Vi(tik) ≥ xik] ≤ b

(Inequality 2 of the statement). Since the three conditions are independent, buyer i purchases exactly item j
with probability at least (1− a)(1 − b) · Prtij

[
Vi(tij) ≥ xij

]
. So the expected revenue of this mechanism is

at least (1− a)(1− b) · Exij∼Gij

[
xij · Prtij∼Dij

[
Vi(tij) ≥ xij

]]
.

A direct corollary of Lemma 7 is that
∑

i τi can be bounded using PREV.

Lemma 8.
∑

i∈[n] τi ≤ 8 · PREV.

Proof. By Constraint (6) of the LP in Figure 3 (or Figure 4), for every item j,
∑

i∈[n]

Pr
tij∼Dij

βij∼Bij

[Vij(tij) ≥ max(βij , Qj + τi)] ≤
∑

i∈[n]

Pr
tij∼Dij

βij∼Bij

[Vij(tij) ≥ βij ]

=
∑

i∈[n]

∑

βij∈Vij

λ̂ij(βij) Pr
tij
[Vij(tij) ≥ βij ] ≤

1

2

By the definition of τi, for every i we have

∑

j∈[m]

Pr
tij∼Dij ,βij∼Bij

[Vij(tij) ≥ max(βij , Qj + τi)]] ≤
1

2
.

Thus by Lemma 7,

4 · PREV ≥
∑

i∈[n],j∈[m]

E
βij∼Bij

[
max(βij , Qj + τi) · Pr

tij∼Dij

[Vij(tij) ≥ max(βij , Qj + τi)]

]

≥
∑

i∈[n]

τi
∑

j∈[m]

E
βij∼Bij

[
Pr

tij∼Dij

[Vij(tij) ≥ max(βij , Qj + τi)]

]

=
1

2

∑

i∈[n]

τi,

23



The last equality comes from the fact that by the definition of τi,
∑

j Prtij∼Dij ,βij∼Bij
[Vij(tij) ≥ max(βij , Qj+

τi)]] =
1
2 for all i such that τi > 0 (see Footnote 21). We finish the proof.

Lemma 9. [(Restatement of Lemma 6)] For every j ∈ [m], Qj ≥ Q̂j . Moreover,

∑

j∈[m]

Qj ≤
∑

j∈[m]

Q̂j + 236.5 · PREV

Proof. For every j, it’s clear that Q̂j ≤ Qj by the definition of Q̂j . It remains to bound
∑

j(Qj − Q̂j). In

the proof, we abuse the notation and let λ̂ij(βij) =
∑

δij∈∆
λ̂ij(βij , δij). Also for every i, j, tij , βij ∈ Vij , let

λij(tij, βij) =
∑

δij∈∆
λij(tij , βij , δij).

2
∑

j∈[m]

(
Qj − Q̂j

)

≤
∑

j

∑

i

∑

tij :Vij(tij )≥Qj+τi

fij(tij)Vij(tij)
∑

βij∈Vij

δij∈∆

λij(tij , βij , δij) · 1[Vij(tij) ≤ βij + δij ]

≤
∑

j

∑

i

∑

tij :Vij(tij )≥Qj+τi

fij(tij)
∑

βij∈Vij

δij∈∆

(
βij + (Vij(tij)− βij)

+
)
· λij(tij, βij , δij) · 1[Vij(tij) ≤ βij + δij ]

≤
∑

j

∑

i

∑

tij :Vij(tij )≥Qj+τi

fij(tij)
∑

βij∈Vij

βij · λij(tij , βij)

+
∑

j

∑

i

∑

tij :Vij(tij )≥Qj+τi

fij(tij)
∑

βij∈Vij

δij∈∆

(Vij(tij)− βij)
+ · λij(tij, βij , δij) · 1[Vij(tij) ≤ βij + δij ]

Here the first inequality uses the fact that λij(tij, βij , δij) · 1[Vij(tij) ≤ βij + δij ] and

λij(tij, βij , δij)1[Vij(tij) ≤ min{βij + δij , Qj + τi}] can differ only when Vij(tij) > Qj + τi ∧ Vij(tij) ≤
βij + δij . In the last inequality, we drop the indicator 1[Vij(tij) ≤ βij + δij ] for the first term.
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We bound the first term:

∑

j

∑

i

∑

tij :Vij(tij )≥Qj+τi

fij(tij) ·
∑

βij∈Vij

βij · λij(tij , βij)

=
∑

i,j

∑

βij∈Vij

βij<Qj+τi

βij
∑

tij :Vij(tij )≥Qj+τi

fij(tij) · λij(tij , βij) +
∑

i,j

∑

βij∈Vij

βij≥Qj+τi

βij
∑

tij :Vij(tij)≥Qj+τi

fij(tij) · λij(tij , βij)

≤
∑

i,j

∑

βij∈Vij

βij<Qj+τi

βij
∑

tij :Vij(tij )≥Qj+τi

fij(tij) · λij(tij , βij)

+
∑

i,j

∑

βij∈V0
ij

βij≥Qj+τi

β+
ij

∑

tij :Vij(tij)≥Qj+τi

fij(tij) ·
(
λij(tij , βij) + λij(tij , β

+
ij )
)

≤
∑

i,j

∑

βij∈Vij

βij<Qj+τi

λ̂ij(βij) · βij
∑

tij :Vij(tij )≥Qj+τi

fij(tij) +
∑

i,j

∑

βij∈V0
ij

βij≥Qj+τi

2λ̂ij(βij) · β
+
ij · Pr

tij∼Dij

[Vij(tij) ≥ βij ]

+
∑

i,j

∑

βij∈V
+
ij

βij≥Qj+τi

2λ̂ij(βij) · βij · Pr
tij∼Dij

[Vij(tij) ≥ βij ]

≤
∑

i,j

∑

βij∈Vij

βij<Qj+τi

λ̂ij(βij) · βij
∑

tij :Vij(tij )≥Qj+τi

fij(tij) +
∑

i,j




∑

βij∈Vij

βij≥Qj+τi

2λ̂ij(βij) · βij · Pr
tij∼Dij

[Vij(tij) ≥ βij ] + εr|V
0
ij |




≤2
∑

i,j

∑

βij∈Vij

λ̂ij(βij) · βij · Pr
tij∼Dij

[Vij(tij) ≥ max(βij , Qj + τi)] + εr ·
∑

i,j

|V0ij |

=2
∑

i,j

E
βij∼Bij

[
βij · Pr

tij∼Dij

[Vij(tij) ≥ max(βij , Qj + τi)]

]
+ εr ·

∑

i,j

|V0ij |

≤8 · PREV + εr ·
∑

i,j

|V0ij|

≤9 · PREV

(4)

The first inequality comes from the fact that for βij ∈ V
0
ij , then βij < β+

ij and from the fact that for

sufficiently small εr > 0, then Qj + τi ≤ βij iff Qj + τi ≤ β+
ij . The second inequality comes from

Constraint (4) and (7) of the LP in Figure 3 (or Figure 4).22 For the second last inequality, notice that by

Constraint (6) of the LP in Figure 3 (or Figure 4), for every item j,
∑

i

Pr
tij∼Dij

βij∼Bij

[Vij(tij) ≥ max(βij , Qj + τi)]] ≤
∑

i

Pr
tij∼Dij

βij∼Bij

[Vij(tij) ≥ βij ]

=
∑

i

∑

βij∈Vij

λ̂ij(βij) Pr
tij
[Vij(tij) ≥ βij ] ≤

1

2

By the definition of τi, for every buyer i we have

∑

j

Pr
tij∼Dij ,βij∼Bij

[Vij(tij) ≥ max(βij , Qj + τi)]] ≤
1

2

22Note that this is the only place that Constraint (7) is used in our proof.
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The second last inequality then follows from Lemma 7. The last inequality follows from the fact that

εr ≤
PREV∑
i,j |V

0
ij |

. For the second term, we have

∑

j

∑

i

∑

tij :Vij(tij )≥Qj+τi

fij(tij)
∑

βij∈Vij

δij∈∆i

(Vij(tij)− βij)
+ · λij(tij , βij , δij) · 1[Vij(tij) ≤ βij + δij ]

≤
∑

j

∑

i

∑

βij∈Vij

δij∈∆i

λ̂ij(βij , δij) ·
∑

tij

fij(tij)(Vij(tij)− βij) · 1[Vij(tij) ≤ βij + δij ∧ Vij(tij) ≥ max(βij , Qj + τi)]

=
∑

i,j

E
(βij ,δij)∼Cij


∑

tij

fij(tij)uij(tij , βij , δij)


 ,

where

uij(tij , βij , δij) = (Vij(tij)− βij) · 1[Vij(tij) ≤ βij + δij ∧ Vij(tij) ≥ max(βij , Qj + τi)]

We notice that by the definition of τi, the following inequality holds for every buyer i.

∑

j

Pr
tij∼Dij ,(βij ,δij)∼Cij

[uij(tij , βij , δij) > 0] ≤
∑

j

Pr
tij∼Dij ,βij∼Bij

[Vij(tij) ≥ max(βij , Qj + τi)]] ≤
1

2
(5)

Denote Ci = ×
m
j=1Cij and βi = (βij)j∈[m], δi = (δij)j∈[m], we have

∑

i

E
(βi,δi)∼Ci


∑

ti

fi(ti) ·max
j

uij(tij , βij , δij)




≥
∑

i

E
(βi,δi)∼Ci


∑

j

∑

tij

fij(tij) · uij(tij , βij , δij) ·
∏

k 6=j

Pr
tik∼Dik

[uik(tik, βik, δik) = 0]




=
∑

i

∑

j

E
(βij ,δij)∼Cij


∑

tij

fij(tij) · uij(tij , βij , δij) ·
∏

k 6=j

Pr
tik∼Dik,(βik,δik)∼Cik

[uik(tik, βik, δik) = 0]




≥
1

2
·
∑

i,j

E
(βij ,δij)∼Cij


∑

tij

fij(tij)uij(tij , βij , δij)




Here the equality uses the fact that all Cij’s are independent. The last inequality comes from Inequality (5)

and the union bound. Now the second term is bounded by

2 ·
∑

i

E
(βi,δi)∼Ci


∑

ti

fi(ti) ·max
j

uij(tij , βij , δij)




≤2 ·
∑

i

E
(βi,δi)∼Ci


∑

ti

fi(ti) · max
j∈[m]

{
(Vij(tij)− βij)

+ · 1[Vij(tij) ≤ βij + δij ]
}



Definition 17. For every i, j, ti ∈ Ti, S ⊆ [m], let

ηi(ti, S) = E
(βi,δi)∼Ci

[
max
j∈S

{
(Vij(tij)− βij)

+ · 1[Vij(tij) ≤ βij + δij ]
}]
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Therefore, we can rewrite 2·
∑

i E(βi,δi)∼Ci

[∑
ti
fi(ti) ·maxj∈[m]

{
(Vij(tij)− βij)

+ · 1[Vij(tij) ≤ βij + δij ]
}]

as
∑

i

∑
ti
fi(ti) · η(ti, [m]).

Definition 18. A function v(·, ·) is a-Lipschitz if for any type t, t′ ∈ T , and set X,Y ⊆ [m],

∣∣v(t,X) − v(t′, Y )
∣∣ ≤ a ·

(
|X∆Y |+

∣∣∣{j ∈ X ∩ Y : tj 6= t′j}
∣∣∣
)
,

where X∆Y =
(
X \ Y

)
∪
(
Y \X

)
is the symmetric difference between X and Y .

Lemma 10. For every i, ηi(·, ·) is subadditive over independent items and di-Lipschitz. Note that di is the

variable in the LP in Figure 3.

Proof. For every i, j, tij , βij , δij , denote hij(tij , βij , δij) = (Vij(tij)− βij)
+ · 1[Vij(tij) ≤ βij + δij ].

We will first verify that for each ti ∈ Ti, ηi(ti, ·) is monotone, subadditive and has no externalities.

Monotonicity: Let S1 ⊆ S2 ⊆ [m]. Then:

ηi(ti, S1) = E
(βi,δi)∼Ci

[
max
j∈S1

{
hij(tij, βij , δij)

}]
≤ E

(βi,δi)∼Ci

[
max
j∈S2

{
hij(tij, βij , δij)

}]
= ηi(ti, S2)

Subadditivity: For any set S1, S2, S3 ⊆ [m] such that S1 ∪ S2 = S3, it holds that:

ηi(ti, S3) = E
(βi,δi)∼Ci

[
max
j∈S3

{
hij(tij , βij , δij)

}]

≤ E
(βi,δi)∼Ci

[
max
j∈S1

{
hij(tij , βij , δij)

}
+max

j∈S2

{
hij(tij, βij , δij)

} ]

= ηi(ti, S1) + ηi(ti, S2)

The first inequality follows because S1 ∪ S2 = S3.

No externalities: for every S ⊆ [m] and ti, t
′
i ∈ Ti such that tij = t′ij for every j ∈ S, we have

ηi(ti, S) = E
(βi,δi)∼Ci

[
max
j∈S

{
hij(tij , βij , δij)

}]
= E

(βi,δi)∼Ci

[
max
j∈S

{
hij(t

′
ij, βij , δij)

}]
= ηi(t

′
i, S)

Now we are going to prove that ηi(·, ·) is di-Lipschitz. For ti, t
′
i ∈ Ti and X,Y ⊆ [m], let Z = {j ∈

X ∩ Y ∧ tij = t′ij}. It is enough to show that:

ηi(ti,X)− ηi(t
′
i, Y ) ≤

(
|X \ Y |+ (|X ∩ Y | − |Z|)

)
· di = (|X| − |Z|) · di

ηi(t
′
i, Y )− ηi(ti,X) ≤

(
|Y \X|+ (|X ∩ Y | − |Z|)

)
· di = (|Y | − |Z|) · di

We are only going to show ηi(ti,X)−ηi(t
′
i, Y ) ≤ (|X| − |Z|) · di, since the other case is similar. Because

ηi(ti, ·) is monotone, it suffices to prove that:

ηi(ti,X)− ηi(t
′
i, Y ) ≤ ηi(ti,X) − ηi(t

′
i, Z) ≤ (|X| − |Z|) · di
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For each j ∈ Z , tij = t′ij , which implies that ηi(t
′
i, Z) = ηi(ti, Z). Note that:

ηi(ti,X) − ηi(t
′
i, Z)

=ηi(ti,X) − ηi(ti, Z)

= E
(βi,δi)∼Ci

[
max
j∈X

{
hij(tij, βij , δij)

}
−max

j∈Z

{
hij(tij , βij , δij)

} ]

≤ E
(βi,δi)∼Ci

[
max
j∈Z

{
hij(tij, βij , δij)

}
+
∑

j∈X\Z

hij(tij , βij , δij)−max
j∈Z

{
hij(tij , βij , δij)

} ]

= E
(βi,δi)∼Ci


 ∑

j∈X\Z

hij(tij, βij , δij)




=
∑

j∈X\Z

E
(βij ,δij)∼Cij

[
hij(tij , βij , δij)

]

≤
∑

j∈X\Z

E
(βij ,δij)∼Cij

[
δij
]

≤(|X| − |Z|)di

Here the second last inequality follows by Constraint (8) of the LP in Figure 3 (or Figure 4).

Lemma 11. [CZ17] Let g(t, ·) with t ∼ D =
∏

j Dj be a function drawn from a distribution that is subaddi-

tive over independent items of ground set I . If g(·, ·) is c-Lipschitz, then if we let a be the median of the value

of the grand bundle g(t, I), i.e. a = inf
{
x ≥ 0 : Prt[g(t, I) ≤ x] ≥ 1

2

}
,

Et[g(t, I)] ≤ 2a+
5c

2
.

To finish the proof of Lemma 9, we will bound
∑

i

∑
ti
fi(ti) · ηi(ti, [m]) using a modified two-part tariff

mechanism. Consider the following variant of two-part tariffM, with a randomized posted price βij ∼ Bij
for buyer i and item j, and restricting the buyer to purchase at most one item. The procedure of the mechanism

is shown in Mechanism 2 23.

Mechanism 2 The Rationed Two-part Tariff with Randomized Posted PriceM

0: Before the mechanism starts, the seller determines a distribution of posted price Bij for every buyer i
and item j. Recall that Bij is the marginal distribution of βij .

1: Bidders arrive sequentially in the lexicographical order.

2: When every buyer i arrives, the seller shows her the set of available items Si(t<i, β<i) ⊆ [m] (see the

remark below), as well as the distribution of the posted prices {Bij}j∈[m].

3: Buyer i is asked to pay an entry fee defined as follows:

ξi(Si(t<i, β<i)) = MEDIANti∼Di
{ηi(ti, Si(t<i, β<i))}.

Here MEDIANx[h(x)] denotes the median of a non-negative function h(x) on random variable x, i.e.

MEDIANx[h(x)] = inf{a ≥ 0 : Prx[h(x) ≤ a] ≥ 1
2}.

4: If buyer i (with type ti) agrees to pay the entry fee, then the seller will sample a realized posted price

βij ∼ Bij for every available item j ∈ Si(t<i, β<i). The buyer is restricted to purchase at most one

item. The buyer then either chooses her favorite item j∗ = argmaxj∈Si(t<i,β<i)

(
Vij(tij)− βij

)
, and

pays βij∗ , or leaves with nothing if Vij(tij) < βij ,∀j ∈ Si(t<i, β<i). If the buyer refuses to pay the entry

fee, she gets nothing and pays 0.

