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Abstract

In the asynchronous PRAM model, processes communicate by atom-
ically reading and writing shared memory locations. This paper inves-
tigates the extent to which asynchronous PRAM permits long-lived,
highly concurrent data structures. An implementation of a concurrent
object is wait-free if every operation will complete in a finite num-
ber of steps, and it is k-bounded wait-free, for some k > 0, if every
operation will complete within k& steps. In the first part of this pa-
per, we show that there are objects with wait-free implementations
but no k-bounded wait-free implementations for any k, and that there
is an infinite hierarchy of objects with implementations that are k-
bounded wait-free but not K-bounded wait-free for some K > k. In
the second part of the paper, we give an algebraic characterization
of a large class of objects that do have wait-free implementations in
asynchronous PRAM, as well as a general algorithm for implement-
ing them. Our tools include simple iterative algorithms for wait-free
approximate agreement and atomic snapshot.!
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1 Introduction

In the “classical” parallel random access machine (PRAM) model [20], a
set of processes executing in lock-step communicate by applying read and
write operations to a shared memory. Existing shared memory architectures,
however, are inherently asynchronous: processors’ relative speeds are unpre-
dictable, at least in the short term, because of timing uncertainties intro-
duced by variations in instruction complexity, page faults, cache misses, and
operating system activities such as preemption or swapping. A number of
researchers have noted this mismatch, and have proposed the asynchronous
PRAM model as an alternative [16, 17, 21, 41]. In this model, asynchronous
processes communicate by applying atomic read and write operations to
the shared memory 2. Techniques for implementing these memory loca-
tions, often called atomic registers, have also received considerable attention
(13, 14, 32, 35, 40, 43, 44].

Much of the work on asynchronous PRAM models addresses the prob-
lem of computing functions, such as parallel summation or substring match-
ing, whose inputs reside in the shared memory. Many practical applica-
tions, however, such as operating systems and data bases, are not organized
around functional computation. Instead, they are organized around long-
lived data objects such as sets, queues, directories, and so on. In this paper,
we investigate the extent to which the asynchronous PRAM model supports
long-lived, highly-concurrent data objects. There are several reasons why
long-lived objects are inherently more difficult than functional computation.
A data object has an unbounded lifetime during which each process can ex-
ecute an arbitrary dynamically-chosen sequence of operations. The that
data structures must be reused, but they must retain enough information to
ensure that “sleepy” processes that arbitrarily suspend and resume execu-
tion can continue to progress, while discarding enough information to keep
the object size bounded. Care must be taken to guard against starvation,
since one operation can be “overtaken” by an arbitrary sequence of other
operations.

An implementation of a concurrent object is wait-free if every process
must complete an operation after taking a finite number of steps, despite
failures of other processes. It is k-bounded wait-free, for some fixed k > 0,
if every process completes an operation after taking k steps. The wait-free

ACM Symposium on Parallel Architectures and Algorithms, Crete, Greece, July 1990 [7],
and in the Proceedings of the Third Annual ACM Symposium on Parallel Architectures
and Algorithms, Hilton Head, North Carolina, July 1991 [25].

2Some of these models also include primitives for barrier synchronization.



property excludes starvation: any process that continues to take steps will
finish its operation. The bounded wait-free property bounds how long it
will take. Either of these properties rules out conventional synchronization
techniques such as barrier synchronization, busy-waiting, conditional wait-
ing, or critical sections, since the failure or delay of a single process within a
critical section or before a barrier will prevent the non-faulty processes from
making progress.

Which objects have wait-free implementations in asynchronous PRAM?
Elsewhere [23, 26], we have shown that any object X that solves consensus
for two or more processes cannot be implemented without randomization in
a model that provides only simple reads and writes of shared memory. Thus
the asynchronous PRAM model does not permit deterministic implementa-
tions of common data types such as sets, queues, stacks, priority queues, or
lists, most if not all the classical synchronization primitives, such as testéset,
compareédswap, and fetchéadd, and simple memory-to-memory operations
such as move or swap.

In the first part of the paper, we give some additional impossibility results
for the asynchronous PRAM model. Given that one cannot construct a
wait-free implementation of any object that solves two-process consensus,
it is natural to ask whether the converse holds: does asynchronous PRAM
permit wait-free implementations of all remaining objects, i.e., those that
do not solve two-process consensus? In this paper, we show that the answer
is no. In a system of two processes, we demonstrate the existence of a strict
infinite hierarchy among objects that are still too weak to solve consensus:

e Objects with implementations that are wait-free, but not bounded
wait-free. Each operation requires a finite number of steps, but there
is no bound common to all operations. (Theorem 8.)

e For all £ > 0, objects with implementations that are K-bounded wait-
free for some K > k, but not k-bounded wait-free. (Theorem 7.)

In the second part of this paper, we give a new characterization of a
wide class of objects that do have wait-free implementations in the asyn-
chronous PRAM model. This characterization is algebraic in nature, in the
sense that it is expressed in terms of simple commutativity and overwriting
properties of the data type’s sequential specification. We present a tech-
nique for transforming a sequential object implementation into an n-process
wait-free implementation requiring a worst-case synchronization overhead
of O(n?) reads and writes per operation. Examples of objects that can be



implemented in this way include counters, logical clocks [33], and certain
kinds of set abstractions.

One contribution of this paper is the impossibility hierarchy, which shows
that even relatively “weak” concurrent objects have a rich mathematical
structure. A second contribution is the characterization of a large class of
constructible objects, implying that despite the weakness of the model, cer-
tain problems do have wait-free solutions. Perhaps the most general contri-
bution is to raise basic questions about the value of the asynchronous PRAM
model. Although some synchronous PRAM algorithms can be adapted to
asynchronous PRAM [16, 17, 21, 41], our results show that there is little
hope of constructing useful highly-concurrent long-lived data structures in
this model. Fortunately, however, one can argue that asynchronous PRAM
is an incomplete reflection of current practice. Starting with the IBM Sys-
tem/370 architecture [30] in the early 1970’s, nearly every major architec-
ture has provided some kind of atomic read-modify-write primitive. We have
shown elsewhere that one can construct a bounded wait-free implementation
of any object by augmenting the read and write operations with sufficiently
powerful read-modify-write primitives, such as compareédswap [24]. It is not
our intent here to suggest a specific alternative model, but we do believe that
the research community would benefit from a more realistic and powerful
model of concurrent shared-memory computation.

