
CS469/CS569 Final Exam
May 11th, 2009

Write your answers in the blue book(s). Justify your answers. Work
alone. Do not use any notes or books.

There are four problems on this exam, each worth 20 points, for a total
of 80 points. You have approximately three hours to complete this exam.

1 Randomized mergesort (20 points)

Consider the following randomized version of the mergesort algorithm. We
take an unsorted list of n elements and split it into two lists by flipping an
independent fair coin for each element to decide which list to put it in. We
then recursively sort the two lists, and merge the resulting sorted lists. The
merge procedure involves repeatedly comparing the smallest element in each
of the two lists and removing the smaller element found, until one of the
lists is empty.

Compute the expected number of comparisons needed to perform this
final merge. (You do not need to consider the cost of performing the recursive
sorts.)

Solution

Color the elements in the final merged list red or blue based on which sublist
they came from. The only elements that do no require a comparison to insert
into the main list are those that are followed only by elements of the same
color; the expected number of such elements is equal to the expected length
of the longest monochromatic suffix. By symmetry, this is the same as
the expected longest monochromatic prefix, which is equal to the expected
length of the longest sequence of identical coin-flips.

The probability of getting k identical coin-flips in a row followed by a
different coin-flip is exactly 2−k; the first coin-flip sets the color, the next k−1
must follow it (giving a factor of 2−k+1, and the last must be the opposite
color (giving an additional factor of 2−1). For n identical coin-flips, there is
a probability of 2−n+1, since we don’t need an extra coin-flip of the opposite
color. So the expected length is

∑n−1
k=1 k2−k +n2−n+1 =

∑n
k=0 k2−k +n2−n.

We can simplify the sum using generating functions. The sum
∑n

k=0 2−kzk

is given by 1−(z/2)n+1

1−z/2 . Taking the derivative with respect to z gives
∑n

k=0 2−kkzk−1 =

(1/2)1−(z/2)n+1

1−z/2
2

+ (1/2) (n+1)(z/2)n

1−z/2 . At z = 1 this is 2(1 − 2−n−1) − 2(n +
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1)2−n = 2− (n+ 2)2−n. Adding the second term gives E[X] = 2− 2 · 2−n =
2− 2−n+1.

Note that this counts the expected number of elements for which we do
not have to do a comparison; with n elements total, this leaves n−2+2−n+1

comparisons on average.

2 A search problem (20 points)

Suppose you are searching a space by generating new instances of some
problem from old ones. Each instance is either good or bad; if you generate
a new instance from a good instance, the new instance is also good, and if
you generate a new instance from a bad instance, the new instance is also
bad.

Suppose that your start with X0 good instances and Y0 bad instances,
and that at each step you choose one of the instances you already have
uniformly at random to generate a new instance. What is the expected
number of good instances you have after n steps?

Hint: Consider the sequence of values {Xt/(Xt + Yt)}.

Solution

We can show that the suggested sequence is a martingale, by computing

E
[

Xt+1

Xt+1Yt+1
|Xt, Yt

]
=

Xt

Xt + Yt

Xt + 1
Xt + Yt + 1

+
Yt

Xt + Yt

Xt

Xt + Yt + 1

=
Xt(Xt + 1)YtXt

(Xt + Yt) + (Xt + Yt + 1)

=
Xt(Xt + Yt + 1)

(Xt + Yt) + (Xt + Yt + 1)

=
Xt

Xt + Y + t
.

From the martingale property we have E
[

Xn
Xn+Yn

]
= X0

X0+Y+0 . But Xn+
Yn = X0 + Y0 + n, a constant, so we can multiply both sides by this value
to get E[Xn] = X0

(
X0+Y0+n
X0+Y0

)
.

3 Support your local police (20 points)

At one point I lived in a city whose local police department supported them-
selves in part by collecting fines for speeding tickets. A speeding ticket would

2



cost 1 unit (approximately $100), and it was unpredictable how often one
would get a speeding ticket. For a price of 2 units, it was possible to purchase
a metal placard to go on your vehicle identifying yourself as a supporter of
the police union, which (at least according to local legend) would eliminate
any fines for subsequent speeding tickets, but which would not eliminate the
cost of any previous speeding tickets.

Let us consider the question of when to purchase a placard as a problem
in on-line algorithms. It is possible to achieve a strict1 competitive ratio of
2 by purchasing a placard after the second ticket. If one receives fewer than
2 tickets, both the on-line and off-line algorithms pay the same amount, and
at 2 or more tickets the on-line algorithm pays 4 while the off-line pays 2
(the off-line algorithm purchased the placard before receiving any tickets at
all).

1. Show that no deterministic algorithm can achieve a lower (strict) com-
petitive ratio.

2. Show that a randomized algorithm can do so, against an oblivious
adversary.

Solution

1. Any deterministic algorithm essentially just chooses some fixed num-
ber m of tickets to collect before buying the placard. Let n be the
actual number of tickets issued. For m = 0, the competitive ratio is
infinite when n = 0. For m = 1, the competitive ratio is 3 when n = 1.
For m > 2, the competitive ratio is (m + 2)/2 > 2 when n = m. So
m = 2 is the optimal choice.

2. Consider the following algorithm: with probability p, we purchase a
placard after 1 ticket, and with probability q = 1 − p, we purchase a
placard after 2 tickets. This gives a competitive ratio of 1 for n = 0,
1 + 2p for n = 1, and (3p + 4q)/2 = (4 − p)/2 = 2 − p/2 for n ≥ 2.
There is a clearly a trade-off between the two ratios 1+2p and 2−p/2.
The break-even point is when they are equal, at p = 2/5. This gives a
competitive ratio of 1 + 2p = 9/5, which is less than 2.

1I.e., with no additive constant.
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4 Overloaded machines (20 points)

Suppose n2 jobs are assigned to n machines with each job choosing a machine
independently and uniformly at random. Let the load on a machine be the
number of jobs assigned to it. Show that for any fixed δ > 0 and sufficiently
large n, there is a constant c < 1 such that the maximum load exceeds
(1 + δ)n with probability at most ncn.

Solution

This is a job for Chernoff bounds. For any particular machine, the load S
is a sum of independent indicator variables and the mean load is µ = n. So
we have

Pr[S ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)n
.

Observe that eδ/(1+δ)1+δ < 1 for δ > 0. One proof of this fact is to take
the log to get δ−(1+δ) log(1+δ), which equals 0 at δ = 0, and then show that
the logarithm is decreasing by showing that d

dδ · · · = 1− 1+δ
1+δ − log(1 + δ) =

− log(1 + δ) < 0 for all δ > 0.
So we can let c = eδ/(1 + δ)1+δ to get a bound of cn on the probability

that any particular machine is overloaded and a bound of ncn (from the
union bound) on the probability that any of the machines is overloaded.
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