23The result holds for any buyers’ order, we choose the lexicographical order to keep the notation light.
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Remark 3. We notice that in Mechanism 2, the set of available items when each buyer i comes to the auction,

depends on both t<i and the realized prices for the first i− 1 buyers (denoted by β<i). Let Si(t<i, β<i) be the

random set of available items when buyer i comes to the auction. Let S1(t<1, β<1) = [m].

It’s not hard to see that M stated in Mechanism 2 is BIC and IR: When every buyer sees the set of

available items and the distribution of posted prices, she can calculate her expected surplus of this set, over

the randomness of the posted prices. Then she will accept the entry fee if and only if the expected surplus is

at least the entry fee.

In Mechanism 2, by union bound, for every item j,

Pr[j ∈ Si(t<i, β<i)] ≥ 1−
∑

k<i

Pr
tij∼Dij ,βij∼Bij

[Vij(tij) ≥ βij ] ≥
1

2
(Due to Constraint (6))

We notice that for every realization of t<i, β<i, after seeing the remaining item set Si(t<i, β<i), buyer i’s
expected surplus if she enters the mechanism is:

E
(βi,δi)∼Ci

[
max

j∈Si(t<i,β<i)

{
(Vij(tij)− βij)

+
}]
≥ ηi(ti, Si(t<i, β<i)).

Thus the buyer will accepts the entry fee with probability at least 1/2. Hence

REV(M) ≥
1

2

∑

i

E
t<i,β<i

[ξi(Si(t<i, β<i))] ≥
1

2
·
∑

i

(
1

2
E

ti,t<i,β<i

[ηi(ti, Si(t<i, β<i))]−
5

4
di)

≥
1

2
·
∑

i

(
1

4
E
ti
[ηi(ti, [m])] −

5

4
di) ≥

1

8
·
∑

i

E
ti
[ηi(ti, [m])]− 5 · PREV

(6)

Here the second inequality is obtained by applying Lemma 11 to function ηi(ti, ·) and ground set I =
Si(t<i, β<i) for every t<i, β<i. The last inequality comes from constraint (9) of the LP in Figure 3. The third

inequality comes from the following:

Fix any ti, βi, δi. Let j∗ = argmaxj∈[m](Vij(tij)− βij)
+ · 1[Vij(tij) ≤ βij + δij ]. Then

E
t<i,β<i

[
max

j∈Si(t<i,β<i)

{
(Vij(tij)− βij)

+ · 1[Vij(tij) ≤ βij + δij ]
}]

≥ E
t<i,β<i

[
max
j∈[m]

{
(Vij(tij)− βij)

+ · 1[Vij(tij) ≤ βij + δij ]
}
· 1[j∗ ∈ Si(t<i, β<i)]

]

=max
j∈[m]

{
(Vij(tij)− βij)

+ · 1[Vij(tij) ≤ βij + δij ]
}
· Pr
t<i,β<i

[j∗ ∈ Si(t<i, β<i)]

≥
1

2
· max
j∈[m]

{
(Vij(tij)− βij)

+ · 1[Vij(tij) ≤ βij + δij ]
}

Taking expectation over ti and (βi, δi) ∼ Ci on both sides, we have

E
ti,t<i,β<i

[ηi(ti, Si(t<i, β<i))] ≥
1

2
E
ti
[ηi(ti, [m])],

which is exactly the third inequality of (6). By combining Inequalities (4) and (6), we have

2
∑

j

(Qj − Q̂j) ≤ 89 · PREV + 16 · REV(M)
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Finally, since inM, each buyer is restricted to purchase at most one item, it can be treated as a BIC and

IR mechanism in the unit-demand setting. By [CHMS10b, KW12, CDW16], REV(M) ≤ 24 · PREV. We

complete our proof for Lemma 9.

C.6 Analyzing the Revenue ofMTPT and the Proof of Theorem 6

In this section, we will show that
∑

j∈[m]Qj can be bounded using the revenue of the two-part tariffMTPT

defined in Mechanism 1. To analyze the revenue ofMTPT, we require the following definition.

Definition 19. For any buyer i and type ti, let Ci(ti) = {j ∈ [m] | Vij(tij) ≤ Qj + τi}. For any ti ∈ Ti and

set S ⊆ [m], let

µi(ti, S) = max
S′⊆S


vi(ti, S

′ ∩ Ci(ti))−
∑

j∈S′

Qj




Lemma 12. For every i, if vi(·, ·) is subadditive over independent itmes, then µi(·, ·) is subadditive over

independent items and τi-Lipschitz.

Proof. First we are going to show that µi(t, ·) is monotone. Note that for sets S1 ⊆ S2 the following holds:

µi(ti, S1) = max
S′⊆S1


vi(ti, S

′ ∩Ci(ti))−
∑

j∈S′

Qj




≤ max
S′⊆S2


vi(ti, S

′ ∩Ci(ti))−
∑

j∈S′

Qj




=µi(ti, S2)

Now we are going to show that µi(t, ·) is subadditive. Let S1, S2, S3 ⊆ [m] such that S1 ∪ S2 = S3 and

S1 ∩ S2 = Sc. Let Sa = S1\Sc and Sb = S2, then for any ti ∈ Ti we have the following:

µi(ti, S3) = max
S′⊆S3


vi(ti, S

′ ∩ Ci(ti))−
∑

j∈S′

Qj




≤ max
S′⊆S3


vi(ti,

(
Sa ∩ S′

)
∩Ci(ti)) + vi(ti,

(
Sb ∩ S′

)
∩ Ci(ti))−

∑

j∈S′

Qj




= max
S′⊆S3





vi(ti,

(
Sa ∩ S′

)
∩ Ci(ti))−

∑

j∈Sa∩S′

Qj


+


vi(ti,

(
Sb ∩ S′

)
∩ Ci(ti))−

∑

j∈Sb∩S′

Qj







≤ max
S′⊆Sa


vi(ti, S

′ ∩ Ci(ti))−
∑

j∈S′

Qj


+ max

S′⊆Sb


vi(ti, S

′ ∩ Ci(ti))−
∑

j∈S′

Qj




=µi(ti, Sa) + µi(ti, Sb)

≤µi(ti, S1) + µi(ti, S2)

The first inequality follows because vi(ti, ·) is a subadditive function and Sa ∪ Sb = S3. The second

inequality follows because max is subadditive. The final inequality follows from the fact that Sb = S2,

S1 ⊇ Sa and that µi(ti, ·) is monotone.
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We now prove that µi(·, ·) has no externalities. Fix any S ⊆ [m] and ti, t
′
i ∈ Ti such that tij = t′ij for all

j ∈ S. We notice that by the definition of Ci, S
′ ∩ Ci(ti) = S′ ∩ Ci(t

′
i) for all S′ ⊆ S. Since vi(·, ·) has no

externalities, vi(ti, S
′ ∩ Ci(ti)) = vi(t

′
i, S

′ ∩Ci(t
′
i)) for every S′ ⊆ S. Thus µi(ti, S) = µi(t

′
i, S).

Now we are going to show that µi(·, ·) is τi-Lipschitz. Let ti, t
′
i ∈ Ti and X,Y ⊆ [m] and c = |{j ∈ [m] :

j ∈ X∆Y or tij 6= t′ij}|,
24 we need to show that:

|µi(ti,X)− µi(t
′
i, Y )| ≤ c · τi

Let Z = {j : j ∈ X ∩ Y and tij = t′ij}. Since µi(ti, ·) is monotone, in order to show that µi(·, ·) is

τi-Lipschitz, it is enough to show that

µi(ti,X) − µi(t
′
i, Y ) ≤ µi(ti,X)− µi(t

′
i, Z) ≤ c · τi

µi(t
′
i, Y )− µi(ti,X) ≤ µi(t

′
i, Y )− µi(ti, Z) ≤ c · τi

We are only going to prove that µi(ti,X)−µi(t
′
i, Z) ≤ c · τi since the other case is similar. Because for each

j ∈ Z , t′i,j = ti,j , then µi(t
′
i, Z) = µi(ti, Z). We have

µi(ti,X) = max
S′⊆X


vi(ti, S

′ ∩ Ci(ti))−
∑

j∈S′

Qj




≤ max
S′⊆X



∑

j∈S′\Z

(
vi(ti, {j} ∩ Ci(ti))−Qj

)
+


vi(ti, (Z ∩ S′) ∩ Ci(ti))−

∑

j∈Z∩S′

Qj







≤ max
S′⊆X



∑

j∈S′\Z

(
Vij(tij)−Qj

)+
1[Vij(tij) ≤ Qj + τi] +


vi(ti, (Z ∩ S′) ∩ Ci(ti))−

∑

j∈Z∩S′

Qj







=max
S′⊆Z


vi(ti, S

′ ∩ Ci(ti))−
∑

j∈S′

Qj


+

∑

j∈X\Z

(
Vij(tij)−Qj

)+
1[Vij(tij) ≤ Qj + τi]

≤max
S′⊆Z


vi(ti, S

′ ∩ Ci(ti))−
∑

j∈S′

Qj


+ (|X| − |Z|)τi

≤µi(ti, Z) + c · τi

The first inequality follows because vi(ti, ·) is subadditive. The second inequality follows because vi(ti, {j}∩
Ci(ti))−Qj ≤ (Vij(tij)−Qj)

+
1[Vij(tij) ≤ Qj + τi].

Lemma 13. For every type profile t ∈ T , let SOLD(t) be the set of items sold in mechanismMTPT. Then

E
t


∑

i∈[n]

µi

(
ti, Si(t<i)

)

 ≥

∑

j

Pr
t
[j /∈ SOLD(t)] · (2Q̂j −Qj)

≥
∑

j

Pr
t

[
j /∈ SOLD(t)

]
·Qj − 473 · PREV

Proof. By the definition of polytope Wi, for every buyer i and ti ∈ Ti, there exists an vector of non-negative

numbers {σ
(k)
iS (ti)}S⊆[m],k∈[K], such that

∑
S,k σ

(k)
iS (ti) ≤ 1 and

πij(tij) = fij(tij) ·
∑

ti,−j

fi,−j(ti,−j) ·
∑

S:j∈S

∑

k∈[K]

σ
(k)
iS (tij , ti,−j) (7)

24∆ stands for the symmetric difference between two sets.
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wij(tij) · Vij(tij) ≤ fij(tij) ·
∑

ti,−j∈Ti,−j

fi,−j(ti,−j)
∑

S:j∈S

∑

k

σ
(k)
iS (tij , ti,−j) · α

(k)
ij (tij) (8)

We have

E
t


∑

i

µi

(
ti, Si(t<i)

)



≥
∑

i

E
ti,t−i


 ∑

S⊆[m]

∑

k

σ
(k)
iS (ti) · µi

(
ti, Si(t<i) ∩ S

)



≥
∑

i

E
ti,t−i


∑

S,k

σ
(k)
iS (ti) ·

∑

j∈S

1
[
j ∈ Si(t<i)

]
·
(
α
(k)
ij (tij) · 1[Vij(tij) ≤ Qj + τi]−Qj

)+



=
∑

i

E
ti


∑

j∈[m]

Pr
t−i

[j ∈ Si(t<i)] ·
∑

S:j∈S

∑

k

σ
(k)
iS (ti) ·

(
α
(k)
ij (tij) · 1[Vij(tij) ≤ Qj + τi]−Qj

)+



≥
∑

i

∑

j

Pr
t
[j /∈ SOLD(t)] · E

ti


 ∑

S:j∈S

∑

k

σ
(k)
iS (ti) ·

(
α
(k)
ij (tij) · 1[Vij(tij) ≤ Qj + τi]−Qj

)+



≥
∑

j

Pr
t
[j /∈ SOLD(t)] ·

∑

i

∑

ti

fi(ti) ·
∑

S:j∈S

∑

k

σ
(k)
iS (ti) ·

(
α
(k)
ij (tij) · 1[Vij(tij) ≤ Qj + τi]−Qj

)

=
∑

j

Pr
t
[j /∈ SOLD(t)] ·

∑

i

∑

tij

fij(tij)
∑

ti,−j

fi,−j(ti,−j) ·
∑

S:j∈S

∑

k

σ
(k)
iS (ti) · (α

(k)
ij (tij) · 1[Vij(tij) ≤ Qj + τi]−Qj)

≥
∑

j

Pr
t
[j /∈ SOLD(t)] ·

∑

i

∑

tij

wij(tij)Vij(tij) · 1[Vij(tij) ≤ Qj + τi]−
∑

j

Pr
t
[j 6∈ SOLD(t)] ·Qj

The first inequality is because µi(ti, S) is monotone in set S for any i, ti and
∑

S,k σ
(k)
iS (ti) ≤ 1. For any

fixed i, ti and set S, if we let S′ be the set of items that are in S∩Si(t<i) and satisfy that α
(k)
ij (tij)·1[Vij(tij) ≤

Qj + τi]−Qj ≥ 0. Clearly S′ ⊆ Ci(ti). Then

µi

(
ti, Si(t<i) ∩ S

)
≥ vi(ti, S

′)−
∑

j∈S′

Qj

= max
k′∈[K]

∑

j∈S′

α
(k′)
ij (tij)−

∑

j∈S′

Qj ≥
∑

j∈S′

(
α
(k)
ij (tij)−Qj

)

=
∑

j∈S′

(
α
(k)
ij (tij) · 1[Vij(tij) ≤ Qj + τi]−Qj

)
(S′ ⊆ Ci(ti))

This inequality is exactly the second inequality above. The third inequality is because Prt<i
[j ∈ Si(t<i)] ≥

Prt[j /∈ SOLD(t)] for all j and i, as the LHS is the probability that the item is not sold after the seller has

visited the first i − 1 buyers and the RHS is the probability that the item remains unsold till the end of the

mechanism MTPT. The last inequality follows from Inequality (8) and Constraint (2) of the LP in Figure 3

(or in Figure 4):

∑

i

∑

tij

fij(tij)
∑

ti,−j

fi,−j(ti,−j) ·
∑

S:j∈S

∑

k

σ
(k)
iS (ti) =

∑

i

∑

tij

πij(tij) ≤ 1

Notice that by Definition 6 and Constraint (3) of the LP in Figure 3 (or in Figure 4), for every i, j, tij ,
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∑

βij ,δij

λij(tij, βij , δij) = wij(tij)/fij(tij)

Thus we have

∑

j

Pr
t
[j /∈ SOLD(t)] ·

∑

i

∑

tij

wij(tij)Vij(tij) · 1[Vij(tij) ≤ Qj + τi]−
∑

j

Pr
t
[j 6∈ SOLD(t)] ·Qj

=
∑

j

Pr
t
[j /∈ SOLD(t)] ·

∑

i

∑

tij

fij(tij)Vij(tij) · 1[Vij(tij) ≤ Qj + τi]
∑

βij ,δij

λij(tij , βij , δij)

−
∑

j

Pr
t
[j 6∈ SOLD(t)] ·Qj

≥
∑

j

Pr
t
[j /∈ SOLD(t)] · (2Q̂j −Qj) (Definition 16)

=
∑

j

Pr
t
[j /∈ SOLD(t)] ·Qj −

∑

j

Pr
t
[j /∈ SOLD(t)] · 2(Qj − Q̂j)

≥
∑

j

Pr
t
[j /∈ SOLD(t)] ·Qj −

∑

j

2(Qj − Q̂j) (Lemma 9, Qj − Q̂j ≥ 0 for all j)

≥
∑

j

Pr
t
[j /∈ SOLD(t)] ·Qj − 473 · PREV (Lemma 9)

Now we give the proof of Theorem 6. Note that this is also the proof of Theorem 3.

Proof of Theorem 6:

For every i, t<i, we apply Lemma 11 to function µi(ti, ·) and ground set Si(t<i). By Definition 19, we

have

E
ti
[µi(ti, Si(t<i))] ≤ 2 ·MEDIANti(µi(ti, Si(t<i))) +

5

2
· τi (9)

We now bound the revenue of MTPT. For every i ∈ [n], ti ∈ Ti and S ⊆ [m], let µ′
i(ti, S) =

maxS′⊆S(vi(ti, S
′)−

∑
j∈S′ Qj) which is at least as large as µi(ti, S). Then the surplus of buyer i with true

type t̂i, for the set Si(t<i) is µ′
i(t̂i, Si(t<i)). By Mechanism 1, the entry fee ξi(Si(t<i), t

′
i) = µ′

i(t
′
i, Si(t<i))

for every sampled type t′i. Thus for every t<i, we have

Pr
t̂i,t′i∼Di

[
µ′
i(t̂i, Si(t<i)) ≥ ξi(Si(t<i), t

′
i) ≥ MEDIANti(µi(ti, Si(t<i)))

]
≥

1

8

In other words, for every t<i, with probability at least 1/8, the buyer accepts the entry fee, and the entry

fee is at least MEDIANti(µi(ti, Si(t<i))). Thus the revenue ofMTPT from the entry fee is at least

1

8

∑

i

E
t<i

[
MEDIANti(µi(ti, Si(t<i)))

]

≥
1

16

∑

i

E
ti,t<i

[µi(ti, Si(t<i))]−
5

32
·
∑

i

τi (Inequality (9))

≥
1

16

∑

j

Pr
t

[
j /∈ SOLD(t)

]
·Qj −

493

16
· PREV (Lemma 13 and Lemma 8)
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We notice that forMTPT, the revenue from the posted prices are
∑

j Pr[j ∈ SOLD(t)] ·Qj . Thus

REV(MTPT) ≥
1

16

∑

j

Pr
t

[
j /∈ SOLD(t)

]
·Qj −

493

16
· PREV +

∑

j

Pr[j ∈ SOLD(t)] ·Qj

≥
1

16
·
∑

j∈[m]

Qj −
493

16
· PREV

Thus

2 ·
∑

j

Qj ≤ 986 · PREV + 32 · REV(MTPT)

We then show thatMTPT can be computed in polynomial time: By Definition 6, the posted price Qj can

be computed in time poly(n,m,
∑

i,j |Tij|), given the feasible solution of the LP in Figure 3 (or in Figure 4).