2 Related Work

Although the work on atomic registers has a long history, it is only recently
that researchers have attempted to formalize the computational power of
the resulting model. Cole and Zajicek [16, 17] and Nishimura [41] propose
complexity measures and basic algorithms for an “asynchronous PRAM”
model in which asynchronous processes communicate through shared atomic
registers. Gibbons [21] proposes an asynchronous model in which shared
atomic registers are augmented by a form of barrier synchronization. Our
work extends these approaches in two ways: we consider data structures
rather than the usual numeric or graph algorithms, and we focus on wait-
free computation, since we feel that algorithms that require processes to
wait for one another are poorly suited to asynchronous models.

Recently, a number of researchers have investigated the problem of com-
piling classical PRAM programs onto other models [31, 15], some still syn-
chronous, some not. It must be emphasized that these researchers are ad-
dressing very different kinds of applications. Their programs have the prop-



erty that all the program’s arguments are present in public memory when the
program starts. Because new information does not arrive dynamically, these
programs are not subject to the consensus-related impossibility results that
define the computational power of concurrent objects in this model. This
assumption is a legitimate one for “off-line” applications such as scientific
computation, but not for reactive systems such as operating systems, file
systems, databases, and any other kind of long-lived system.

Two other atomic scan algorithms were developed independently of the
one presented here: by Afek et al. [2] and by Anderson [4]. The former has
time complexity comparable to ours, while the latter uses time exponential
in the number of processes. Both of these proposals use bounded counters,
while the most straightforward implementation of our scan algorithm uses
unbounded counters to represent lattice elements.

Anderson [5] gives a bounded implementation of pseudo read-modify-
write instructions in asynchronous PRAM. Let F' be a set of functions that
commute with one another. A pseudo read-modify-write instruction is pa-
rameterized by a function f from F. When applied to a memory location
holding a value v, it replaces the contents with f(v), but does not return
a value. This construction uses bounded counters, unlike our construction,
but it does not permit overwriting operations.

An object implementation is randomized wait-free if each operation com-
pletes in a fized expected number of steps. Elsewhere [6], we have shown
that the asynchronous PRAM model is universal for randomized wait-free
objects.

Our approximate agreement algorithm and lower bounds give similar
asymptotic results to the independent work of Attiya, Lynch, and Shavit [9].
Hoest and Shavit [28] have recently shown that, when translated to an iter-
ated snapshot model, the constant factors in our results are the best possible.

Since the first appearance of the preliminary versions of this paper [7, 25],
there have been many advances in the study of wait-free objects built from
atomic registers. In particular, there has been considerable improvement
in algorithms for atomic snapshots. The lattice agreement technique [8],
where processes agree on a chain in a lattice, is closely related to the semi-
lattice construction we use in Section 6. By allowing processes to obtain
values spread throughout the lattice instead of pushing all processes toward
the top, lattice agreement allows for faster snapshot protocols such as the
asymptotically optimal O(nlogn) protocol of Attiya and Rachman [10].



3 Model

Informally, our model of computation consists of a collection of sequential
threads of control called processes that communicate through shared data
structures called objects. Each object has a type, which defines a set of pos-
sible states and a set of primitive operations that provide the only means to
manipulate that object. Each process applies a sequence of operations to ob-
jects, issuing an invocation and receiving the associated response. The basic
correctness condition for concurrent systems is linearizability [27]: although
operations of concurrent processes may overlap, each operation appears to
take effect instantaneously at some point between its invocation and re-
sponse. In particular, operations that do not overlap take effect in their
“real-time” order.

3.1 Automata

A complete formal exposition of our model is given elsewhere [26]. Here
we give an abbreviated version, omitting some technical details for brevity.
We model objects as automata, using a simplified form of I/O automata
formalism of Lynch and Tuttle [38]. Because the wait-free condition does
not require any fairness or liveness conditions, and because we consider only
finite sets of processes and objects, we do not make use of the full power
of the I/O automata formalism. (For brevity, our algorithms are expressed
using pseudocode, although it is straightforward to translate this notation
into automata definitions.)

An automaton A is a non-deterministic automaton with the following
components®: States(A) is a finite or infinite set of states, including a dis-
tinguished set of starting states, In(A) is a set of input events, Out(A) is
a set of output events, Steps(A) is a transition relation given by a set of
triples (s, e, s), where s and s’ are states and e is an event. Such a triple
is called a step, and it means that an automaton in state s’ can undergo a
transition to state s, and that transition is associated with the event e. An
execution fragment of an automaton A is a finite sequence sg, €1, S1,... €y, Sp
or infinite sequence sg, e, s1,... of alternating states and events such that
each (s;,€j41,8+1) 1s a step of A. An ezecution is an execution fragment
where sg is a starting state. A history fragment of an automaton is the sub-
sequence of events occurring in an execution fragment, and a history is the

3To remain consistent with the terminology of [27], we use “event” where Lynch and
Tuttle use “operation,” and “history” where they use “schedule.”



subsequence occurring in an execution. A prefiz of an execution or history
is a prefix of the sequence that is itself an execution or history, respectively.

3.2 Linearizable Objects

An object is an automaton with input events INVOKE(P,op) where P is a pro-
cess and op is an operation of the object 4, and output events RESPOND(P,res),
where res is a result value. We refer to these events as invocations and re-
sponses. If H is a history, then H|P is the subsequence of invocations and
responses labeled with P. Two invocations and responses match if their pro-
cess names agree. To capture the notion that a process represents a single
thread of control, we say that a process history is well-formed if it begins
with an invocation and alternates matching invocations and responses. An
invocation is pending if it is not followed by a matching response. A history
is well-formed if, for each process P, H|P is well-formed. We restrict our
attention to well-formed histories.

An execution is sequential if its first event is an invocation, and it al-
ternates matching invocations and responses. A history is sequential if it
is derived from a sequential execution. (Notice that a sequential execution
permits process steps to be interleaved, but at the granularity of complete
operations.) If we restrict our attention to sequential histories, then the be-
havior of an object can be specified in a particularly simple way: by giving
pre- and postconditions for each operation. We refer to such a specifica-
tion as a sequential specification. In this paper, we consider only objects
whose sequential specifications are total and deterministic: if the object has
a pending invocation, then it has a unique matching enabled response. We
consider only total operations because it is unclear how to interpret the
wait-free condition for partial operations. For example, the most natural
way to define the effects of a partial dequeue operation of a shared queue in
a concurrent system is to have it wait until the queue becomes non-empty,
a specification that clearly does not admit a wait-free implementation. We
consider only deterministic operations because one can always use a de-
terministic implementation to satisfy a non-deterministic specification, e.g.,
using the dequeue operation for queues to implement a non-deterministic
choose operation for sets.

If H is a history, let complete(H) denote the maximal subsequence of
H cousisting only of invocations and matching responses. Each history H
induces a partial “real-time” order <y on its operations: p <y ¢ if the

4 Op may also include argument values.



respounse for p precedes the invocation for q. Operations unrelated by <p
are said to be concurrent. If H is sequential, < is a total order. An object
is linearizable if each history H can be extended to a well-formed history
H', by adding zero or more responses, such that there exists a sequential
history S such that:

e For all P, complete(H')|P = S|P
* <uC<s

In other words, the history “appears” sequential to each individual process,
and this apparent sequential interleaving respects the real-time precedence
ordering of operations. Equivalently, each operation appears to take effect
instantaneously at some point between its invocation and its response. A
linearizable object is thus “equivalent” to a sequential object, and its oper-
ations can also be specified by simple pre- and postconditions.

As discussed in more detail elsewhere [27], linearizability differs from
related correctness conditions such as sequential consistency [34] or strict
serializability [42] because it is a local property: a set of objects is linearizable
if and only if each individual object is linearizable.

3.3 Implementations

An implementation of an object is itself an automaton composed from a
collection of smaller automata. When a process invokes an operation, that
invocation is handled by a front-end automaton, which applies a sequence of
operations to a representation automaton, and eventually returns a response
to the process. The front-end models the procedure that implements the
operation, and the representation models shared memory in the obvious
way: it accepts read and write invocations, and its state is just the Cartesian
Product of each of the registers.

An implementation is k-bounded wait-free if each invocation returns pro-
vided its front-end takes at least k steps, it is wait-free if each pending
invocation eventually returns provided its front-end continues to take steps.

4 A Wait-Free Hierarchy

In this section, we construct a family of objects with the property that, for
all k, there exists an object whose implementations are K-bounded wait-free
but not k-bounded wait-free, for some K > k. There also exists an object
whose implementations are wait-free but not k-bounded wait-free for any k.



We prove the lower bounds by reducing the (difficult) problem of analyzing
all possible implementations of a particular object to the (more tractable)
problem of analyzing solutions to a related decision problem.

If S is a nonempty set of real numbers, let range(S) = [min(S), max(S5)],
midpoint(S) = (min(S) + max(S))/2, and let |S| = max(S) — min(S). For
the empty set, define range()) = () and || = 0.

An approximate agreement object provides two operations:

input(P: process, x: real)
output(P: process) returns (real)

A sequential specification for these operations, expressed in terms of pre- and
post-conditions, appears in Figure 1. The object’s abstract state has two
components: a set of real input values X and a set of real output values Y,
initially both empty. In postconditions, X’ and Y’ denote the components’
new states. The input operation inserts its argument value in X. The output
operation is defined only when X is non-empty. It inserts its result in Y,
ensuring that range(Y) C range(X) and |Y| < € for some fixed € > 0. For
brevity, we leave unspecified how output behaves when X is empty.

As a decision problem, approximate agreement has been studied in a
variety of message-passing models [12, 18, 19, 39]. Attiya, Lynch, and Shavit
[9] independently derive upper and lower bounds for approximate agreement
in shared memory that can be adapted obtain asymptotic bounds similar to
those given here. Their approximate agreement algorithm is optimized for
a best-case model where processes run approximately synchronously, and
so involves some additional machinery that exploits the efficiencies possible
in this model. In contrast, our algorithm is relatively simple, but does not
perform as well for best-case executions.

A wait-free implementation of an approximate agreement object appears
in Figure 2. The object is represented by an m-element array r of entries,
where each entry has two fields: an integer round initially zero, and a real
prefer, initially 1. A process is a leader if its round field is greater than
or equal to any other process’s round field. P advances its entry by setting
its preference to the midpoint of the leaders’ preferences (line 16) and by
incrementing its round field by one. P scans the entries by reading them in
an arbitrary order.

The first time P calls input, it sets prefer to its input value. Subsequent
calls have no effect. When P calls output, it returns the results of executing
a wait-free approximate agreement protocol. This protocol consists of a
loop in which P scans the entries (line 10), and discards those whose round
fields trail its own by two or more (line 11). If the diameter of the remaining



Object State:
X is a set of reals, initially (.
Y is a set of reals, initially ().
input(P, x)
pre: true
post: X' = X U {z}
y := output(P)
pre: X #£10
post: Y =Y U{y} A
range(Y) C range(X) A
|range(Y)| < e.