Given the set of available items Si(t<i), for every sampled type t′i, calculating the entry fee requires a single

query from the demand oracle. For every buyer i with reported type ti, the mechanism requires a single query

from the demand oracle to obtain her favorite bundle among the set of available items, under prices {Qj}j∈[m],

and to determine whether the buyer will accept the entry fee.

Lastly, by Lemma 2, we can compute an RPPMPP with the desired running time and query complexity,

such thatMPP ≥
1

6.75(1−
1

nm) · PREV. We finish our proof. ✷

D Multiplicative Approximation of Down-Monotone and Boxable Polytopes

In this section, we provide a proof of Theorem 2 and prove Theorem 1 for constrained-additive valuations

using Theorem 2. We restate the theorem here.

Theorem 7. (Restatement of Theorem 1 for constrained-additive valuations) Let T =
∑

i,j |Tij| and b be

the bit complexity of the problem instance (Definition 3). For constrained-additive buyers, for any δ > 0,

there exists an algorithm that computes a rationed posted price mechanism or a two-part tariff mechanism,

such that the revenue of the mechanism is at least c · OPT for some absolute constant c > 0 with probability

1−δ− 2
nm . Our algorithm assumes query access to a value oracle and a demand oracle of buyers’ valuations,

and has running time poly(n,m, T, b, log(1/δ)).

For Theorem 2, we indeed prove a result for a natural family of polytopes. Throughout this section, we

assume that the polytope we consider is down-monotone. Formally, a polytope P ⊆ [0, 1]d is down-monotone

if and only if for every x ∈ P and 0 ≤ x′ ≤ x, we have x′ ∈ P. To state our result, we need the following

definitions.

Definition 20. For any two sets A,B ⊆ Rd, we denote by A+B the Minkowski addition of set A and set B
where:

A+B = {a+ b : a ∈ A and b ∈ B}

Note that if both A and B are convex, then A+B is also convex.

Definition 21. Let P be a convex polytope, we define a · P := {ax : x ∈ P} for any a ≥ 0.

Definition 22. Let ℓ be a finite integer. For any set of convex sets {Pi}i∈[ℓ] and a distribution D = {qi}i∈[ℓ],
the set P =

∑
i∈[ℓ] qiPi is called the mixture of {Pi}i∈[ℓ] over distribution D.

Definition 23. Let P,Q ⊆ [0, 1]d be down-monotone polytopes. For each coordinate j ∈ [d], we define the

width of P at coordinate j as lj(P) = maxx∈P xj . For any ε > 0, we define the (ε,Q)-truncated polytope

of P (denoted as Ptr(ε,Q)) in the following way: x ∈ Ptr(ε,Q) if and only if there exists x′ ∈ P such that

xj = x′j · 1[lj(Q) ≥ ε],∀j ∈ [d]. We notice that since P is down-monotone, Ptr(ε,Q) ⊆ P. Moreover,

Ptr(ε,Q) is convex if P is convex. We also use Ptr(ε) to denote Ptr(ε,P).
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Definition 24. Let P ⊆ [0, 1]d. For any ε > 0, define the ε-box polytope Pbox(ε) of P as follows: Pbox(ε) =
{x ⊆ [0, 1]d : xj ≤ min

(
ε, lj(P)

)
,∀j ∈ [d]}. Clearly, Pbox(ε) is convex.

Theorem 8 is the main theorem of this section. We prove that if P is a mixture of a set of down-monotone,

convex polytopes {Pi}i∈[ℓ], and P contains the polytope c · Pbox(ε) for some c ≤ 1, then there exists another

down-monotone, convex polytope P̂ sandwiched between c/6 · P and P. And more importantly, we have

an efficient separation oracle for P̂ , whose running time is independent of ℓ, as long as we can efficiently

optimize any linear objective for every Pi. The key feature of our separation oracle for P̂ is that its running

time does not depend on ℓ, as in our applications, ℓ is usually exponential in the input size.

Theorem 8. Let ℓ be a positive integer, and P ⊆ [0, 1]d be a mixture of {Pi}i∈[ℓ] over distribution D =

{qi}i∈[ℓ], where for each i ∈ [ℓ], Pi ⊆ [0, 1]d is a convex and down-monotone polytope. Suppose for every

i ∈ [ℓ], there exists an oracle Qi(·), whose output Qi(a) ∈ argmax{a · x : x ∈ Pi} for any input a ∈ Rd.

Given {lj(P)}j∈[d], suppose c · Pbox(ε) ⊆ P for some ε > 0 and c ∈ (0, 1]. Let b be an upper bound on the

bit complexity of Qi(a) for all i ∈ [ℓ] and a ∈ Rd, as well as on the bit complexity of lj(P) for all j ∈ [d].

Let the parameter k ≥ Ω

(
d4
(
b+ log

(
1
ε

)))
. We can construct a convex and down-monotone polytope P̂

using N =
⌈
8kd
ε2

⌉
samples from D such that with probability at least 1 − 2de−2dk , the following guarantees

hold:

1. c
6 · P ⊆ P̂ ⊆ P.

2. There exists a separation oracle SO for P̂, whose running time on input with bit complexity b′, is

poly
(
b, b′, k, d, 1ε

)
and requires poly

(
b, b′, k, d, 1ε

)
queries to oracles in {Qi}i∈[ℓ] with inputs of bit

complexity at most poly
(
b, b′, k, d, 1ε

)
.

The complete proof of Theorem 8 is postponed to Appendix D.1. Here we give a sketch of the proof. We

first prove that if the polytope P contains c times the ε-box polytope, then the convex set c
2 (P

tr(ε) +Pbox(ε))

is sandwiched between c
2P and P (Lemma 14 in Appendix D.1). Next, we construct the polytope P̂ that is

close to c
2 (P

tr(ε) + Pbox(ε)). For ε > 0 and every i ∈ [ℓ], let P
tr(ε,P)
i be the (ε,P)-truncated polytope of Pi.

It is clear that Ptr(ε) is a mixture of {P
tr(ε,P)
i }i∈[ℓ] over distribution D. We construct our polytope P̂ using

P̂tr(ε), the mixture of {P
tr(ε,P)
i }i∈[ℓ] over an empirical distribution D̂ of D. Cai et al. [CDW12b, CDW13a]

proved that with polynomially many samples from D, P̂tr(ε) and Ptr(ε) are close within an additive error ε
in the ℓ∞-norm (Theorem 9 in Appendix D.1). By choosing P̂ = c

3(P̂
tr(ε) + Pbox(ε)), we show that P̂ is a

multiplicative approximation to P.

To apply Theorem 8 to the single-bidder marginal reduced form polytope Wi, we first show that Wi

is a mixture of a set of polytopes {Wi,ti}ti∈Ti over Di, where each Wi,ti contains “all feasible single-bidder

marginal reduced forms” for a specific type ti (Definition 25 in Appendix D.2). For every ti, we can maximize

any linear objective over Wi,ti via a query to the demand oracle. Finally, we prove that Wi contains (c times)

the ε-box polytope of itself, for some c ∈ (0, 1) and ε > 0.

D.1 Proof of Theorem 8

In this section we give a proof of Theorem 8. We first prove the following observation about the Minkowski

addition of down-monotone polytopes.

Observation 1. Let P ⊆ [0, 1]d be any down-monotone polytope. Then for every 0 ≤ a ≤ b, a · P ⊆ b · P.

Let P1,P2 ⊆ [0, 1]d both be down-monotone polytopes. Then for every 0 ≤ a′1 ≤ a1 and 0 ≤ b′1 ≤ b1,

a′1P1 + b′1P2 ⊆ a1P1 + b1P2.
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Proof. For the first half of the statement, for every x ∈ a · P , x

a ∈ P. Since P is down-monotone, x

b ∈ P.

Thus x ∈ b · P . As a′1 · P ⊆ a1 · P and b′1 · P ⊆ b1 · P , the second half of the statement follows from the

definition of the Minkowski addition.

We use the following result from an unpublished manuscript by Cai et al. [CWD21]. A special case of the

result appeared as Theorem 4 in [CDW12c] (conference version by the same authors). In particular, the result

we use here is stated for a mixture of polytopes, while Theorem 4 in [CDW12c] is only for the polytope of all

feasible reduced forms, but the proof is essentially the same. Interested readers are welcome to email the first

author for a proof of Theorem 9.

Theorem 9 ([CWD21]). Let ℓ be a positive integer. Let P be a mixture of {Pi}i∈[ℓ] over distribution D =

{qi}i∈[ℓ], where Pi ⊆ Rd is a convex polytope for every i ∈ [ℓ]. Assume for all i, the bit complexity of each

corner of Pi is at most b. For any ε > 0 and integer k ≥ Ω

(
d4
(
b+ log

(
1
ε

)))
, let D′ be the empirical

distribution induced by ⌈8kdε2 ⌉ samples from D. Let P be the mixture of {Pi}i∈[ℓ] over distribution D′. With

probability at least 1− 2de−2dk we have that

1. For all x ∈ P, there exists an x′ ∈ P ′ such that ||x− x′||∞ ≤ ε.

2. For all x′ ∈ P ′, there exists an x ∈ P such that ||x− x′||∞ ≤ ε.

To prove Theorem 8, we need the following lemmas.

Lemma 14. Let P ⊆ [0, 1]d be a convex and down-monotone polytope. If c · Pbox(ε) ⊆ P for some ε > 0 and

c ∈ (0, 1], then c
2P ⊆

c
2P

tr(ε) + c
2P

box(ε) ⊆ P.

Proof. First we prove that c
2P ⊆

c
2P

tr(ε)+ c
2P

box(ε). Note that it is enough to prove that P ⊆ Ptr(ε)+Pbox(ε).

For any x ∈ P, we consider the vectors x′,x′′ ∈ [0, 1]d such that

x′
j = xj · 1[lj(P) ≥ ε],∀j ∈ [d]

x′′
j = xj · 1[lj(P) < ε],∀j ∈ [d]

Note that x = x′ + x′′. By the definition of Ptr(ε), x′ ∈ Ptr(ε). For x′′, we notice that for every j ∈ [d],
x′′
j = xj · 1[lj(P) < ε] ≤ lj(P) · 1[lj(P) < ε]. By the definition of Pbox(ε), x′′ ∈ Pbox(ε). Thus

x = x′ + x′′ ∈ Ptr(ε) + Pbox(ε).

For the other direction, note that Ptr(ε) ⊆ P by Definition 23 and c · Pbox(ε) ⊆ P by assumption, so
c
2P

box(ε) + c
2P

tr(ε) ⊆ 1
2P + 1

2P = P.

Lemma 15. Let ℓ be a positive integer and P ⊆ [0, 1]d be a mixture of {Pi}i∈[ℓ] over distribution D =

{qi}i∈[ℓ], where for each i ∈ [ℓ], Pi ⊆ [0, 1]d is a convex and down-monotone polytope. Then Ptr(ε) is a

mixture of {P
tr(ε,P)
i } over D, where for each i ∈ [ℓ], P

tr(ε,P)
i ⊆ Pi is the (ε,P)-truncated polytope of Pi

(Definition 23).

Proof. To prove our statement, we first show that for each x̂ ∈ Ptr(ε), there exist {x̂(i) ∈ P
tr(ε,P)
i }i∈[ℓ]

such that x̂ =
∑

i∈[ℓ] qix̂
(i). By definition of Ptr(ε), there exists x ∈ P such that for each j ∈ [d], x̂j =

xj · 1[lj(P) ≥ ε].
Since x ∈ P and P is a mixture of {Pi}i∈[ℓ] over D, there exist {x(i) ∈ Pi}i∈[ℓ] such that x =∑

i∈[ℓ] qix
(i). For each i ∈ [ℓ], consider x̂(i) be defined such that for all j ∈ [d]:

x̂
(i)
j = x

(i)
j 1[lj(P) ≥ ε]

Clearly, x̂(i) ∈ P
tr(ε,P)
i and x̂ =

∑
i∈[ℓ] qix̂

(i). Similarly, we can argue that any point x̂ that lies in the

mixture of {P
tr(ε,P)
i } over D must also lie in Ptr(ε), which concludes the proof.
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Lemma 16. Let ℓ be a positive integer, and P ⊆ [0, 1]d be a mixture of {Pi}i∈[ℓ] over distribution D =

{qi}i∈[ℓ], where Pi is a convex and down-monotone polytope in [0, 1]d for every i. Then P is a convex and

down-monotone polytope.

Proof. For every x ∈ P, there exists a set of vectors {x(i)}i∈[ℓ] such that x(i) ∈ Pi,∀i, and x =
∑

i∈[ℓ] qi ·

x(i). Now consider any x̂ such that 0 ≤ x̂ ≤ x. For each i ∈ [ℓ], let x̂(i) ∈ [0, 1]d be the vector such

that x̂
(i)
j = x

(i)
j · x̂j/xj ,∀j ∈ [d]. Clearly, 0 ≤ x̂

(i)
j ≤ x

(i)
j for all j ∈ [d]. Since Pi is down-monotone,

we have x̂(i) ∈ Pi. Note that for every j ∈ [d],
∑

i qi · x̂
(i)
j = (

∑
i∈[ℓ] qix

(i)
j ) · x̂j/xj = x̂j . Thus

x̂ =
∑

i∈[ℓ] qi · x̂
(i) ∈ P.

To prove Theorem 8, we will also need the celebrated result of the equivalence between optimization and

separation.

Theorem 10 ([KP80, GLS81]). LetP ⊆ Rd be a convex polytope and suppose we have access to an algorithm

A(a) : Rd → P , that takes input vector a ∈ Rd, outputs a vector x∗ ∈ P with bit complexity at most b,
such that x∗ ∈ argmax{a · x : x ∈ P}. Then we can construct a separation oracle SO for P, where on any

input a ∈ Rd with bit complexity at most b′, SO makes at most poly(d, b, b′) queries to A, and the input of

each query has bit complexity no more than poly(d, b, b′). Moreover, the running time of SO on a is at most

poly(d, b, b′, RTA(poly(d, b, b′))). Here RTA(c) is the running time of A with input whose bit complexity is

at most c.

Proof of Theorem 8:

Consider the polytopes Ptr(ε) and Pbox(ε). By Lemma 15, Ptr(ε) is a mixture of {P
tr(ε,P)
i }i∈[ℓ] over

distribution D. Let D̂ be the empirical distribution induced by N = ⌈8kdε2 ⌉ samples from D. Let P̂tr(ε) be the

mixture of {P
tr(ε,P)
i }i∈[ℓ] over D̂. By Theorem 9, we have that with probability at least 1− 2de−2dk , both of

the two following conditions hold:

1. For each p̂ ∈ P̂tr(ε), there exists a p ∈ Ptr(ε) such that ||p− p̂||∞ ≤ ε.

2. For each p ∈ Ptr(ε), there exists a p̂ ∈ P̂tr(ε) such that ||p− p̂||∞ ≤ ε.

For the rest of the proof, we condition on the event that both conditions hold. We consider the polytope

P̂ = c
3

(
P̂tr(ε) + Pbox(ε)

)
. First we are going to prove that P̂ ⊆ P. By condition 1, we have that for any

p̂tr ∈ P̂tr(ε), there exists a ptr ∈ Ptr(ε) such that ||ptr − p̂tr||∞ ≤ ε. Consider the vector p̃tr defined such

that for each j ∈ [d],

p̃trj = min
(
p̂trj , p

tr
j

)
.

Since for each j ∈ [d], p̃trj ≤ ptrj and Ptr(ε) is down-monotone (Lemma 16), we have p̃tr ∈ Ptr(ε). Let vector

p̃box be such that for every j ∈ [d],

p̃boxj = p̂trj − p̃trj = p̂trj −min(p̂trj , p
tr
j ).

Notice that for every x ∈ P
tr(ε,P)
i , xj = 0 for all j such that lj(P) < ε. Since Ptr(ε) and P̂tr(ε) are both

mixtures of {P
tr(ε,P)
i }i∈[ℓ], we have for every x ∈ Ptr(ε) and x̂ ∈ P̂tr(ε), xj = x̂j = 0 for all j such that

lj(P) < ε. Therefore, we have p̃boxj ≤ ε·1[lj(P) ≥ ε] ≤ min(ε, lj(P)), for every j ∈ [d]. The first inequality

follows from the fact that ||ptr − p̂tr||∞ ≤ ε, and that if lj(P) < ε, then p̂trj = ptrj = 0. Thus p̃box ∈ Pbox(ε).
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For every p̂tr ∈ P̂tr(ε), we have found p̃tr ∈ Ptr(ε) and p̃box ∈ Pbox(ε) such that p̂tr = p̃tr + p̃box. Thus

P̂tr(ε) ⊆ Ptr(ε) + Pbox(ε)

⇒P̂tr(ε) + Pbox(ε) ⊆ Ptr(ε) + 2Pbox(ε) ⊆
3

c
· P

⇒P̂ =
c

3

(
P̂tr(ε) + Pbox(ε)

)
⊆ P

(10)

The second line follows from the assumption that cPbox(ε) ⊆ P and Ptr(ε) ⊆ P (by Definition 23 and

the fact that P is down-monotone), and c ≤ 1. Similarly, by switching the role of Ptr(ε) and P̂tr(ε), with

condition 2, we also have Ptr(ε) ⊆ P̂tr(ε) + Pbox(ε). Thus

Ptr(ε) + Pbox(ε) ⊆ P̂tr(ε) + 2Pbox(ε)

⇒P ⊆ Ptr(ε) + Pbox(ε) ⊆ 2
(
P̂tr(ε) + Pbox(ε)

)
=

6

c
P̂

⇒
c

6
P ⊆ P̂

The second line follows from P ⊆ Ptr(ε) + Pbox(ε) (Lemma 14), the origin 0 ∈ P̂tr(ε), and the definition of

P̂ . Thus c
6P ⊆ P̂ ⊆ P.