Figure 1: Sequential Specification for Approximate Agreement

1 proc input(P: process, x: real)

2 if r[P].prefer = | then

3 r[P] := [prefer: x, round: 1]

4 end if

5 end input

7 proc output(P: process)

8 advance := false

9 loop

10 Scan r

11 € = {r[Q].prefer : r[Q].round > r[P].round — 1}
12 L = {r[Q].prefer : r[Q].round = max r[Q].round}
13 if |range(€)| < €/2 then

14 return r[P].prefer

15 elseif |range(L)| < €/2 or advance then
16 r := [prefer: midpoint(L),

17 round: r.round + 1]

18 advance := false

19 else advance := - advance
20 end if
21 end loop
22  end output

Figure 2: Wait-Free Implementation of Approximate Agreement Object
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preferences is less than €/2, P returns its own preference (lines 13-14). If the
diameter of the leaders’ preferences is less than €/2, then P advances its entry
and resumes the loop (line 16). If the diameter of the leaders’ preferences
exceeds €/2, then P rescans the entries once more before advancing its entry.
This rescan is implemented using the advance flag, set in lines 18 and 19.

In analyzing the algorithm, it will be useful to keep track of all values that
a process writes to its register during the entire execution, as opposed to just
the most recent value.. We will denote by “P’s r-entry” (or r-preference) the
unique value of r[P] (or the prefer field in that value) with round number
r, of all values written to r[P] during an execution of the algorithm.

The essential idea of the algorithm is that the range spanned by the
set of all processes r-entries shrinks in each round, and when it gets small
enough, the processes correctly detect termination. Consider some prefix of
an execution of the algorithm, and let X, denote the set of all processes’
r-preferences in that prefix, i.e., all prefer values written during that prefix
with round number r. Lemmas 1, 2, and 3 bound how each X, relates to
the preceding X, 1, and how these quantities change over time.

Lemma 1 In any prefix of an execution of the approximate agreement al-
gorithm, for all v > 1, range(X,) C range(X,_1).

Proof: The proof is by induction on the length of the prefix. The base case
is an empty prefix, in which the claim holds since range(X,) = () for all r.

If a process creates a preference as part of an input operation in line 3,
then it may increase range(X7) but does not increase the range of any larger
round; thus writing inputs preserves the induction hypothesis.

Now suppose P creates an r-preference x, by writing a new entry in line
16. For each s, let X be the set of s-preferences in the prefix preceding this
write operation. By the induction hypothesis, range(X}) C range(X|_,) for
all s > r — 1.

If Lp is the set of leaders P computes (in the preceding line 12), then Lp
consists of preferences at some round ry,x > r — 1 (as the maximum round
includes P’s own round r — 1). Thus z, = midpoint(Lp) € range(X, ) C
range(X]_,) = range(X,_1). .

We will say that P expands X, if it writes a preference that increases
|range (X;)|.

Lemma 2 If P expands X, after observing the set of leaders Lp, then the
entries corresponding to preferences in Lp have round number r — 1.
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Proof: As in the proof of Lemma 1, we use the fact that all preferences in

Lp correspond to entries with the same round number 7, > r — 1.
Suppose now that rpax > 7 — 1. Then when P executes line 16, it

chooses as its new preference midpoint(Lp) € range(Lp) C range(X;,,.) C

range (X, ), where the last inclusion follow from Lemma 1. But this contra-
dicts the fact that P expands X,. Thus ry.x =7 — 1. ]

Lemma 3 In any prefix of an execution of the approximate agreement al-
gorithm, for all r > 1, |range(X,)| < |range(X,_1)|/2.

Proof: We will show that the endpoints of range(X,) are the midpoints
of overlapping subranges of range(X,_1), from which the claim follows by a
simple case analysis.

Let P be the first process to write z, = min(X,), @ be the first process
to write z, = max(X,), and let Lp and L their respective sets of leaders as
computed in line 12 immediate preceding their writes of x, and x4 in line 16.
Since both writes expand X, Lemma 2 implies that all entries in Lp and L
have round number 7 — 1. Note also that Lp contains P’s (r — 1)-preference
and Lg contains Q’s (r — 1)-preference.

We will now show that at least one of these preference also occurs in the
set of leader values observed by the other process, and thus that Lp N Lg
is nonempty.

Let P, @1 be the events that P and @) write their (r — 1)-preferences,
respectively; and let P, ()2 be the events that P and () start their following
scans (line 10). Suppose P does not observe Q’s (r — 1)-preference in Lp.
Then ); occurs after P, in which case )2 occurs after P, and thus Q’s
scan includes P’s (r — 1)-preference. Thus at least one of P’s or Q’s (r — 1)-
preferences appears in both Lp and Lg.

It follows that range(Lp)Nrange(Lq) is nonempty. Let [a, b] = range(Lp)
and [c,d] = range(Lgq), so that z, = midpoint(range(Lp)) = %2 and
xq = midpoint(range(Lp)) = c‘"Td. Then x4 — z, = W. Ifa<c<
b < d, then ¢ — a and d — b are the lengths of non-overlapping intervals
contained in range(X,_; and so x4 — z, < % < |range(X,—1)|/2.
Ifa <c<d<b, then z4 € [a,b] and 24 — aT"'b < b_Ta < |range(X,—-1)|/2.
The remaining case ¢ < a < b < d follows similarly. In each case, we have
range(X,)| = |o, — x| < |range (X, _1)|/2. .

Lemma 3 says that the range of preferences shrinks exponentially in
the number of rounds. Thus the range will eventually drop below €/2, the
threshold for the termination test in line 13. In Lemma 4, we show that if

12



this test is true and a process executes the return in line 14, then later actions
by other processes will not produce values outside the € range permitted by
the specification.

Lemma 4 If P returns z, at round r, and Q writes x4 at round r, then
|z), — 4] <.