To construct a separation oracle for P̂ , it is sufficient to optimize any linear objective over P̂ . For every

a ∈ Rd, we are going to solve the maximization problem max{a · x : x ∈ P̂}.
Let {i1, ..., iN} be the N samples from D, where ik ∈ [ℓ] for k ∈ [N ]. We notice that

P̂ =
∑

k∈[N ]

c

3N
· P

tr(ε,P)
ik

+
c

3
Pbox(ε)

is the Minkowski addition of a set of polytopes. Thus in order to maximize over P̂ , it’s sufficient to maximize

over each polytope. In other words, it is sufficient to solve max{a · x : x ∈ Pbox(ε)} and max{a · x :

x ∈ P
tr(ε,P)
ik

} for each k ∈ [N ]. First consider Pbox(ε). Since the polytope is a “box” where the constraint

for each coordinate j is separate: xj ≤ min(ε, lj(P)). Thus the optimum xbox ∈ Pbox(ε) satisfies that

xboxj = min(lj(P), ε) · 1[aj > 0]. Thus the optimum xbox can be computed in time O(d · (b+ log 1/ε+ b′))
and its bit complexity is at most O(d · (b+ log 1/ε)), where b′ is the bit complexity of a.

Now we show how to solve max{a · x : x ∈ P
tr(ε,P)
ik

} using a single query to Qik(·), for every k ∈ [N ].

Consider the vector a′ ∈ Rd such that a′j = aj · 1[lj(P) ≥ ε],∀j ∈ [d]. Then clearly

max{a · x : x ∈ P
tr(ε,P)
ik

} = max{a′ · x : x ∈ Pik}

Let x̂(ik) be the output from oracle Qik(a
′), then x̂(ik) ∈ argmax{a′ · x : x ∈ Pik}. Consider the element

x(ik) ∈ [0, 1]d such that for each j ∈ [d], x
(ik)
j = x̂

(ik)
j · 1[lj(P) ≥ ε]. Then x(ik) ∈ argmax{a′ · x : x ∈

P
tr(ε,P)
ik

} and its bit complexity is at most the bit complexity of x̂(ik), which is at most b, by our assumption

on Qi(·).
Thus we have ∑

k∈[N ]

c

3N
· x(ik) +

c

3
· xbox ∈ argmax{a · x : x ∈ P̂}

To sum up, we provide an algorithm to optimize any linear objective over P̂ . Moreover, the output of our

optimization algorithm always has bit complexity poly(b, k, d, 1/ε). For any a ∈ Rd with bit complexity b′,

our optimization algorithm runs in time poly(b, b′, k, d, 1/ε) and make N =
⌈
8kd
ε2

⌉
queries to the oracles in

{Qi}i∈[ℓ]. Using Theorem 10, we can construct a separation oracle for P̂ that satisfies the properties in the

statement of Theorem 8.

✷
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D.2 Approximating Single-Bidder Marginal Reduced Form Polytope for Constrained-Additive

Buyers

In this section, we prove Theorem 2 using Theorem 8. The goal is to show that the single-bidder marginal

reduced form polytope Wi satisfies the requirements of Theorem 8. Recall that for every buyer i, the support of

her type is Ti and the support of her value for each item j is Tij . Additionally, Wi is a subset of [0, 1]
∑

j∈[m] |Tij |,

and there is a coordinate for every j ∈ [m] and every tij ∈ Tij . To ease the notation, we will use tij’s to index

the coordinates throughout this section. Since each buyer is constrained-additive, we denote Fi the feasibility

constraint of buyer i, and drop the subscript if the buyer is fixed or clear from context.

Lemma 17. For each i ∈ [n], j ∈ [m] and tij ∈ Tij , ltij (Wi) = fij(tij). Recall that ltij (Wi) is the width of

Wi at coordinate tij (Definition 23).

Proof. For every i ∈ [n] and every ŵi ∈ Wi, by Definition 5, there exists a number σS(ti) ∈ [0, 1] for every

ti ∈ Ti, S ∈ Fi such that

1.
∑

S∈Fi
σS(ti) ≤ 1, ∀ti ∈ Ti.

2. ŵij(tij) = fij(tij) ·
∑

ti,−j
fi,−j(ti,−j) ·

∑
S∈Fi:j∈S

σS(ti), for all j ∈ [m] and tij ∈ Tij .

Thus for every j, tij , by combining both properties above, we have

ŵij(tij) ≤ fij(tij) ·
∑

ti,−j

fi,−j(ti,−j) · 1 = fij(tij).

Moreover, for every j, tij , choosing σ̂ such that: 25

σ̂S(t
′
i) =

{
1 if t′ij = tij ∧ S = {j}

0 o.w.

induces an element w̃i ∈Wi such that w̃ij(tij) = fij(tij). Thus ltij (Wi) = fij(tij).

Definition 25. For any buyer i and type ti ∈ Ti, consider Wti ⊆ [0, 1]
∑

j∈[m] |Tij | defined as follows: wi ∈Wti

if and only if there exists a collection of non-negative numbers {σS}S∈Fi
such that

1.
∑

S∈Fi
σS ≤ 1.

2. wij(t
′
ij) =

∑
S∈Fi,j∈S

σS · 1[t
′
ij = tij ],∀j ∈ [m], t′ij ∈ Tij .

The following observation directly follows from Definition 5 and Definition 25.

Observation 2. Wi is mixture of {Wti}ti∈Ti over distribution Di. Recall that Di is the distribution for buyer

i’s type ti.

Lemma 18. For every i and ti ∈ Ti, Wti is a convex and down-monotone polytope. Moreover, given access

to a demand oracle DEMi(ti, ·) for buyer i, we can calculate an element

w∗
i ∈ argmaxwi∈Wti

a · wi,

for any a ∈ R
∑

j∈[m] |Tij | with a single query to the demand oracle. Moreover, the bit complexity of w∗
i is at

most
∑

j∈[m] |Tij|.

25σ̂ is simply the allocation that gives buyer i item j when her value for item j is tij and does not give her anything otherwise.
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Proof. For every feasible set S ∈ Fi, consider allocation λ(S) = {1[S′ = S]}S′∈Fi
. The set of σ = {σS}S∈Fi

that satisfy property 1 of Definition 25 is equivalent to the set of all convex combinations of the λ(S)’s and the

origin 0. More specifically, σ =
∑

S∈Fi
σS · λ

(S) + (1 −
∑

S∈Fi
σS) · 0. Hence, the set of σ’s is a convex

polytope P in [0, 1]|Fi|. Since Wti is a projection of P to [0, 1]
∑

j∈[m] |Tij |, Wti is also a convex polytope.

Next, we prove Wti is down-monotone. Consider any wi ∈ Wti . By Definition 25, wij(t
′
ij) = 0 for all

j, t′ij such that t′ij 6= tij . To prove that Wti is down-monotone, it suffices to prove that for every j0 ∈ [m], any

vector w̃i, achieved by only decreasing the coordinate tij0 from wi, is still in Wti . Formally, w̃i satisfies

• w̃ij0(tij0) < wij0(tij0).

• w̃ij(tij) = wij(tij), if j 6= j0.

• w̃ij(t
′
ij) = 0, for any j ∈ [m], if t′ij 6= tij .

Let {σS}S∈Fi
be the vector of numbers associated with wi in Definition 25. Let α =

w̃ij0
(tij0 )

wij0
(tij0 )

< 1.

Consider another vector {σ̃S}S∈Fi
where for every S ∈ Fi,

σ̃S =





α · σS + (1− α) · (σS∪{j0} + σS), j0 6∈ S ∧ S ∪ {j0} ∈ Fi

α · σS, j0 ∈ S

σS , o.w.

We notice that the above definition is well-defined because S ∈ Fi as long as S ∪ {j0} ∈ Fi. Also∑
S∈Fi

σ̃S ≤ 1. Intuitively, σ = {σS}S∈Fi
represents a randomized allocation of sets S ∈ Fi to the bidder.

Then {σ̃S}S∈Fi
represents another randomized allocation: choose a set S according to the the randomized

allocation σ, if S contains j0, then throw away j0 with probability 1− α.

Now we have
∑

S∈Fi,j0∈S
σ̃S = α

∑
S∈Fi,j0∈S

σS = w̃ij0(tij0) and
∑

S∈Fi,j∈S
σ̃S = wij(tij), for all

j 6= j0. Thus w̃i ∈Wti , and Wti is down-monotone.

It remains to show that we can find an element in argmaxwi∈Wti
a · wi for any a ∈ R

∑
j∈[m] |Tij |, given

access to a demand oracle. W.l.o.g. we assume that for each j ∈ [m] and tij ∈ Tij , aij(tij) ≤
1
2 · tij (by

scaling and the fact that tij > 0). Observe that any corner wi of the polytope Wti corresponds to the choice

of {σS}S∈Fi
such that σS = 1[S = T ] for some particular T ∈ Fi, i.e. wij(t

′
ij) = 1[j ∈ T ∧ t′ij = tij].

Since w∗
i ∈ argmaxwi∈Wti

a · wi is a corner of Wti . We have

maxwi∈Wti
a · wi

=max
S∈Fi

∑

j∈S

aij(tij)

=max
S∈Fi

∑

j∈S

aij(tij)
+

=max
S∈Fi

∑

j∈S

(tij − (tij − aij(tij)
+))

Here x+ = max{x, 0}. The second equality holds because Fi is downward-closed. Notice that aij(tij)
+ ≤

1
2tij . Thus with a single query to the demand oracle, with type ti and prices pij = tij − aij(tij)

+ ≥ 0,∀j, we

can find argmaxwi∈Wti
a · wi. The bit complexity of w∗

i is at most
∑

j∈[m] |Tij |.

Lemma 19. Let T =
∑

j∈[m] |Tij|. For any ε < 1
T , (1− εT )W

box(ε)
i ⊆Wi.
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Proof. For any wi ∈ (1− εT )W
box(ε)
i , we prove that wi ∈Wi.

Consider the following set of numbers {σS(ti)}ti,S (see Definition 5): For each j ∈ [m], tij ∈ Tij , let

cj(tij) = min
(

ε
fij(tij)

, 1
)

and

pj(tij) =
wij(tij)

fij(tij)cj(tij) ·
∑

ti,−j
fi,−j(ti,−j) ·

∏
j′ 6=j(1− cj′(tij′))

.

Note that for every j′ ∈ [m], there exists a value tij′ ∈ Tij′ such that fij′(tij′) ≥ 1/|Tij′ |. Due to our

choice of ε, the corresponding cj′(tij′) < 1. Hence,
∑

ti,−j
fi,−j(ti,−j) ·

∏
j′ 6=j(1− cj′(tij′)) > 0, and pj(tij)

is well-defined.

For every ti, define

σS(ti) =

{
pj(tij) · cj(tij) ·

∏
j′ 6=j(1− cj′(tij′)), if S = {j} for some j ∈ [m]

0, o.w.

For every j and tij , let Cj(tij) be the independent Bernoulli random variable that is 1 with probability

cj(tij). Then for every j,

Pr
Cj(tij ),tij∼Dij

[
Cj(tij) = 1

]
=
∑

tij∈Tij

fij(tij) ·min

(
ε

fij(tij)
, 1

)
≤ ε · |Tij |

By the union bound,

∑

ti,−j

fi,−j(ti,−j) ·
∏

j′ 6=j

(1− cj′(tij′)) = Pr
ti,−j∼Di,−j

∀j′ 6=j,Ck(tij′ )

[Cj′(tij′) = 0,∀j′ 6= j]

=1− Pr
ti,−j∼Di,−j

∀j′ 6=j,Ck(tij′ )

[Cj′(tij′) = 1,∃j′ 6= j]

≥1−
∑

j 6=j′

Pr
tij∼Dij

Cj(tij)

[Cj(tij) = 1]

≥1− ε · T

Now we show that wi ∈ Wi by verifying both properties in Definition 5. For the first property, since

wi ∈ (1 − εT )W
box(ε)
i , 0 ≤ wij(tij) ≤ (1− ε · T ) ·min{ε, ltij (Wi)} = (1− ε · T ) · fij(tij) · cj(tij). The

equality is due to the definition of cj(tij) and Lemma 17. Thus pj(tij) ≤ 1 for every j and tij . We have

that
∑

S σS(ti) =
∑

j∈[m] pj(tij) · cj(tij) ·
∏

j′ 6=j(1 − cj′(tij′)) ≤
∑

j∈[m] cj(tij) ·
∏

j′ 6=j(1 − cj′(tij′)) ≤∏
j∈[m]

(
cj(tij) + (1− cj(tij)

)
= 1.

The second property:

fij(tij) ·
∑

ti,−j

fi,−j(ti,−j) ·
∑

S:j∈S

σS(tij , ti,−j)

=fij(tij)
∑

ti,−j

fi,−j(ti,−j) · pj(tij) · cj(tij) ·
∏

j′ 6=j

(1− cj′(tij′)) = wij(tij)

Thus by Definition 5, wi ∈Wi.

Proof of Theorem 2:

We simply verify that Wi satisfies all assumptions in Theorem 8. Recall that T =
∑

i,j |Tij| and b is an

upper bound of the bit complexity of all fij(tij)’s and all tij’s. We have the following:
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1. By Observation 2, we have that Wi is a mixture of {Wti}ti∈Ti over distribution Di.

2. By Lemma 18, for each ti ∈ Ti, Wti is a convex and down-monotone polytope. Given access to the

demand oracle DEMi(ti, ·), we can find an element in argmax{a ·wi : wi ∈Wti} in time poly(b′, b, T )
and a single query to DEMi(ti, ·), where b′ is the bit complexity of the input a. Note that each output

of the demand oracle has bit complexity at most T .

3. By Lemma 17, ltij (Wi) = fij(tij),for all j and tij . Thus, each ltij (Wi) has bit complexity at most b.

4. By Lemma 19, (1− εT )W
box(ε)
i ⊆Wi for any ε < 1

T . Choosing ε = 1
2T obtains 1

2W
box( 1

2T
)

i ⊆Wi.

For any δ ∈ (0, 1), we apply Theorem 8 with parameter k = poly(n,m, T, b, log(1/δ)), c = 1
2 and

ε = 1
2T . The probability that the algorithm successfully constructs a polytope that satisfies both properties of

Theorem 8 is at least 1−δ. We have 1
12 ·Wi ⊆ Ŵi ⊆Wi by the first property of Theorem 8 with c = 1

2 . Since

the vertex-complexity of Wti for each ti is no more than T , and the vertex-complexity for W
box( 1

2T
)

i is no

more than poly(b, T ), the vertex-complexity for Ŵi is no more than poly(n,m, T, b, log(1/δ)). The running

time of the algorithm and the separation oracle SO for Ŵi follows from the second property of Theorem 8.

✷

At last, we give the proof of Theorem 7 by combining Theorem 3 and Theorem 2.

Proof of Theorem 7: Fix any δ ∈ (0, 1). Recall that in the LP of Figure 3, we use an estimation of PREV,

which is P̃REV, according to Lemma 2. Denote E1 the event that an RPP mechanism is successfully computed

and E2 the event that the algorithm in Theorem 2 successfully constructs a convex polytope Ŵi that satisfies

both properties in the statement of Theorem 2 for each buyer i ∈ [n]. Note that E1 happens with probability

at least 1 − 2
nm and we take enough samples to make sure that E2 happens with probability at least 1− δ, by

the union bound, the probability that both E1 and E2 happen is at least 1 − δ − 2
nm . From now on, we will

condition on both events E1 and E2.

Now in the LP of Figure 3, we replace Wi by Ŵi for every i (we will call it the modified LP). By

property 1 and 2 of Theorem 2, we can solve the modified LP using the separation oracle for Ŵi, in time

poly(b, n,m, T, log(1/δ)) (recall that T =
∑

i,j |Tij|) according to Theorem 5. Let x∗ = (w∗, λ∗, λ̂∗,d∗) be

an optimal solution of the modified LP. Then w∗
i ∈ Ŵi for every i according to Constraint (1) in the modified

LP. By property 1 of Theorem 2, we have Ŵi ⊆ Wi. Thus w∗
i ∈ Wi,∀i and hence x∗ is also a feasible

solution of the original LP in Figure 3.

Recall that OPTLP is the optimum objective of the original LP. Denote OPT′
LP the optimum objective

of the modified LP. Thus in order to prove that (w∗, λ∗, λ̂∗,d∗) is an approximately-optimal solution in the

original LP, it suffices to show that OPT′
LP ≥ c · OPTLP. Take any feasible solution (w, λ, λ̂,d) of the

original LP. We have that wi ∈ Wi for every i. Now consider another set of variables (w′, λ′, λ̂,d) such that

w′
ij(tij) = c · wij(tij) and λ′

ij(tij , βij , δij) = c · λij(tij , βij , δij), for all i, j, tij , βij , δij , where c = 1/12.