Proof: By contradiction. Without loss of generality, let () the first process
to write an r-preference x, such that |z, — 24| > €. Let Lp be the set of
leaders observed by P after writing z,, and let Lo be the set of leaders
observed by @) before writing z,. Note that z, € range(Lp) and z, €
range(Lg). Moreover, x4, € Lp because |range(Lp)| < €/2 (from line 13),
and P’s write of x, is not observed by ) when computing L¢, by Lemma 2.

Suppose |range(Lq)| < €/2. Because each process wrote its (r — 1)-
entry before reading the other’s entry, and because neither process read
the other’s r-entry, one of the two processes must have read the other’s
(r—1)-entry, and therefore LpNLg # 0. It follows that |range(LpULg)| <
|range(Lp)|+|range(Lg)| < €. Because x;, and z4 lie within range(LpULg),
|zp — x4] <€

Otherwise, if |range(Lg)| > €/2, then @ reads twice before writing z.
Let E'Q be the set of leaders it saw during the first read. Since @ reads
twice, [range(Ly)| > €/2. 1f Q finished reading Ly, before Q) wrote z,
then L5 C Lp, and |range(Lq)| < |range(Lp)| < €/2, a contradiction. If Q
finished reading [,’Q after () wrote ), then it started reading L afterwards,
and z, € Lg, a contradiction. [

Theorem 5 Let A be an upper bound on the size of the range of the in-
puts. There exists a wait-free implementation of the approximate agree-
ment object in asynchronous PRAM, in which each process executes at most
(2n 4+ 1) logy(A/e€) + O(n) steps before finishing.

Proof: We show that the protocol in Figure 2 is correct. There are three
points to check: (1) that every output value lies within the original input
range, (2) that the diameter of the output set is less than e, and (3) that
the algorithm is wait-free and runs within the specified time bound.

The first point is an immediate consequence of Lemma 1. For the second
point, suppose P returns z, after round r and @) returns z, after round s,
where r < s. Lemma 4 states that every element of X, lies within € of z,,, and
Lemma 1 that range(X;) C range(X,), hence |z, — 24| < €. Finally, Lemma
3 implies that |X,| < A-27""! so that for some r = logy(A/e) + O(1) we
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have states that | X, | < €/2 in any prefix of the execution. Thus no process
ever sees a larger range among the leaders at round r, and every process
returns on or before round r 4+ 1. To get the bound stated in the theorem,
note that each process takes at most (2n + 1) steps in each round. [

Lemma 6 Let A be the size of range of the inputs. An adversary scheduler
can force some process executing any deterministic implementation of the
output operation of an approzimate agreement object to execute |logs(A/e)]
steps before finishing.

Proof: It is enough to prove the result for two processes. Counsider an
execution in which P and @) have distinct input values, and each executes an
output. Define a process’s preference at any point to be the value it returns
if it runs by itself until termination. Note that the preference is well-defined
as long as the process is deterministic, that the preference of a process that
returns is equal to its return value, and that once one process returns the
other will eventually return its own preference (as the first process is no
longer running). Thus the output operations cannot both terminate while
their preferences differ by more than e.

We will show a lower bound on the number of steps it takes for the pref-
erences of the two processes to converge. Initially, each process’s preference
is its input, for if it returns some other value without seeing any inputs of
other processes, it may violate the condition that range(Y) C range(X).

It is immediate from the definition that a process’s preference can only
change as the result of a step by another process. Consider the following
scenario. Run P until it is about to change )’s preference, then do the same
for Q. Alternate P and ) in this way as long as neither process changes
preference. Eventually, since the operations cannot run forever, the object
reaches a state where each process is about to change the other’s preference.
The adversary now has a choice of running P, @), or both. Let py be P’s
current preference, p; its preference if () takes the next step, and let gy and
q1 be defined similarly. Depending on whom the adversary schedules next,
the new preferences will differ by either |py — ¢1], [p1 — qo|, or |p1 — ¢1]- The
sum of these quantities is at least |po — qo|, thus the adversary can always
choose one that is greater than or equal to |py — qo|/3, preventing the gap
between the preferences from shrinking by more than one third. Repeating
this strategy k times, an adversary scheduler can ensure that the range of the
preferences is at least A/(3%). Since each iteration of the strategy involves
at least one operation by each process, we get the desired lower bound. [
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Curiously, the gap between the log,(A/€) rounds of the upper bound
in Theorem 5 and the log;(A/e) rounds of the lower bound in Lemma 6
is not an accident. Since the first appearance of our results [25], Hoest
and Shavit [28] have shown using topological methods that in an iterated
snapshot model with a structure similar to that of our algorithm, logs(A/e)
is in fact a tight bound for two processes, while log,(A/€) is tight for three
or more.

Theorem 7 For all k > 0, there exists an object with o K -bounded wait-free
implementation, for K > k, that is not k-bounded wait-free.

Proof: Consider an approximate agreement object with the unit interval
as potential input range, and ¢ = 1/3*¥. From Lemma 6, this object is
not k-bounded wait-free, but it is K-bounded wait-free for K = O(nk) by
Theorem 5. [

Theorem 8 There exists an object with a wait-free implementation but no
bounded wait-free implementation.

Proof: Consider an approximate agreement object with an unbounded in-
put range. For any particular set of inputs, A = |range(X1)| is bounded,
and Theorem 5 shows that the approximate agreement algorithm eventually
terminates. But by setting A large enough, any implementation can be force
to run longer than any fixed bound by Lemma 6. [

5 A Class of Constructible Objects

In this section, we describe a class of objects that can be constructed in the
asynchronous PRAM model. These objects are characterized by a simple
algebraic property of their operations, described in detail in Section 5.1. The
property says that any two operations of the object must either commute,
meaning that the state of the object after both have occurred does not reveal
which happened first; or at least one must overwrite the other, meaning
that if the overwriter occurs last it is impossible to determine if the other
operation occurred at all. Some technical consequences of this definition
are elaborated in Section 5.2. These are used in Section 5.3 to show that
any history of an object satisfying the characterization can be described by
a linearization graph, with the properties that (a) all linearizations of the
graph correspond to histories of the object that are equivalent (in a formally
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defined sense); and (b) appropriately-defined subgraphs of the linearization
graph produce linearizations that correspond to histories of the object that
are equivalent to prefixes of the full history. An algorithm that simulates
objects by constructing families of consistent linearization graphs for each
process, together with a proof of its correctness, is given in Section 5.4.