We verify that (w′, λ′, λ̂,d) is a feasible solution for the modified LP. For Constraint (1), since c ·Wi ⊆ Ŵi

(property 1 of Theorem 2), we have that w′
i ∈ Ŵi, for all i. For Constraint (3), it holds since we multiply

both λ and w by c. Constraint (2), (4) and (7) hold, as for each of them their LHS is smaller while the RHS

remains unchanged. Every other constraint holds since both of their LHS and RHS remain the same. Thus

(w′, λ′, λ̂,d) is a feasible solution for the modified LP.

Now notice that the objective of the solution (w′, λ′, λ̂,d) is exactly c times the objective of the solution

(w, λ, λ̂,d). By choosing (w, λ, λ̂,d) to be the optimal solution of the original LP, we have that OPT′
LP ≥

c ·OPTLP. It implies that the objective of (w∗, λ∗, λ̂∗,d∗) is at least c ·OPTLP. Thus if we compute the simple

mechanisms using the decision variables (w∗, λ∗, λ̂∗,d∗). By Theorem 2, we have

c1 · REV(MPP) + c2 · REV(MTPT) ≥ OPT′
LP ≥ c · OPTLP ≥ c · OPT
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We finish our proof by noticing that the simple mechanisms can be computed in time poly(n,m, T ) given the

solution (w∗, λ∗, λ̂∗,d∗). ✷

E Accessing Single-Bidder Marginal Reduced Form Polytopes for XOS Val-

uations

Our goal in this section is to prove Theorem 1 for XOS valuations.

Theorem 11. (Restatement of Theorem 1 for XOS valuations) Let T =
∑

i,j |Tij | and b be the bit complexity

of the problem instance (Definition 3). For XOS buyers, for any δ > 0, there exists an algorithm that computes

a rationed posted price mechanism or a two-part tariff mechanism, such that the revenue of the mechanism

is at least c · OPT for some absolute constant c > 0 with probability 1 − δ − 2
nm . Our algorithm assumes

query access to a value oracle and an adjustable demand oracle (see Section 2) of buyers’ valuations, and

has running time poly(n,m, T, b, log(1/δ)).

We remind the readers the definition of the single-bidder marginal reduced form polytope Wi for XOS

valuations:

Definition 26 (Restatement of Definition 14). For every i ∈ [n], the single-bidder marginal reduced form

polytope Wi ⊆ [0, 1]2·
∑

j |Tij | is defined as follows. Let πi = (πij(tij))j,tij∈Tij and wi = (wij(tij))j,tij∈Tij .

Then (πi, wi) ∈ Wi if and only if there exist a number σ
(k)
S (ti) ∈ [0, 1] for every ti ∈ Ti, S ⊆ [m], k ∈ [K],

such that

1.
∑

S,k σ
(k)
S (ti) ≤ 1, ∀ti ∈ Ti.

2. πij(tij) =fij(tij) ·
∑

ti,−j
fi,−j(ti,−j) ·

∑
S:j∈S

∑
k∈[K] σ

(k)
S (tij , ti,−j), for all i, j, tij ∈ Tij .

3. wij(tij) ≤fij(tij) ·
∑

ti,−j
fi,−j(ti,−j) ·

∑
S:j∈S

∑
k∈[K] σ

(k)
S (tij, ti,−j) ·

α
(k)
ij (tij )

Vij(tij )
, for all i, j, tij ∈ Tij .

If Vij(tij) = 0, we slightly abuse notation and treat
α
(k)
ij (tij)

Vij(tij )
as 0 for all k.

The following observation follows directly from Definition 14.

Observation 3. For any (πi, wi) ∈Wi and any j ∈ [m], tij ∈ Tij , wij(tij) ≤ πij(tij) ≤ fij(tij).

Proof. The first inequality follows directly from the fact that α
(k)
ij (tij) ≤ Vij(tij) = maxk′ α

(k′)
ij (tij). The

second inequality follows from
∑

S:j∈S

∑
k∈[K] σ

(k)
S (tij, ti,−j) ≤

∑
S

∑
k σ

(k)
S (tij, ti,−j) ≤ 1.

In Appendix C.3, we provide an LP (Figure 4) that helps us to compute the simple mechanisms efficiently.

In Theorem 6, we have proved that given any optimal solution to the LP in Figure 4, we can compute a

simple mechanism in polynomial time, whose revenue is a constant factor of the optimal revenue. However,

constraint (1) is implicit and thus it’s unclear if we can solve the LP in polynomial time. Similar to the idea in

Appendix D, we fix this issue by constructing another polytope Ŵi. Unfortunately, for XOS valuations, Wi

is not a down-monotone polytope anymore. To see this, we simply notice that by Observation 3, wij(tij) ≤
πij(tij) for every coordinate (j, tij). Thus given any (πi, wi) ∈ Wi where wij(tij) > 0 for some j, tij , the

vector (0, wi) is clearly not in Wi. Thus the argument in Appendix D does not apply here.
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E.1 Basic Properties of the Single-Bidder Marginal Reduced Form for XOS Valuations

In this section we present some basic definitions and properties of the single-bidder Marginal Reduced Form

polytope Wi (Definition 14). We fixed any buyer i throughout this section unless otherwise specified.

Definition 27. For any ε > 0, we denote as W
tr(ε)
i ⊆ [0, 1]2

∑
j∈[m] |Tij | the ε-truncated polytope of Wi. An

element (π̂i, ŵi) ∈W
tr(ε)
i if there exists (πi, wi) ∈Wi such that for all j ∈ [m] and tij ∈ Tij:

ŵij(tij) = wij(tij) · 1[fij(tij) ≥ ε]

π̂ij(tij) = πij(tij) · 1[fij(tij) ≥ ε]

Similar to Section D, we show that W
tr(ε)
i is a mixture (Definition 22) of a set of polytopes {W

tr(ε)
ti
}ti∈Ti

defined in Definition 28 over D.

Definition 28. For any i, ti ∈ Ti and ε > 0, we define the polytopes Wti ,W
tr(ε)
ti

⊆ [0, 1]2
∑

j∈[m] |Tij | as

follows: An element

(
x =

{
x(t′ij)

}
t′ij∈Tij

, y =
{
y(t′ij)

}
t′ij∈Tij

)
∈ Wti if there exists a collection of non-

negative numbers {σ
(k)
S }S⊆[m],k∈[K], such that

∑
S⊆[m]

∑
k∈[K] σ

(k)
S ≤ 1, and for any j, t′ij ∈ Tij ,

x(t′ij) =
∑

S:j∈S

∑

k∈[K]

σ
(k)
S · 1[t

′
ij = tij]

y(t′ij) ≤
∑

S:j∈S

∑

k∈[K]

σ
(k)
S ·

α
(k)
ij (tij)

Vij(tij)
· 1[t′ij = tij ].

Moreover, an element

(
x̂ =

{
x̂(t′ij)

}
t′ij∈Tij

, ŷ =
{
ŷ(t′ij)

}
t′ij∈Tij

)
∈W

tr(ε)
ti

if there exists (x, y) ∈Wti

such that for any j, t′ij ,

x̂(t′ij) = x(t′ij) · 1[fij(tij) ≥ ε]

ŷ(t′ij) = y(t′ij) · 1[fij(tij) ≥ ε]

The following observation directly follows from Definition 14 and Definition 28.

Observation 4. Wi is a mixture of {Wti}ti∈Ti over distribution Di. For any ε > 0, W
tr(ε)
i is a mixture of

{W
tr(ε)
ti
}ti∈Ti over distribution Di.

The following observation is useful in later proofs.

Observation 5. For any ε > 0 and a′ ≥ a > 0, a ·Wi ⊆ a′ ·Wi and a ·W
tr(ε)
i ⊆ a′ ·W

tr(ε)
i .

Proof. Let c = a
a′ ≤ 1. For the first statement, it suffices to prove that (cπi, cwi) ∈Wi, for all (πi, wi) ∈Wi.

Let {σ
(k)
S (ti)}ti,S,k be the collection of numbers that satisfy all properties of Definition 14. Then since c ≤ 1,

by considering the collection of numbers {c · σ
(k)
S (ti)}ti,S,k, we immediately have that (cπi, cwi) ∈ Wi.

For the second statement, let (π′
i, w

′
i) be the vector achieved by zeroing out all coordinates (j, tij) where

fij(tij) < ε for the vector (πi, wi). By the definition of W
tr(ε)
i , we immediately have (π′

i, w
′
i) ∈ W

tr(ε)
i and

(cπ′
i, cw

′
i) ∈W

tr(ε)
i .

We next present several desirable properties of the polytopes we consider here.
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Lemma 20. For any ti ∈ Ti, any subset of items B ⊆ [m], and any (x, y) ∈ Wti , consider any (x̂, ŷ) ∈

[0, 1]2
∑

j∈[m] |Tij | such that for each j ∈ [m] and t′ij ∈ Tij ,

x̂(t′ij) =x(t′ij)1[j ∈ B] and ŷ(t′ij) ≤ y(t′ij)1[j ∈ B].

Then (x̂, ŷ) ∈Wti . Moreover, if (x, y) ∈W
tr(ε)
ti

, then (x̂, ŷ) is also in W
tr(ε)
ti

. Finally, W
tr(ε)
ti

⊆Wti .

Proof. It suffices to prove the case where ŷ(t′ij) = y(t′ij)1[j ∈ B],∀j, t′ij , since by Definition 28, we can

decrease any ŷ(t′ij) while maintaining the vector (x̂, ŷ) to be in Wti .

Since (x, y) ∈ Wti , let {σ
(k)
S }S⊆[m],k∈[K] be the collection of numbers from Definition 28. Each σ

(k)
S

can be viewed as the probability of the buyer receiving bundle S, and enabling the k-th additive function.

Consider another collection of numbers {σ̂
(k)
S }S⊆[m],k∈[K] by simply discarding items in [m]\B. Formally,

σ̂
(k)
S =

∑
T⊆[m]\B σ

(k)
S∪T ,∀S ⊆ B, k ∈ [K], and σ̂

(k)
S = 0 otherwise. Notice that for every j ∈ B and

k ∈ [K],
∑

S:j∈S σ
(k)
S =

∑
S:j∈S σ̂

(k)
S . It is not hard to verify that (x̂, ŷ) and {σ̂

(k)
S }S,k satisfy all inequalities

in Definition 28. Thus (x̂, ŷ) ∈Wti .

Now W
tr(ε)
ti

⊆ Wti follows from choosing B to be {j : fij(tij) ≥ ε}. For any (x, y) ∈ W
tr(ε)
ti

and any

choice set B ⊆ [m], (x̂, ŷ) ∈Wti . Since x̂(t′ij) = x̂(t′ij) ·1[fij(tij) ≥ ε] and ŷ(t′ij) = ŷ(t′ij) ·1[fij(tij) ≥ ε].

By Definition 28, (x̂, ŷ) also lies in W
tr(ε)
ti

.

Lemma 21. Given any ε > 0 and any distribution D̃i over Ti. Let W̃
tr(ε)
i be a mixture of

{
W

tr(ε)
ti

}
ti∈Ti

over

D̃i, that is, W̃
tr(ε)
i :=

∑
ti∈Ti

Prs∼D̃i
[s = ti] ·W

tr(ε)
ti

. For each j ∈ [m], let Sj ⊆ Tij be any set. For any

(πi, wi) ∈ W̃
tr(ε)
i and any (π̂i, ŵi) ∈ [0, 1]2

∑
j∈[m] |Tij | such that for each j ∈ [m] and t′ij ∈ Tij ,

π̂ij(t
′
ij) = πij(t

′
ij)1[t

′
ij ∈ Sj] and ŵij(t

′
ij) ≤ wij(t

′
ij)1[t

′
ij ∈ Sj].

then (π̂i, ŵi) ∈ W̃
tr(ε)
i .

Proof. It suffices to prove the case where ŵij(t
′
ij) = wij(t

′
ij)1[t

′
ij ∈ Sj],∀j, t

′
ij . This is because W̃

tr(ε)
i is

a mixture of {W
tr(ε)
ti
}ti∈Ti . By Definition 28, for every ti and any vector (x, y) ∈ W

tr(ε)
ti

, we can decrease

any y(t′ij) while maintaining the vector (x, y) to be in W
tr(ε)
ti

. Thus, for any (π̂i, ŵi) ∈ W̃
tr(ε)
i , it remains in

W̃
tr(ε)
i after decreasing any ŵij(t

′
ij).

For each ti ∈ Ti, let
(
π
(ti)
i , w

(ti)
i

)
∈ W

tr(ε)
ti

such that (πi, wi) =
∑

ti∈Ti
Pr

s∼D̃i
[s = ti] ·

(
π
(ti)
i , w

(ti)
i

)
.

Consider vector
(
π̂
(ti)
i , ŵ

(ti)
i

)
such that for every j ∈ [m] and t′ij ∈ Tij

π̂
(ti)
ij (t′ij) = π

(ti)
ij (t′ij)1[tij ∈ Sj] and ŵ

(ti)
ij (t′ij) = w

(ti)
ij (t′ij)1[tij ∈ Sj].

For each ti ∈ Ti, define set B(ti) := {j : tij ∈ Sj}, by applying Lemma 20 to
(
π
(ti)
i , w

(ti)
i

)
and set

B(ti), we have that
(
π̂
(ti)
i , ŵ

(ti)
i

)
∈W

tr(ε)
ti

.

We notice that by Definition 28, w
(ti)
ij (t′ij) = π

(ti)
ij (t′ij) = 0 if t′ij 6= tij . Thus, for every j ∈ [m] and

t′ij ∈ Tij ,

π̂
(ti)
ij (t′ij) = π

(ti)
ij (t′ij)1[t

′
ij ∈ Sj] and ŵ

(ti)
ij (t′ij) = w

(ti)
ij (t′ij)1[t

′
ij ∈ Sj].

The proof concludes by noticing that (π̂i, ŵi) =
∑

ti∈Ti
Prs∼D̃i

[s = ti] ·
(
π̂
(ti)
i , ŵ

(ti)
i

)
∈ W̃

tr(ε)
i .

45



The following corollary follows from Observation 4 and Lemma 20.

Corollary 1. For any ε > 0, W
tr(ε)
i ⊆Wi.

Proof. This follows easily from the claim that W
tr(ε)
ti

⊆Wti (Lemma 20).

Similar to the constrained-additive case, we define the ε-box polytope of Wi for XOS valuations in Defi-

nition 29.

Definition 29. For ε > 0, we denote as W
box(ε)
i ⊆ [0, 1]2

∑
j∈[m] |Tij | the ε-box polytope of Wi: (πi, wi) ∈

W
box(ε)
i if and only if for every j ∈ [m] and tij ∈ Tij it holds that

0 ≤ wij(tij) ≤ πij(tij) ≤ min(ε, fij(tij))

The following lemma is similar to Lemma 19.

Lemma 22. Let T =
∑

i∈[n]

∑
j∈[m] |Tij |, then (1− ε · T )W

box(ε)
i ⊆Wi, for all ε < 1/T .

Proof. For any (πi, wi) ∈ W
box(ε)
i , we will prove that (πi, πi) ∈ Wi. Then (πi, wi) ∈ Wi since wij(tij) ≤

πij(tij) for any j, tij .

To prove (πi, πi) ∈Wi, we consider the following set of numbers {σ
(k)
S (ti)}ti,S,k (see Definition 14): For

each j ∈ [m], tij ∈ Tij , let cj(tij) = min
(

ε
fij(tij )

, 1
)

and

pj(tij) =
πij(tij)

fij(tij) ·
∑

ti,−j
fi,−j(ti,−j) · cj(tij) ·

∏
j′ 6=j(1− cj′(tij′))

.

Note that for every j′ ∈ [m], there exists a tij′ ∈ Tij′ such that fij′(tij′) ≥ 1/|Tij′ |. Due to our choice

of ε, the corresponding cj′(tij′) < 1. Hence,
∑

ti,−j
fi,−j(ti,−j) ·

∏
j′ 6=j(1 − cj′(tij′)) > 0, and pj(tij) is

well-defined.

For every ti, define 26

σ
(k)
S (ti) =




pj(tij) · cj(tij) ·

∏
j′ 6=j(1− cj′(tij′)), if S = {j} and k = argmaxk′ α

(k′)
ij (tij)

0, o.w.

For every j, let Cj(tij) be the independent Bernoulli random variable that activates with probability

cj(tij). Then for every j,

Pr
Cj(tij ),tij∼Dij

[
Cj(tij) = 1

]
≤
∑

tij∈Tij

fij(tij) ·min

(
ε

fij(tij)
, 1

)
≤ ε · |Tij |

By the union bound,

∑

ti,−j

fi,−j(ti,−j)·
∏

j′ 6=j

(1−cj′(tij′)) = Pr
ti,−j∼Di−j

∀j′ 6=j,Cj′(tij′ )

[Cj′(tij′) = 0,∀j′ 6= j] ≥ 1−
∑

j

Pr[Cj(tij) = 1] ≥ 1−ε·T

Now we prove that (πi, πi) ∈Wi by verifying all three conditions in Definition 14. For the first condition,

since (πi, wi) ∈ (1− εT )W
box(ε)
i , 0 ≤ wij(tij) ≤ πij(tij) ≤ (1− ε · T ) · fij(tij) · cj(tij). Thus pj(tij) ≤ 1

for every j, tij . We have that
∑

S,k σ
(k)
S (ti) =

∑
j pj(tij) · cj(tij) ·

∏
j′ 6=j(1 − cj′(tij′)) ≤

∑
j cj(tij) ·

26When there are two indices k, k′ ∈ [K] such that k, k∗ ∈ argmaxk′ α
(k′)
ij (tij), we break ties in lexicographic order.