5.1 Commuting and Overwriting

We are now ready to state the algebraic conditions an object must satisfy
for us to provide a wait-free implementation.

These conditions are defined in terms of the set of legal histories, defined
as those meeting the object’s sequential specification. If p is an operation,
p; denotes p’s invocation, and p, its response. We use “” to denote con-
catenation, and H - p to denote H - p; - p,, where H is a sequential history.

Definition 9 Two sequential histories H and H' are equivalent if, for all
sequential histories G, H - G is legal if and only if H' - G is legal.

Definition 10 Inwvocations p; and g; commute if, for all sequential histories
H,if H-p and H-q are legal then H-p-q and H-q-p are legal and equivalent.

Definition 11 Inwvocation q; overwrites p; if, for all sequential histories H,
if H-p and H - q are legal then H - p - q is legal and equivalent to H - q.

This particular notion of commutativity is due to Weihl [45]. For brevity,
we say that two operations commute when their invocations commute.

We will show how to construct a wait-free asynchronous PRAM imple-
mentation for any object whose sequential specification satisfies the following

property:

Property 1 For all operations p and q, either p and q commute, or one
overwrites the other.

For example, one data type that satisfies these conditions is the following
counter data type, providing the following operations:

inc(c: counter, amount: integer)
dec(c: counter, amount: integer)

respectively increment and decrement the counter by a given amount,

reset(c: counter, amount: integer)
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reinitializes the counter to amount, and
read(c: counter) returns(integer)

returns the current counter value. Note that ¢nc and dec operations com-
mute, every operation overwrites read, and reset overwrites every operation.
Such a shared counter appears, for example, in randomized shared-memory
algorithms [6], and in the implementation of logical clocks [33].

5.2 Preliminary Lemmas

Lemma 12 The overwrites relation is transitive.

Proof: Suppose r overwrites ¢, and g overwrites p.

By the definition of overwrites, there exists a sequential history H such
that H -p, H-q, and H -r are legal, H -p-q is equivalent to H -q, and H -q-r
is equivalent to H - r.

Since operations are total, there exists a response 7. such that G =
H-p-q-r;-rl islegal. Since q overwrites p, G is equivalent to H - q - r; - r/..
Since H - ¢ - r is legal, and since operations are deterministic, r, = r/..

Since r overwrites ¢, G is equivalent to H - p-r. Since g overwrites p, G
is also equivalent to H - r. We have shown that if H - p and H - r are legal,
then H - p - r is legal and equivalent to H - r, hence r overwrites p. [

Lemma 13 Let H be a history with operations p, q, v, and s such that p
precedes q, r precedes s, and p and s are concurrent. We claim that r must
precede q.

Proof: Since p and s are concurrent, s; appears before p, in H. Since r
precedes s, r; and r, also appear before p,. Finally, since p precedes g, g;
and ¢, appear after p,, and therefore r and g do not overlap, and r precedes
qin H. [

Our object simulation algorithm works by implicitly constructing sequen-
tial histories consistent with a concurrent execution. A central problem is to
get all processes to agree on the order of operations in those cases where the
order matters. In general, we will try to put overwritten operations before
their overwriters, since this destroys the most evidence that might otherwise
be used to convict us of non-linearizability. Unfortunately this heuristic is
not enough to order all operations, as some pairs of operations might over-
write each other. For such groups of mutually overwriting operations, we
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break ties using the indices of the processes carrying out the operations.
This gives us an extended notion of overwriting, which we call dominance.

For the following definition, processes are ordered by their indices: F; <
P; if and only if ¢ < j.

Definition 14 An operation p of process P dominates operation q of Q if
either (1) p overwrites q but not vice-versa, or (2) p and q overwrite each
other and P > Q).

Lemma 15 The dominance relation is a strict partial order.

Proof: First we show that dominance is transitive. Suppose r dominates ¢,
and ¢ dominates p, where operations p, ¢, and r are respectively executed
by processes P, ), R. By the definition of dominance, r overwrites ¢, and ¢
overwrites p, hence, by transitivity (Lemma 12), r overwrites p. If p does not
overwrite 7, we are done, so suppose p also overwrites r. Since p overwrites
r and r overwrites ¢, p overwrites ¢. Since p and g overwrite one another,
and ¢ dominates p, it must be that P < (. Similarly, since ¢ overwrites
p, and p overwrites r, g overwrites r, and, by similar reasoning, ) < R. It
follows that P < R, hence r dominates p.

We must also show that dominance is antisymimetric. Suppose an oper-
ation p of process P dominates an operation ¢ of process (). Then either
(1) g does not overwrite p and thus does not dominate p; or (2) p and ¢
overwrite each other, but since P > (), ¢ does not dominate p. [ ]

5.3 Precedence and Linearization Graphs

In this section, we define the precedence and linearization graphs used in
the algorithm presented in Section 5.4.

A precedence graph is a directed acyclic graph that represents the partial
order of operations in some history; each node in the graph corresponds to
an operation, and there is an edge from p to ¢ if p precedes g, i.e., if the
response of p occurs before the invocation of ¢ in the history.

Any linearization of the history is a linear extension of the partial order
represented by the precedence graph, and thus corresponds to a topolog-
ical sort of the graph. However, not all linear extensions give equivalent
sequential histories. To ensure that all processes see a consistent picture,
we augment the precedence graph with additional dominance edges based
on the dominance relation of Definition 14. A dominance edge is directed
from p to q if ¢ dominates p; their direction is thus the reverse of the prece-
dence edges, since a precedence edge runs from p to ¢ if p precedes q. The
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intuition is that we would like dominated operations to be placed earlier in
the history, so that evidence of their presence or absence does not propagate
in ways that might overly constrain the story that the implementation tells
about the sequential execution it is claiming to simulate.