46



∏
j′ 6=j(1 − cj′(tij′)). We notice that

∑
j cj(tij) ·

∏
j′ 6=j(1 − cj′(tij′)) is exactly the probability that there

exists a unique Cj(tij) = 1. Thus
∑

S,k σ
(k)
S (ti) ≤ 1 for all ti ∈ Ti.

The second condition:

fij(tij) ·
∑

ti,−j

fi,−j(ti,−j) ·
∑

S:j∈S

∑

k∈[K]

σ
(k)
S (tij, ti,−j)

=fij(tij)
∑

ti,−j

fi,−j(ti,−j) · pj(tij) · cj(tij) ·
∏

j′ 6=j

(1− cj′(tij′)) = πij(tij)

The third condition:

fij(tij) ·
∑

ti,−j

fi,−j(ti,−j) ·
∑

S:j∈S

∑

k∈[K]

σ
(k)
S (tij , ti,−j) ·

α
(k)
ij (tij)

Vij(tij)

=fij(tij)
∑

ti,−j

fi,−j(ti,−j) · pj(tij) · cj(tij) ·
∏

j′ 6=j

(1− cj′(tij′)) ·
maxk α

(k)
ij (tij)

Vij(tij)
= πij(tij)

By Definition 14, (πi, πi) ∈Wi. Thus, (πi, wi) ∈Wi.

Similar to Lemma 14, we prove in the following lemma that Wi can be approximated by the polytope
1
2W

tr(ε)
i + 1−εT

2 W
box(ε)
i within a multiplicative factor.

Lemma 23. Let T =
∑

i∈[n]

∑
j∈[m] |Tij | and any 0 ≤ ε < 1

T , then

1− εT

2
Wi ⊆

1

2
W

tr(ε)
i +

1− εT

2
W

box(ε)
i ⊆Wi.

Proof. Let W ′ = 1
2W

tr(ε)
i + 1−εT

2 W
box(ǫ)
i . Then W ′ ⊆Wi directly follows from Corollary 1 and Lemma 22.

We are going to show that for each (πi, wi) ∈
1−ε·T

2 ·Wi, (πi, wi) ∈ W ′. We consider the following vector

(πtr
i , wtr

i ) such that for every j ∈ [m], tij ∈ Tij ,

πtr
ij (tij) = πij(tij)1[fij(tij) ≥ ε], wtr

ij (tij) = wij(tij)1[fij(tij) ≥ ε]

Then by Definition 27 and Observation 5, (πtr
i , wtr

i ) ∈ 1−ε·T
2 W

tr(ε)
i ⊆ 1

2W
tr(ε)
i . Consider the vector

(πbox
i , wbox

i ) such that

πbox
ij (tij) = πij(tij)1[fij(tij) < ε], wbox

ij (tij) = wij(tij)1[fij(tij) < ε]

For every j ∈ [m], tij ∈ Tij , since (πi, wi) ∈
1−ε·T

2 ·Wi, by Observation 3 we have wij(tij) ≤ πij(tij) ≤
1−ε·T

2 · fij(tij). Thus wbox
ij (tij) ≤ πbox

ij (tij) ≤
1−ε·T

2 · fij(tij) · 1[fij(tij) < ε] ≤ 1−ε·T
2 · min(fij(tij), ε).

Thus (πbox
i , wbox

i ) ∈ 1−εT
2 W

box(ε)
i . Now observe that (πi, wi) = (πtr

i + πbox
i , wtr

i + wbox
i ) ∈ 1

2W
tr(ε)
i +

1−εT
2 W

box(ε)
i , which concludes the proof.

E.2 Approximating the Single-Bidder Marginal Reduced Form Polytope

In this section we provide the important step that allows us to prove Theorem 11. In the constrained-additive

case (Theorem 2), we construct (with high probability) another polytope Ŵi such that (i) c ·Wi ⊆ Ŵi ⊆ Wi

for some absolute constant c > 0, and (ii) we have an efficient separation oracle for Ŵi. The proof heavily

relies on the fact that Wi is down-monotone and thus cannot be easily extended to the single-bidder marginal

reduced form polytope Wi in the XOS case. Here we prove a similar statement with a weaker version of

property (i): For every vector x in Wi, there exists another vector x′ in Ŵi such that for every coordinate j,

xj/x
′
j ∈ [a, b] for some absolute constant 0 < a < b, and vice versa. It’s not hard to see that the original

property (i) directly implies this weaker version. A formal statement is shown in Theorem 12.
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Theorem 12. Let T =
∑

i∈[n]

∑
j∈[m] |Tij | and b be the bit complexity of the problem instance (Definition 3).

For any i ∈ [n] and δ > 0, there is an algorithm that constructs a convex polytope Ŵi ∈ [0, 1]2·
∑

j∈[m] |Tij |

using poly(n,m, T, log(1/δ)) samples from Di, such that with probability at least 1 − δ all of the following

are satisfied:

1. For each (π̃i, w̃i) ∈ Ŵi, there exists a (πi, wi) ∈Wi such that for all j ∈ [m] and tij ∈ Tij:

πij(tij)

π̃ij(tij)
∈

[
1

4
,
3

2

]
,

wij(tij)

w̃ij(tij)
∈

[
1

4
,
5

4

]

2. For each (πi, wi) ∈Wi, there exists a (π̃i, w̃i) ∈ Ŵi such that for all j ∈ [m] and tij ∈ Tij:

π̃ij(tij)

πij(tij)
∈

[
1

16
,
3

8

]
,

w̃ij(tij)

wij(tij)
∈

[
1

16
,
5

16

]

3. The vertex-complexity (Definition 10) of Ŵi is poly(n,m, T, b, log(1/δ)).

4. There exists a separation oracle SO for Ŵi, given access to the value oracle and an adjustable demand

oracle (Definition 2) of buyer i’s valuation. The running time of SO on any input with bit complexity b′

is poly(n,m, T, b, b′, log(1/δ)) and makes poly(n,m, T, b, b′, log(1/δ)) queries to both oracles.

The algorithm constructs the polytope and the separation orcle SO in time poly(n,m, T, b, log(1/δ)).

E.2.1 Efficiently Optimizing over the Polytope

Both Corollary 2 and Lemma 24 are useful to show that there exists an efficient separation oracle for our

constructed polytope.

In Lemma 24, we show that given access to the adjustable demand oracle and the value oracle, we can

optimize any linear objective over the polytope W
tr(ε)
ti

(Definition 28).

Lemma 24. Let T =
∑

i∈[n]

∑
j∈[m] |Tij|, and b be the bit complexity of the instance. For any ti ∈ Ti and

any ε > 0, given access to the adjustable demand oracle ADEMi(·, ·, ·) and the value oracle for buyer i’s
valuation vi(·, ·), there exists an algorithm that takes arbitrary x,y ∈ R

∑
j |Tij | as input and finds

(π∗
i , w

∗
i ) ∈ argmax

(πi,wi)∈W
tr(ε)
ti

x · πi + y · wi.

The algorithm runs in time poly(n,m, T, b, b′, 1/ε) and makes O(m) queries to both oracles, where b′ is the

bit complexity of (x,y). Moreover the bit complexity of (π∗
i , w

∗
i ) is at most O(bT ).

Proof. We are going to solve the problem:

max x · πi + y · wi

s.t. (πi, wi) ∈W
tr(ε)
ti

By Definition 28, πij(t
′
ij) = wij(t

′
ij) = 0 if t′ij 6= tij or fij(tij) < ε. Let Q = {j ∈ [m] : fij(tij) ≥ ε}.
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Then according to Definition 28, the problem is equivalent to

(O1) max
∑

j∈Q

(
xj(tij) · πij(tij) + yj(tij) · wij(tij)

)

s.t.
∑

S⊆[m]

∑

k∈[K]

σ
(k)
S ≤ 1

πij(tij) =
∑

S:j∈S

∑

k∈[K]

σ
(k)
S ∀j ∈ [m]

0 ≤ wij(tij) ≤
∑

S:j∈S

∑

k∈[K]

σ
(k)
S

α
(k)
ij (tij)

Vij(tij)
∀j ∈ [m]

σ
(k)
S ≥ 0 ∀S ⊆ [m], k ∈ [K]

We notice that at the maximum, wij(tij) must be equal to
∑

S:j∈S

∑
k∈[K] σ

(k)
S

α
(k)
ij (tij )

Vij(tij )
if yj(tij) > 0, and

0 otherwise. (O1) is equivalent to (denote yj(tij)
+ = max{yj(tij), 0}):

(O2) max
∑

j∈Q

(
xj(tij) · πij(tij) + yj(tij)

+ · wij(tij)
)

s.t.
∑

S⊆[m]

∑

k∈[K]

σ
(k)
S ≤ 1

πij(tij) =
∑

S:j∈S

∑

k∈[K]

σ
(k)
S ∀j ∈ [m]

wij(tij) =
∑

S:j∈S

∑

k∈[K]

σ
(k)
S

α
(k)
ij (tij)

Vij(tij)
∀j ∈ [m]

σ
(k)
S ≥ 0 ∀S ⊆ [m], k ∈ [K]

or equivalently

(O3) max
∑

S⊆[m]

∑

k∈[K]

σ
(k)
S



∑

j∈S∩Q


yj(tij)

+
α
(k)
ij (tij)

Vij(tij)
+ xj(tij)







s.t.
∑

S⊆[m]

∑

k∈[K]

σ
(k)
S ≤ 1

σ
(k)
S ≥ 0 S ⊆ [m], k ∈ [K]

Clearly, to solve (O3), it suffices to find S∗ ⊆ Q and k∗ ∈ [K] that lies in

argmax
S⊆Q,k∈[K]

∑

j∈S


yj(tij)

+ ·
α
(k)
ij (tij)

Vij(tij)
+ xj(tij)


 .

We notice that since yj(tij)
+ ·

α
(k)
ij (tij)

Vij(tij )
≥ 0 for every j, k, thus j ∈ S∗ for every j such that xj(tij) ≥ 0.

Consider the vector b ∈ Rm
+ and p ∈ Rm

+ such that for each j ∈ [m],

bj =
yj(tij)

+

Vij(tij)
, pj =

{
−xj(tij)1[xj(tij) < 0], j ∈ Q

∞, j 6∈ Q
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Then (S∗, k∗) ∈ argmax
∑

j∈S

(
bjα

(k)
ij (tij)− pj

)
, which can be achieved by a single query to the

adjustable demand oracle with input (ti,b,p). Now the corresponding vector (π∗
i , w

∗
i ) can be computed

according to (O2), with σ
(k)
S = 1[S = S∗ ∪ S+ ∧ k = k∗], where S+ := {j ∈ [m] : xj(tij) > 0}. 27

Finally, the bit complexity of each coordinate of (π∗
i , w

∗
i ) is at most O(b), which implies that the bit

complexity of (π∗
i , w

∗
i ) is at most O(bT ).

Corollary 2. Let T =
∑

i∈[n]

∑
j∈[m] |Tij | and b be the bit complexity of the instance. For any ti ∈ Ti, W

tr(ε)
ti

has vertex-complexity O(bT ).

E.2.2 Proof of Theorem 12

Choose parameter ε = 1
2T and any k = Ω

(
T 4
(
Tb+ log

(
1/ε
)
+ n log(1/δ)

))
Hence, in this proof, 1 −

εT = 1/2. Let D̂i be the empirical distribution induced by N =
⌈
32kT
ε2

⌉
independent samples from Di. Let

Ŵ
tr(ε)
i be the mixture of {W

tr(ε)
ti
}ti∈Ti

over the empirical distribution D̂i. By Corollary 2, the bit complexity

of each corner of polytopes in {W
tr(ε)
ti
}ti∈Ti is at most O(Tb). By Theorem 9, with probability at least

1− 2Te−2Tk ≥ 1− δ, both of the following properties hold:

(i) For each (π̂i, ŵi) ∈ Ŵ
tr(ε)
i , there exists a (πi, wi) ∈W

tr(ε)
i such that ||(π̂i, ŵi)− (πi, wi)||∞ ≤

ε
2

(ii) For each (πi, wi) ∈W
tr(ε)
i , there exists a (π̂i, ŵi) ∈ Ŵ

tr(ε)
i such that ||(π̂i, ŵi)− (πi, wi)||∞ ≤

ε
2

For the rest of the proof, we condition on the event where both properties above hold. Let W ′
i =

1
2W

tr(ε)
i +

1
4W

box(ε)
i . Consider the polytope Ŵi =

1
2Ŵ

tr(ε)
i + 1

4W
box(ε)
i . We are going to show that for each (πi, wi) ∈

W ′
i , there exists a (π̃i, w̃i) ∈ Ŵi such that for all j, tij ,

π̃ij(tij)

πij(tij)
∈

[
1

4
,
3

2

]
and

w̃ij(tij)

wij(tij)
∈

[
1

4
,
5

4

]
.

It is not hard to see that this implies Property 2 in the statement of Theorem 12, as W ′
i = 1

2W
tr(ε)
i +

1
4W

box(ε)
i ⊇ 1

4Wi(due to Lemma 23 and our choice of ε).

For any (πi, wi) ∈W ′
i , we rewrite (πi, wi) as 1

2(π
tr
i , wtr

i )+ 1
2 (π

box
i , wbox

i ) where (πtr
i , wtr

i ) ∈W
tr(ε)
i and

(πbox
i , wbox

i ) ∈ 1
2W

box(ε)
i . For every j ∈ [m], we partition Tij into four disjoint sets:

S
(1)
j ={tij ∈ Tij : fij(tij) ≥ ε ∧ ε < wij(tij) ≤ πij(tij)}

S
(2)
j ={tij ∈ Tij : fij(tij) ≥ ε ∧ wij(tij) ≤ ε < πij(tij)}

S
(3)
j ={tij ∈ Tij : fij(tij) ≥ ε ∧ wij(tij) ≤ πij(tij) ≤ ε}

S
(4)
j ={tij ∈ Tij : fij(tij) < ε}

By property (ii), there exists a (π̂tr
i , ŵtr

i ) ∈ Ŵ
tr(ε)
i such that for all j ∈ [m] and tij ∈ Tij:

πtr
ij (tij)− ε/2 ≤ π̂tr

ij (tij) ≤ πtr
ij (tij) + ε/2

wtr
ij (tij)− ε/2 ≤ ŵtr

ij (tij) ≤ wtr
ij (tij) + ε/2

27Both α
(k∗)
ij (tij) and Vij(tij) = maxk α

(k)
ij (tij) can be computed with O(1) queries to the adjustable demand oracle.
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Now consider the following vector (π̃tr
i , w̃tr

i ) ∈ [0, 1]2
∑

j∈[m] |Tij |:

π̃tr
ij (tij) =




π̂tr
ij (tij) if tij ∈ S

(1)
j ∪ S

(2)
j

0 o.w.

w̃tr
ij (tij) =




ŵtr
ij (tij) if tij ∈ S

(1)
j

0 o.w.

In other words,

(π̃tr
ij (tij), w̃

tr
ij (tij)) = (π̂tr

ij (tij) · 1[πij(tij) > ε], ŵtr
ij (tij) · 1[wij(tij) > ε]),

and (π̃tr
i , w̃tr

i ) ∈ Ŵ
tr(ε)
i .

Consider another vector (π̃box
i , w̃box

i ) ∈ [0, 1]2
∑

j∈[m] |Tij |:

(π̃box
ij (tij), w̃

box
ij (tij)) =





(πbox
ij (tij), w

box
ij (tij)) if tij ∈ S

(1)
j ∪ S

(4)
j

(wij(tij)/2, wij(tij)/2) if tij ∈ S
(2)
j

(πij(tij)/2, wij(tij)/2) if tij ∈ S
(3)
j

For every j ∈ [m] and tij ∈ Tij , clearly π̃box
ij (tij) ≥ w̃box

ij (tij) since πbox
ij (tij) ≥ wbox

ij (tij) and πij(tij) ≥

wij(tij). Moreover, if tij ∈ S
(1)
j ∪ S

(4)
j , π̃box

ij (tij) = πbox
ij (tij) ≤

1
2 · min{ε, fij(tij)}, since (πbox

i , wbox
i ) ∈

1
2W

box(ε)
i . If tij ∈ S

(2)
j ∪ S

(3)
j , by the definitions of S

(2)
j and S

(3)
j , we have that π̃box

ij (tij) ≤ ε/2 = 1
2 ·

min{ε, fij(tij)}. Thus (π̃box
i , w̃box

i ) ∈ 1
2W

box(ε)
i . Now define (π̃i, w̃i) =

1
2 (π̃

tr
i , w̃tr

i ) + 1
2 (π̃

box
i , w̃box

i ). Then

(π̃i, w̃i) ∈ Ŵi. It remains to prove that (π̃i, w̃i) satisfies: for all j, tij

π̃ij(tij)

πij(tij)
∈

[
1

4
,
3

2

]
and

w̃ij(tij)

wij(tij)
∈

[
1

4
,
5

4

]
.

We verify all cases based on which set tij is in.

Case 1: tij ∈ S
(1)
j . Recall that for tij ∈ S

(1)
j , ε < wij(tij) ≤ πij(tij). We have that

π̃ij(tij)− πij(tij) =
1

2
(π̂tr

ij (tij)− πtr
ij (tij)).

According to property (ii), 1
2 (π̂

tr
ij (tij)−π

tr
ij (tij)) ∈ [− ε

4 ,
ε
4 ], so 1

2(π̂
tr
ij (tij)−π

tr
ij (tij)) also lies in [−

πij(tij )
4 ,

πij(tij)
4 ].

Similarly,

w̃ij(tij)− wij(tij) =
1

2
(ŵtr

ij (tij)− wtr
ij (tij)) ∈ [−

ε

4
,
ε

4
] ⊆ [−

wij(tij)

4
,
wij(tij)

4
].

Hence,
π̃ij(tij)

πij(tij)
∈

[
3

4
,
5

4

]
and

w̃ij(tij)

wij(tij)
∈

[
3

4
,
5

4

]
.
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Case 2: tij ∈ S
(2)
j . Recall that w̃ij(tij) =

1
4 · wij(tij) and π̃ij(tij) =

1
4 · wij(tij) +

1
2 · π̂

tr
ij (tij). We have

that

π̃ij(tij) ≤
1

4
· wij(tij) +

πtr
ij (tij)

2
+

ε

4
≤

3

2
· πij(tij).

The first inequality follows from property (ii), and the second inequality follows from πij(tij) =
πtr
ij (tij)

2 +
πbox
ij (tij)

2 ≥
πtr
ij (tij )

2 and wij(tij) ≤ ε < πij(tij) when tij ∈ S
(2)
j . We also have that

π̃ij(tij) ≥
π̃tr
ij (tij)

2
≥

πtr
ij (tij)

2
−

ε

4
= πij(tij)−

πbox
ij (tij)

2
−

ε

4
≥ πij(tij)−

ε

2
≥

1

2
πij(tij)

The first inequality follows from the non-negativity of π̃box
ij (tij); the second inequality follows from property

(ii); the third inequality is due to the fact that πbox
ij (tij) ≤ ε/2; the last inequality is because ε < πij(tij).

Hence,
π̃ij(tij)

πij(tij)
∈

[
1

2
,
3

2

]
and

w̃ij(tij)

wij(tij)
=

1

4
.

Case 3: tij ∈ S
(3)
j ∪ S

(4)
j . Recall that when tij ∈ S

(3)
j , π̃ij(tij) =

1
4 · πij(tij) and w̃ij(tij) =

1
4 · wij(tij).

When tij ∈ S
(4)
j , as fij(tij) < ε, wtr

ij (tij) = πtr
ij (tij) = 0. Thus π̃ij(tij) = 1

2π
box
ij (tij) = πij(tij), and

wij(tij) =
1
2w

box
ij (tij) = wij(tij).

To sum up, we have argued that for each (πi, wi) ∈W ′
i , there exists a (π̃i, w̃i) ∈ Ŵi such that for all j, tij ,

π̃ij(tij)

πij(tij)
∈

[
1

4
,
3

2

]
and

w̃ij(tij)

wij(tij)
∈

[
1

4
,
5

4

]
.

With a similar analysis, 28 we can also show that for each (π̃i, w̃i) ∈ Ŵi, there exists a (πi, wi) ∈ W ′
i

such that for all j, tij ,

πij(tij)

π̃ij(tij)
∈

[
1

4
,
3

2

]
and

wij(tij)

w̃ij(tij)
∈

[
1

4
,
5

4

]
.

Thus Property 1 in the statement of Theorem 12 follows from the fact that W ′
i =

1
2W

tr(ε)
i + 1

4W
box(ε)
i ⊆

Wi (Lemma 23).

Let {t
(1)
i , ..., t

(N)
i } be the N samples from Di. Then

Ŵi =
∑

ℓ∈[N ]

1

2N
·W

tr(ε)

t
(ℓ)
i

+
1

4
W

box(ε)
i

is the Minkowski addition of N+1 polytopes. For Property 3 of the statement, since the vertex-complexity of

W
tr(ε)
ti

is O(bT ) for each ti (Corollary 2), and the vertex-complexity of W
box(ε)
i is no more than poly(b, T ),

the vertex-complexity of Ŵi is no more than poly(n,m, T, b, log(1/δ)).

At last, we show the existence of an efficient separation oracle SO for Ŵi, by efficiently optimizing any

linear objective over Ŵi. Since Ŵi is the Minkowski addition of polytopes {W
tr(ε)

t
(ℓ)
i

}ℓ∈[N ] and W
box(ε)
i , in

28We only need to switch the role of (π̃i, w̃i) and (πi, wi). We provide a brief sketch here. First, rewrite (π̃i, w̃i) as 1
2
(π̂tr

i , ŵtr
i )+

1
2
(π̃box

i , w̃box
i ), where (π̂tr

i , ŵtr
i ) ∈ Ŵ

tr(ε)
i and (π̃box

i , w̃box
i ) ∈ 1

2
W

box(ε)
i . Also, redefine S

(i)
j in the same fashion but according

to (π̃i, w̃i). Take (πtr
i , wtr

i ) ∈ W
tr(ε)
i to be the point guaranteed to exist by property (i), and define (π̄tr

ij (tij), w̄
tr
ij (tij)) :=

(πtr
ij (tij) · 1[π̃ij(tij) > ε], wtr

ij (tij) · 1[w̃ij(tij) > ε]). Also, define (πbox
ij (tij), w

box
ij (tij)) according to which set tij belongs to

in a fashion similar to the proof above. Now define (πi, wi) =
1
2
(π̄tr

i , w̄tr
i ) + 1

2
(πbox

i , wbox
i ). Using a similar case analysis, we can

prove the claim that
πij(tij)

π̃ij(tij)
∈
[
1
4
, 3
2

]
and

wij (tij)

w̃ij (tij)
∈
[
1
4
, 5
4

]
for all j ∈ [m] and tij ∈ Tij .
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order to maximize over Ŵi, it’s sufficient to maximize over each polytope. By Lemma 24, we can efficiently

optimize any linear objective over W
tr(ε)
ti

for every ti, given the adjustable demand oracle and value oracle.

Thus it is sufficient to solve max{x · πi + y ·wi : (πi, wi) ∈W
box(ε)
i } for any vector x,y. Since in W

box(ε)
i ,

the constraint for each coordinate (j, tij) is separate: 0 ≤ wij(tij) ≤ πij(tij) ≤ min(ε, fij(tij)). Thus the

optimum can be achieved by solving the following LP for every coordinate:

max xj(tij) · πij(tij) + yj(tij) · wij(tij)

s.t. 0 ≤ wij(tij) ≤ πij(tij) ≤ min(ε, fij(tij))

Note that the bit complexity of the output of our optimization algorithm is poly(n,m, T, b, log(1/δ)). Thus

by Theorem 10, there exists a separation oracle SO of Ŵi, that satisfies Property 4 in the statement of Theo-

rem 12.

E.3 Putting Everything Together

In this section, we put all pieces together and provide a complete proof of Theorem 11. Denote (P ) the

LP in Figure 4 and OPTLP the optimal objective of (P ). We consider another LP denoted as (P ′). In

(P ′), in addition to all variables in (P ), we introduce new variables π̂i = {π̂ij(tij)}j∈[m],tij∈Tij and ŵi =
{ŵij(tij)}j∈[m],tij∈Tij for every i ∈ [n]. Both (P ) and (P ′) have the same objective function. The only

difference between (P ) and (P ′) is that in (P ′), we replace Constraint (1) with the following constraints:

Constraint (1′) : (π̂i, ŵi) ∈ Ŵi, πi ≥
3

2
π̂i ≥ 0, wi ≤

1

4
ŵi, ∀i ∈ [n].

Here Ŵi is the proxy polytope from Theorem 12 for each i ∈ [n]. Both inequalities hold coordinate-wisely.

Denote OPT′
LP the optimal objective of (P ′). By Property 4 of Theorem 12, there exists an efficient separation

oracle for each Ŵi. Thus we can solve (P ′) in polynomial time using the Ellipsoid algorithm (Theorem 5).

The following lemma shows the relationship between (P ) and (P ′).

Lemma 25. Suppose for every i ∈ [n], Ŵi satisfies the properties in Theorem 12. Then

• For any feasible solution (π,w, π̂, ŵ, λ, λ̂,d) to (P ′), there exists π̃ ∈ [0, 1]
∑

i,j |Tij | such that (π̃, w, λ, λ̂,d)
is a feasible solution to (P ).

• OPTLP ≤ 64 · OPT′
LP.

Proof. We prove the first part of the statement. Let (π,w, π̂, ŵ, λ, λ̂,d) be any feasible solution to (P ′). Then

for every i ∈ [n], (π̂i, ŵi) ∈ Ŵi. By Property 1 of Theorem 12, there exists a (π̃i, w̃i) ∈Wi such that for each

j ∈ [m] and tij ∈ Tij ,

π̃ij(tij) ≤
3

2
π̂ij(tij) ≤ πij(tij) w̃ij(tij) ≥

1

4
ŵij(tij) ≥ wij(tij)

Let π̃ = {π̃i}i∈[n]. We are going to show that (π̃, w, λ, λ̂,d) is a feasible solution to (P ) by verifying all

constraints. For Constraint (1), since (π̃i, w̃i) ∈ Wi and wij(tij) ≤ w̃ij(tij),∀j, tij , thus by Definition 14

(π̃i, wi) ∈Wi.

For Constraint (2), since (π,w, π̂, ŵ, λ, λ̂,d) is a feasible solution to (P ′), for every j ∈ [m],

∑

i

∑

tij∈Tij

π̃ij(tij) ≤
∑

i

∑

tij∈Tij

πij(tij) ≤ 1.

Furthermore, Constraints (3)−(9) are clearly satisfied since (π,w, π̂, ŵ, λ, λ̂,d) is a feasible solution to (P ′).
Thus (π̃, w, λ, λ̂,d) is a feasible solution to (P ).
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Now we prove the second part of the statement. Let (π∗, w∗, λ∗, λ̂∗,d∗) be any optimal feasible solution

to (P ). For every buyer i, (π∗
i , w

∗
i ) ∈ Wi. By Property 2 of Theorem 12, there exists a (π̂i, ŵi) ∈ Ŵi such

that for every j, tij ,

π̂ij(tij) ≤
3

8
π∗
ij(tij), ŵij(tij) ≥

1

16
w∗
ij(tij)

We are going to show that
(
π = 3

2 π̂, w = 1
64w

∗, π̂, ŵ, λ = 1
64λ

∗, λ̂ = λ̂∗,d = d∗
)

is a feasible solution to

(P ′), which implies that OPT′
LP ≥ OPTLP/64. Firstly, for each i ∈ [n], (π̂i, ŵi) ∈ Ŵi and

πi =
3

2
π̂i, wi =

1

64
w∗
i ≤

1

4
ŵi

Thus Constraint (1′) is satisfied. For Constraint (2), since (π∗, w∗, λ∗, λ̂∗,d∗) is a feasible solution to (P ),
we have that for every j,

∑

i∈[n]

∑

tij∈Tij

πij(tij) =
∑

i∈[n]

∑

tij∈Tij

3

2
π̂ij(tij) ≤

∑

i∈[n]

∑

tij∈Tij

9

16
π∗
ij(tij) ≤

9

16
< 1

One can easily verify that when (π∗, w∗, λ∗, λ̂∗,d∗) is a feasible solution to (P ),
(

1
64π

∗, 1
64w

∗, 1
64λ

∗, λ̂∗,d∗
)

is also a feasible solution to (P ), which implies that
(
π,w, π̂, ŵ, λ, λ̂,d

)
satisfies Constraints (3)−(9). Thus

(
π,w, π̂, ŵ, λ, λ̂,d

)
is a feasible solution to (P ′). The objective of the solution is a 1

64 -fraction of the objec-

tive of (π∗, w∗, λ∗, λ̂∗,d∗) since λ = 1
64λ

∗, which concludes the proof.

Now we are ready to give the proof of Theorem 11.

Proof of Theorem 11:

We consider a fixed δ ∈ (0, 1). For each i ∈ [n], let Ŵi be the proxy polytope for the single-bidder

marginal reduced form polytope Wi that is constructed in Theorem 12 with parameter δ′ = δ
n . Let E1 be

the event that the RPP mechanism computed in Lemma 2 has revenue P̃REV = Ω(PREV), and let E2 be the

event that for each i ∈ [n], the proxy polytope Ŵi, satisfies the properties in Theorem 12. By the union bound

combined with Lemma 2 and Theorem 12, with probability at least 1− δ − 2
nm , both events happen.

We condition on the event that both E1 and E2 happens. By Theorem 5 and Property 3 and 4 of The-

orem 12, there exists an algorithm that solves the LP (P ′) in time poly(n,m, T, b, log(1/δ)), given access

to the adjustable demand oracle and value oracle for all buyers’ valuations. Let (π∗, w∗, π̂∗, ŵ∗, λ∗, λ̂∗,d∗)
be an optimal solution to (P ′). By Lemma 2, Lemma 25 and Lemma 5, OPT ≤ 28PREV + 4OPTLP ≤
nm

nm−1189 · P̃REV + 256 · OPT′
LP .

Lemma 25 also guarantees the existence of π̃ ∈ [0, 1]
∑

i,j |Tij | such that (π̃, w∗, λ∗, λ̂∗,d∗) is a feasible

solution to (P ). Although we do not know the value π̃, it turns out sufficient to know λ∗ to compute a

simple and approximately optimal mechanism. We compute the prices {Q∗
j}j∈[m] using λ∗ according to

Definition 15. In particular,

Q∗
j =

1

2
·
∑

i∈[n]

∑

tij∈Tij

fij(tij) · Vij(tij) ·
∑

βij∈Vij

δij∈∆

λ∗
ij(tij , βij , δij) · 1[Vij(tij) ≤ βij + δij ],

and

2
∑

j∈[m]

Q∗
j = OPT′

LP .
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According to Theorem 6, we can construct a two-part tariff mechanism MTPT with prices {Q∗
j}j∈[m] and a

rationed posted price mechanismMPP (computed in Lemma 2) in time poly(n,m, T ), such that

OPT′
LP = 2

∑

j∈[m]

Q∗
j = O(REV(MTPT)) +O(P̃REV).

To sum up, we can compute in time poly(n,m, T, b, log(1/δ)) a two-part tariff mechanism MTPT and

a rationed posted price mechanism MPP, such that OPT ≤ c1 · REV(MPP) + c2 · REV(MTPT) for some

absolute constants c1, c2 > 0 with probability at least 1− δ − 2
nm . ✷

F Missing Details from Section 4

Definition 30. The Kolmogorov distance between two distributions D and D̂ supported on R is defined as

dK(D, D̂) = sup
z∈R

∣∣∣∣∣ Prt∼D
[t ≤ z]− Pr

t̂∼D̂
[t̂ ≤ z]

∣∣∣∣∣

We need the following robustness result from Cai and Daskalakis [CD17].

Theorem 13 (Theorem 3 in [CD17]). Suppose all bidders’ valuations are constrained additive. Let M
be a Sequential Posted Price with Entry Fee Mechanism (as defined in Mechanism 3 29) whose prices are

{pij}i∈[n],j∈[m] and its entry fee function for the i-th bidder is ξi : 2
[m] → R+. If for each i ∈ [n] and j ∈ [m]

we have dK(Dij , D̂ij) ≤ ε, and Di,j and D̂i,j are both supported on [0, 1] (that is when each bidder’s value

for a single item is at most 1), then

|REV(M,D) − REV(M, D̂)| ≤ 4nm2ε,

where REV(M,D) and REV(M, D̂) are the revenues ofM under D =×i,j Dij and D̂ =×i,j D̂ij respec-

tively.

Mechanism 3 Sequential Posted Price with Entry Fee Mechanism (SPEM)

0: Before the mechanism starts, the seller decides on a collection of {pij}i∈[n],j∈[m] and a collection of entry

fee functions {ξi(·)}i∈[n], where ξi : 2
[m] → R+ is buyer i’s entry fee.

1: Bidders arrive sequentially in the lexicographical order.

2: When buyer i arrive, the seller shows her the set of available items S ⊆ [m], as well as their prices

{pij}j∈S and asks buyer i to pay an entry fee of ξi(S). Note that S is the set of items that are not

purchased by the first i− 1 buyers.

3: if Bidder i pays the entry fee δi(S) then

4: i receives her favorite bundle S∗
i and pays

∑
j∈S∗

i
pij .

5: S ← S\S∗
i .

6: else

7: i gets nothing and pays 0.

8: end if

Lemma 26. Suppose all bidders’ valuations are constrained additive. If for each i ∈ [n] and j ∈ [m] we

have dK(Dij , D̂ij) ≤ ε, and Di,j and D̂i,j are both supported on [0, 1] (that is when each bidder’s value for

a single item is at most 1), then

c1 · OPT(D̂)−O(nm2ε) ≤ OPT(D) ≤
OPT(D̂)

c2
+O(nm2ε)

29Indeed the result holds for any buyers’ order, we choose the lexicographical order to keep the notation light.
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for some absolute constant c1, c2 > 0, where OPT(D) (or OPT(D̂)) is the optimal revenue for distribution

D =×i,j Dij (or D̂ =×i,j D̂ij).

Proof. Let M1, M2 be the optimal RPP and TPT for D, and we denote their revenue as REV(M1), REV(M2)
respectively. Let M3, M4 be the optimal RPP and TPT for D̂, and we denote their revenue as REV(M3),
REV(M4) respectively. Since any TPT is a SPEM, by Theorem 13, we know that |REV(M2)− REV(M4)| ≤
4nm2ε, as

REV(M4) ≥ REV(M2, D̂) ≥ REV(M2,D)− 4nm2ε = REV(M2)− 4nm2ε,

and

REV(M2) ≥ REV(M4,D) ≥ REV(M4, D̂)− 4nm2ε = REV(M4)− 4nm2ε.

Similarly, since any RPP is also a SPEM if we treat the buyers’ valuation as Unit-Demand, we have |REV(M1)−
REV(M3)| ≤ 4nm2ε. By Lemma 1, max{REV(M1),REV(M2)} ≥ Ω(OPT(D)). Hence, OPT(D̂) ≥
max{REV(M3),REV(M4)} ≥ max{REV(M1),REV(M2)} − 4nm2ε ≥ Ω(OPT(D)) − 4nm2ε. Similarly,

OPT(D) ≥ Ω(OPT(D̂))− 4nm2ε.