Because the combination of precedence and dominance edges might cre-
ate cycles, not all possible dominance edges are added to the precedence
graph. Instead, we add a maximal set that does not create a cycle, using
the lingraph procedure from Figure 3. The result of this procedure is called
a linearization graph, because its topological sort defines a linearization of
the concurrent history.

In the actual algorithm, the purpose of the linearization graph is to
ensure that no operation’s result is affected by concurrent operations. In
this respect, linearization graphs owe something to the serialization graphs
[11] used in database theory, although the technical details are different.

Given a precedence graph G, the associated linearization graph L(G) is
defined by the lingraph algorithm shown in Figure 3. Here, {pi,...,px}
represent the operations sorted in any order consistent with the precedence
order. The algorithm constructs a sequence of intermediate graphs L; ;, for
0 <4 < j < k. For brevity, we say that the construction wvisits p; when it
compares p; to p;, for ¢ < j.

Lemma 16 If p and q are concurrent in G, and p dominates q, then there
is either a path from p to q or a path from q to p in L(G).

Proof: When lingraph visits the first of p or ¢, either there is already a
path from p to ¢, or the edge ¢ — p will be added in line 8 or line 11. [

Lemma 17 If there is no path between p and q in L(G), then they commute.

Proof: First observe that p and ¢ must be concurrent, as otherwise they
are adjacent in the precedence graph G.

Suppose p and ¢ do not commute. Then at least one overwrites the
other and so one dominates the other. Applying Lemma 16, there is a path
between them. ]

Lemma 18 L(G) is acyclic.

Proof: By induction on the sequence of intermediate £; ; graphs. Since G
is acyclic, £1,9 = G is acyclic. But because of the tests in lines 7 and 10, no
new cycles are created by adding dominance edges. [ ]
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1 proc lingraph(G: precedence graph)

2 Lok =G

3 forzinl...k do

4 Lii:=Li 1k

5 for jint+1...k do

6 if p; dominates p; and

7 adding p; — p; to L£; j—1 does not create a cycle
8 then ,Cz',j = ,Ci,j,1 Up; — pi

9 elseif p; dominates p; and
10 adding p; — p; to L£; j 1 does not create a cycle
11 then ‘ci,j = Ei,j—l Upi = pj
12 else ,Cz',j = ,Cz',j,1
13 end if
14 end for
15 end for
16 return Ly j
17 end lingraph

Figure 3: The Linearization Graph Construction

Lemma 18 tells us that the linearization graph contains no cycles, and
can thus be topologically sorted to give a total order on operations. Lemma 17
tells us that this total order will correctly order all operations whose order
we care about. In Lemma 20, below, we show that this fact is sufficient to
show that all orderings of the linearization graph yield equivalent histories.

Definition 19 A linearization of a precedence graph G is a sequential his-
tory constructed by a topological sort of L(G).

Lemma 20 If G has a legal linearization, then all linearizations of G are
legal and equivalent.

Proof: By induction on the number of operations in G. The result is
immediate when the graph has a single operation.

Pick an operation p such that p has no outgoing edges in L(G). Let
H = H, -p- Hy be the legal linearization of G, and G = G - p- G2 any other
linearization. Let G’ be G with p removed.

Since p has no outgoing edges in L(G), each operation in Hy and G
is concurrent with p, and hence commutes with p (Lemma 17), so H is
equivalent to Hy - Hy - p. Now, h' = H; - Hy is a legal linearization of G’,
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G' = (G1-Gs is a linearization of G', hence by the induction hypothesis, G’ is
legal and equivalent to H'. It follows that H is equivalent to G - G5 - p, and
since p commutes with each operation in G, (see above), H is also equivalent
to G1 - p- Ga. |

We now prove a few technical lemmas that will be used to show that
appropriate partial views of the linearization graph yield consistent histories.

Lemma 21 Let G be a precedence graph, and py and py operations concur-
rent in G, such that there is a path from py to p1 in the intermediate graph
L;; in the construction of L(G). Any path of minimal length from po to p1
in L;j contains at most one edge from G.

Proof: If there is more than one precedence edge, then there exist opera-
tions p, q, r, and s in the path such that p precedes ¢, there is a path from
q to r, and r precedes s. If g precedes s, then the path can be shortened,
and therefore p and s are concurrent. By Lemma 13, however, r would then
precede ¢, which contradicts the assumption that there is path from ¢ to
T. [

Lemma 22 If p dominates q, and there is a path from p to q in L(G), then
there exists an 1 such that r dominates p and r precedes q.

Proof: Counsider the first intermediate graph in the construction of L(G) to
contain a path from p to g. We claim that any path of minimal length from
p to ¢ in this graph contains exactly one precedence edge. It cannot contain
more than one (Lemma 21), and if it contains none, then ¢ dominates p by
transitivity (Lemma 15), which is impossible because p dominates g.

This path traverses operations pg = p,p1,...,Pm and qo,q1,-..,q¢ = q,
such that dominance edges link p; to p;+1 and ¢; to ¢;4+1, and p,, precedes
qo- Suppose p # pi and q # qop. To construct the paths from p to pi and g to
qo, the construction must add at least one edge between two of the p; and at
least one edge between two of the g;. When the construction visits p;, it adds
a dominance edge from pg to p; (unless pg = p;), and from p; to p,, (unless
Pm = pi). Although p dominates ¢, and hence so does p;, the construction
does not add an edge from ¢ to p;, implying that there must already be a
path from p; to ¢. Visiting p; thus completes the path from p to ¢, implying
that p; must be the last operation visited. A symmetric argument, however,
also shows that visiting g; also completes a path from p to ¢, implying that
gj must also be the also last operation visited, a contradiction.
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Suppose p,, = p. Consider the first intermediate graph in the construc-
tion of L(G) to contain a path from ¢g to some ¢, concurrent with qg, that
dominates p. Pick a path of minimal length, and let ¢” be the operation im-
mediately before ¢’ in this path. We claim that p and ¢’ must be concurrent,
since otherwise the path could be shortened. Lemma 13, however, implies
that ¢" precedes qg, contradicting the assumption that there is a path from
qo to ¢".