Proof of Theorem 4: For each Dij , we first take O
(
log(nm/δ)

ε2

)
samples. Let D̂ij be the uniform distribution

over the samples. By the union bound and the DKW inequality [DKW56], dK(Dij , D̂ij) ≤ ε for all i ∈ [n]

and j ∈ [m] with probability at least 1 − δ. Now we run the algorithm from Theorem 1 on×i,j D̂ij and

let M be the computed mechanism. Note that REV(M, D̂), the revenue of M under D̂ =×i,j D̂ij , is

Ω(OPT(D̂)) – the optimal revenue for distribution D̂. By Theorem 13, REV(M,D) ≥ REV(M, D̂) −
O(nm2ε). By Lemma 26, OPT(D̂) ≥ Ω(OPT(D))−O(nm2ε). Chaining the ineuqalities together, we have

that REV(M,D) ≥ Ω(OPT(D))−O(nm2ε). ✷

G Counterexample for Adjustable Demand Oracle

For XOS valuations, our algorithm for constructing the simple mechanism requires access to a special ad-

justable demand oracle ADEMi(·, ·, ·). Readers may wonder if this enhanced oracle (rather than a demand

oracle) is necessary to prove our result. In this section we show that (even an approximation of) ADEMi can

not be implemented using polynomial number of queries from the value oracle, demand oracle and a classic

XOS oracle. All the oracles are defined as follows. Throughout this section, we only consider a single buyer

and thus drop the subscript i. Recall that the XOS valuation v(·) satisfies that v(S) = maxk∈[K]

{∑
j∈S α

(k)
j

}

for every set S, where {α
(k)
j }j∈[m] is the k-th additive function.

• Demand Oracle (DEM): takes a price vector p ∈ Rm as input, and outputs

S∗ ∈ argmaxS⊆[m]

(
v(S)−

∑
j∈S pj

)
.

• XOS Oracle (XOS): takes a set S ⊆ [m] as input, and outputs the k∗-th additive function {α
(k∗)
j }j∈[m],

where k∗ ∈ argmaxk∈[K]

{∑
j∈S α

(k)
j

}
.

• Value Oracle: takes a set S ⊆ [m] as input, and outputs v(S). We notice that a value oracle can be

easily simulated with an XOS oracle. Thus we focus on XOS oracles for the rest of this section.

• Adjustable Demand Oracle (ADEM): takes a coefficient vector b ∈ Rm and a price vector p ∈ Rm as in-

puts, and outputs (S∗, {α
(k∗)
j }j∈[m])where (S∗, k∗) ∈ argmaxS⊆[m],k∈[K]

{∑
j∈S bjα

(k)
j −

∑
j∈S pj

}
.
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An (approximate) implementation of ADEM is an algorithm that takes inputs b, p ∈ Rm, and outputs a

set S ⊆ [m] and k ∈ [K]. The algorithm has access to the demand oracle and XOS oracle of v. We denote

ALG(v, b, p) the output of the algorithm. For any α > 1, ALG is an α-approximation to ADEM if for every

XOS valuation v and every b, p ∈ Rm, the algorithm outputs (S′, k′) that satisfies:

max
S⊆[m],k∈[K]




∑

j∈S

bjα
(k)
j −

∑

j∈S

pj



 ≤ α ·


∑

j∈S

bjα
(k′)
j −

∑

j∈S′

pj




In Theorem 14 we show that we cannot approximate the output of an Adjustable Demand Oracle within

any finite factor, if we are permitted to query polynomial many times the XOS, Value and Demand Oracle.

Theorem 14. Given any α > 1, there does not exist an implementation of ADEM (denoted as ALG) that

satisfies both of the following properties:

1. For any XOS valuation v over m items, ALG makes poly(m) queries to the value oracle, the demand

oracle and XOS oracle of v, and runs in time poly(m, b). Here b is the bit complexity of the problem

instance (See Definition 3).

2. ALG is an α-approximation to ADEM.

Proof. Recall that a value oracle can be easily simulated with an XOS oracle. Thus we only argue for demand

queries and XOS queries. For the sake of contradiction, assume there exists such an algorithm ALG. Let

ℓ > e2α be an arbitrary even integer. Let m = 2ℓ. Denote by L =
( ℓ
ℓ/2

)
. We decompose the items into two

sets S1 = {1, . . . , ℓ} and S2 = {ℓ+ 1, . . . ,m}.

We consider an XOS valuation v̂ generated by 2ℓ additive functions denoted by {α̂
(k)
j }j∈[m],k∈[2ℓ] param-

eterized by variables ε′, ε such that 0 < (ℓ+ 1)ε′ < ε < 1
2 . For k = 1, . . . , ℓ and j ∈ [m]:

α̂
(k)
j =




j + ε+

(
1− 1

ℓ

)
ε′ if j = k

0 otherwise

For k = ℓ+ 1, . . . , 2ℓ and j ∈ [m], define

α̂
(k)
j =





j if j = k − ℓ

0 if j ∈ S1 and j 6= k − ℓ
2
ℓ · ε if j ∈ S2

Next, we introduce a family of XOS valuations {vr}r∈[L] over m items. For every r, the valuation vr is

generated by K = 2ℓ + 1 additive functions, denoted as {α
(k)
r,j }j∈[m],∀k ∈ [K]. We define all the additive

functions as follows (and hence vr is defined as vr(S) = maxk∈[K]

∑
j∈S α

(k)
r,j ,∀S ⊆ [m]):

For k ∈ [2ℓ]: For every r ∈ [L] and j ∈ [m], define

α
(k)
r,j = α̂

(k)
j
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For k = 2ℓ+ 1: Take any bijective mapping C between [L] and subsets of S2 of size ℓ
2 . For every r ∈ [L],

define

α
(2ℓ+1)
r,j =





1 if j ∈ S1 and j 6= ℓ

1 + ε if j = ℓ
2
ℓ · ε

′ if j ∈ C(r)

0 if j ∈ S2\C(r)

In the following lemmas, we prove that given access to both the XOS and Demand oracle, the algorithm

can not distinguish between valuations vr and v̂, unless the algorithm knows C(r) (or r).

Lemma 27. For any r ∈ [L] and any nonempty set S ⊆ [m],
∑

j∈S α
(2ℓ+1)
r,j >

∑
j∈S α

(k)
r,j for all k ∈ [2ℓ] if

and only if S = S1 ∪ C(r). Hence for any r ∈ [ℓ] and any nonempty set S ⊆ [m],

XOS(vr, S) =




{α

(2ℓ+1)
r,j }j∈[m] if S = S1 ∪ C(r)

XOS(v̂, S) otherwise

Proof. Let j∗ = max{j : j ∈ S1 ∩ S} (define it to be 0 if S ∩ S1 = ∅). We consider the following cases:

• Case 1: S ∩ S1 = ∅. Then S ⊆ S2. For any k∗ = ℓ+ 1, . . . , 2ℓ,

∑

j∈S

α
(k∗)
r,j =

∑

j∈S

2

ℓ
ε >

∑

j∈S

2

ℓ
ε′ ≥

∑

j∈S∩C(r)

2

ℓ
ε′ =

∑

j∈S

α
(2ℓ+1)
r,j

• Case 2: S ∩ S2 = ∅. Then S ⊆ S1 and S ∩ S1 6= ∅, which implies that j∗ > 0. We have

∑

j∈S

α
(j∗)
r,j = j∗ + ε+

(
1−

1

ℓ

)
ε′ > j∗ + ε ≥

j∗∑

j=1

α
(2ℓ+1)
r,j ≥

∑

j∈S

α
(2ℓ+1)
r,j

Here the second last inequality follows from the fact that S ⊆ S1 and α
(2ℓ+1)
r,j = 1 for every j ∈ S1/{ℓ}

and α
(2ℓ+1)
r,ℓ = 1 + ε. The last inequality follows from the definition of j∗.

• Case 3: S1 6⊆ S, S ∩ S1 6= ∅ and S ∩ S2 6= ∅. We have that

∑

j∈S

α
(ℓ+j∗)
r,j = j∗ +

∑

j∈S2∩S

2

ℓ
ε > j∗ +

∑

j∈S2∩S

2

ℓ
ε′ ≥

∑

j∈S

α
(2ℓ+1)
r,j

The last inequality follows from the fact that
∑

j∈S∩S1
α
(2ℓ+1)
r,j ≤ j∗: If j∗ 6= ℓ, then α

(2ℓ+1)
r,j = 1,∀j ∈

S ∩ S1; If j∗ = ℓ, since S1 6⊆ S,
∑

j∈S∩S1
α
(2ℓ+1)
r,j = |S ∩ S1|+ ε ≤ (ℓ− 1) + ε < ℓ.

• Case 4: S1 ⊆ S and S ∩ S2 6= C(r). We have

∑

j∈S

α
(ℓ)
r,j = α

(ℓ)
r,ℓ = ℓ+ ε+

(
1−

1

ℓ

)
ε′ > (ℓ+ ε) +

∑

j∈C(r)∩S

2

ℓ
ε′ =

∑

j∈S

α
(2ℓ+1)
r,j

Here the inequality is because: C(r) ∩ S 6= C(r), then |C(r) ∩ S| ≤ ℓ
2 − 1, which implies that

∑
j∈C(r)∩S

2
ℓ ε

′ ≤
(

ℓ
2 − 1

)
2
ℓ ε

′ <
(
1− 1

ℓ

)
ε′.
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• Case 5: S1 ⊆ S and S ∩S2 = C(r). Recall that |C(r)| = ℓ
2 . We notice that

∑
j∈S α

(2ℓ+1)
r,j = ℓ+ ε+ ε′.

On the other hand,

max
k∈[ℓ]

∑

j∈S

α
(k)
r,j =

∑

j∈S

α
(ℓ)
r,j = ℓ+ ε+

(
1−

1

ℓ

)
ε′ <

∑

j∈S

α
(2ℓ+1)
r,j

and

max
ℓ<k≤2ℓ

∑

j∈S

α
(k)
r,j =

∑

j∈S

α
(2ℓ)
r,j = ℓ+

∑

j∈C(r)

α
(2ℓ)
r,j = ℓ+ ε <

∑

j∈S

α
(2ℓ+1)
r,j

We have proved the first part of the statement. The second part of the statement then follows by noticing

that the first 2ℓ additive functions of vr and v̂ are exactly the same.

Lemma 28. For any r ∈ [L] and any set of prices p ∈ Rm
≥0 such that {j ∈ S2 : pj ≤

2
ℓ ε

′} 6= C(r), we have

DEM(vr,p) = DEM(v̂,p).

Proof. Recall that

DEM(vr,p) ∈ argmax
S⊆[m]



vr(S)−

∑

j∈S

pj



 = argmax

S⊆[m]



max

k∈[K]

∑

j∈S

(α
(k)
r,j − pj)





We notice that valuations vr and v̂ differ only in the (2ℓ + 1)-th additive valuation (with coefficients

{α
(2ℓ+1)
r,j }j∈[m]). Thus by Lemma 27, DEM(vr,p) = DEM(v̂,p) unless S∗ = S1∪C(r) is the favorite bundle

for valuation vr at price p, i.e.

∑

j∈S1∪C(r)

(α
(2ℓ+1)
r,j − pj) = max

S⊆[m],k∈[K]

∑

j∈S

(α
(k)
r,j − pj)

Let S0 = {j ∈ S2 : pj ≤
2
ℓ ε

′}. Firstly, if C(r) 6⊆ S0, then there exists j ∈ S2 such that pj >
2
ℓ ε

′. Since

α
(2ℓ+1)
r,j = 2

ℓ ε
′,∀j ∈ C(r), we have

∑

j∈S1∪C(r)

(α
(2ℓ+1)
r,j − pj) <

∑

j∈S1∪(C(r)∩S0)

(α
(2ℓ+1)
r,j − pj) ≤ max

S⊆[m],k∈[K]

∑

j∈S

(α
(k)
r,j − pj),

which implies that DEM(vr,p) = DEM(v̂,p). It remains to consider the case where C(r) ⊆ S0 and

C(r) 6= S0. We have

∑

j∈S1∪C(r)

(α
(2ℓ+1)
r,j − pj) ≤ ℓ+ ε−

∑

j∈S1

pj +
∑

j∈C(r)

α
(2ℓ+1)
r,j = ℓ+ ε−

∑

j∈S1

pj + ε′

Here the first inequality follows from
∑

j∈S1
α
(2ℓ+1)
r,j = ℓ+ε and pj ≥ 0,∀j ∈ C(r). And the equality follows

from
∑

j∈C(r) α
(2ℓ+1)
r,j = |C(r)| · 2ℓ ε

′ = ℓ/2 · 2ℓ ε
′ = ε′. On the other hand,
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∑

j∈S1∪S0

(α
(2ℓ)
r,j − pj) = ℓ−

∑

j∈S1

pj +
∑

j∈S0

(
α
(2ℓ)
r,j − pj

)

≥ ℓ−
∑

j∈S1

pj +
∑

j∈S0

(
2

ℓ
ε−

2

ℓ
ε′
)

≥ ℓ−
∑

j∈S1

pj +

(
ℓ

2
+ 1

)(
2

ℓ
ε−

2

ℓ
ε′
)

= ℓ−
∑

j∈S1

pj + ε− ε′ +
2

ℓ

(
ε− ε′

)

> ℓ−
∑

j∈S1

pj + ε− ε′ +
2

ℓ

(
(ℓ+ 1)ε′ − ε′

)

= ℓ+ ε+ ε′ −
∑

j∈S1

pj

Here the first inequality follows from pj ≤
2
ℓ ε

′, α
(2ℓ)
r,j = 2

ℓ ε for j ∈ S0. The second inequality follows from

|S0| ≥
ℓ
2 +1, since |C(r)| = ℓ

2 , C(r) ⊆ S0, and C(r) 6= S0. The third inequality follows from our choice of ε
and ε′ such that ε > (ℓ+ 1)ε′. Thus,

∑

j∈S1∪C(r)

(α
(2ℓ+1)
r,j − pj) <

∑

j∈S1∪S0

(α
(2ℓ)
r,j − pj) ≤ max

S⊆[m],k∈[K]

∑

j∈S

(α
(k)
r,j − pj)

which implies that DEM(vr,p) = DEM(v̂,p).

To complete the proof of Theorem 14, set ε = 0.1 and ε′ = 0.1
2(ℓ+1) . We notice that the bit com-

plexity of our input is b = O(poly(ℓ)) for any valuation vr. Now consider the coefficient vector c =
(1, 1/2, . . . , 1/ℓ, 0, . . . , 0) with price vector p = 0. For any valuation vr in the family, clearly ADEM will

select the whole set [m] since all coefficients are non-negative.

For any k ∈ [2ℓ],
∑

j∈[m] cjα
(k)
r,j ≤ 1 + ε +

(
1− 1

ℓ

)
ε′ < 2. On the other hand, when k = 2ℓ+ 1, since

ℓ > e2α we have

∑

j∈[m]

cjα
(2ℓ+1)
r,j ≥

∑

j∈[ℓ]

1

j
· 1 > log(ℓ) > 2α > α · max

k 6=2ℓ+1




∑

j∈[m]

cjα
(k)
r,j



 = α ·max

k




∑

j∈[m]

cjα̂
(k)
j





Thus informally speaking, to obtain an α-approximation to ADEM for every valuation vr, the algorithm

needs to distinguish vr from v̂ by identifying the (2ℓ + 1)-th additive function. By Lemmas 27 and 28,

the algorithm must be able to identify r or C(r). However, there are L =
(

ℓ
ℓ/2

)
different valuations in the

family {vr}r∈[L]. Thus there must exist one vr such that the algorithm can not distinguish vr from v̂ within

poly(ℓ) = poly(m, b) queries to both oracles.

Formally, consider the execution of ALG on valuation v̂. Let Q be the total number of queries during the

execution and define set S(1), . . . , S(Q) ⊆ [m] as follows: For every q ∈ [Q], if the q-th query is an XOS

query, define S(q) as the input set to the XOS oracle; If it’s a demand query, let S(q) = {j ∈ S2 : p
(q)
j ≤

2
ℓ ε

′},

where p(q) = {p
(q)
j }j∈[m] is the input price vector to the demand oracle. Recall that m = 2ℓ and b = poly(ℓ),

we have Q = poly(m, b) < L =
( ℓ
ℓ/2

)
for sufficiently large ℓ. Thus there exists some r∗ ∈ [L] such that

C(r∗) 6= S2 ∩ S(q) for any q ∈ [Q]. By Lemma 27, we have that XOS(v̂, S(q)) = XOS(vr, S
(q)) and by
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Lemma 28 we have that DEM(v̂,p(q)) = DEM(vr,p
(q)) for any q ∈ [Q]. This implies that the execution (and

thus output) of ALG on input valuation v̂ is exactly the same as its execution on vr∗ .

We notice that from the above calculation, maxk

{∑
j∈[m] cjα

(k)
r∗,j

}
≥
∑

j∈[ℓ]
1
j > log(ℓ) > 2α, while

maxk

{∑
j∈[m] cjα̂

(k)
j

}
= maxk 6=2ℓ+1

{∑
j∈[m] cjα

(k)
r∗,j

}
< 2. Thus on input (vr∗ , c), ALG achieves

less than a 1
α -fraction of the optimal objective from ADEM, contradicting with the fact that ALG is an α-

approximation to ADEM.
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