It follows that go = ¢, and the r in the lemma statement is py # p. [

Lemma 23 Let G be a precedence graph, p an operation of G with no out-
going edges, and let G' = G — p be the graph obtained by removing p from G.
Then L(G') is a subgraph of L(G).

Proof: Suppose there is an edge from ¢ to r in L(G') but not in L(G).
Because G is a subgraph of G, the missing edge must be a dominance edge.
The construction for L(G) fails to insert this edge only if it completes a path
from r to ¢ before it can add an edge from ¢ to 7.

By Lemma 22, there exists 7’ in L(G) such that ' dominates r, and r’
precedes ¢. Since p does not precede any operations, 7' and p are distinct,
therefore r’ is in G'. Since r’ precedes g, the construction visits either r or
r’ before it visits q. Either way, it constructs a path from r to r’ before it
compares r and ¢, thus it completes a path from r to ¢, a path that does
not exist in L(G'). ]

Lemma 24 Let p be an operation; let Hi and Hs be sequential histories
such that Hy - p and Hs - p are both legal; and suppose that for any q in Hy
that is dominated by p, there exists an r in Ha that precedes q and dominates
p. Then Hy-p- Hy is legal.

Proof: By induction on the length of Hs. The result is immediate if Ho
is empty. Otherwise, Hy can be written as ¢ - H), where ¢ is an operation
that p does not dominate. Either ¢ dominates p, in which case the result is
immediate, or p and ¢ commute, in which case Hy - p - ¢ - H)) is equivalent
to Hy - q-p- Hj, where the latter satisfies the conditions of the lemma, and
the result follows from the induction hypothesis. [

5.4 The Algorithm

A wait-free algorithm for implementing an object satisfying Property 1 is
shown in Figure 4. The object is represented by its precedence graph. Each
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1 % Shared data

2 root: array[l..n] of pointer to entry

4 proc execute(p;: invocation) returns(response)
5 % Step 1: construct a response

6 view := atomic scan of root array

7 H := linearization of view

8 € := new entry

9 e.invocation := p;

10 e.response := p, such that H - p; - p, is legal
11 foriinl...ndo

12 e.preceding[i] := view][i]

13 end for

14 % Step 2: write out the response

15 root[P] := address of e

16 return p,

17 end execute

Figure 4: A Wait-Free Implementation

operation is represented by an entry, a data structure with fields for the
invocation, the response, and n pointers to each process’s preceding entry.
The graph is rooted in an anchor array whose P entry holds a pointer to
the entry for process P’s most recent operation.

A process executes an operation in two steps:

1. It takes an instantaneous snapshot of the anchor array using the atomic
scan procedure described in Section 6. It then constructs a lineariza-
tion graph from the precedence graph rooted at the snapshot array,
and then constructs a linearization, called its view. Using a sequential
implementation of the object, it determines the response to the invo-
cation consistent with the view. It creates an entry for the operation,
filling in the response and the precedence edges from the snapshot
array.

2. The process updates the precedence graph by storing a pointer to the
new entry in its position in the anchor array.

Each of these steps makes a single access to shared data: Step 1 uses the
atomic scan algorithm given below, and Step 2 writes a single pointer into
the shared root array. Informally, this algorithm exploits the commutativity
and overwriting properties of operations to ensure that each process sees
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“enough” of the object state to choose a correct response independently of
any operations that may be taking place concurrently. We will show that
the shared precedence graph always has a legal linearization.

Lemma 25 Let Hy-p- Ho be a linearization of the shared precedence graph
G. If p and q are concurrent in G, p dominates q, and q is in Hy, then there
exists an r such that r dominates p and r precedes q.

Proof: Since p and ¢ are concurrent and do not commute, L(G) contains
a path from one to the other (Lemma 16). Since p appears before ¢ in the
linearization, this path must go from p to ¢. The result now follows directly
from Lemma 22. n

An entry that has been initialized but not yet written out is pending.

Theorem 26 The following property is invariant: if the shared precedence
graph is linearizable, then it remains linearizable after writing out any pend-
g entry.

Proof: By induction. The property holds trivially in the object’s initial
state, when the precedence graph is empty and no entries are pending. The
property is preserved when P executes Step 1, since the result of writing
out P’s entry is linearizable by construction, and the result of writing out
any other entry is unchanged.

It remains to check that writing out P’s pending entry does not vio-
late linearizability by “invalidating” any other process’s pending operation.
Suppose P and @) respectively have pending operations p and g. Let G be
the current precedence graph, G, the precedence graph after writing out p,
G4 the precedence graph after writing out ¢, and G, the precedence graph
after writing out both.

Let Hy-p- Hy-q- H3 be a linearization of L(Gp,). By Lemma 23, L(G,)
and L(G,) are subgraphs of L(G,,), hence Hy - p - Hy - H3 is a linearization
of G, and Hy - Hy - q- H3 a linearization of G,. By the induction hypothesis,
these are both legal sequential histories.

In particular, Hy -p is legal, H; - Hs-q- H3 is legal, and if p dominates any
operation r in Hy - ¢ - H3, then there exists an r' in Hy - ¢ - H3 that precedes
r and dominates p (Lemma 25). By Lemma 24, G = Hy -p- Hy - q- H3 is
legal. [ |

Corollary 27 The object implementation in Figure 4 is linearizable.
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Because of the generality of the algorithm, there is quite a bid of overhead
in the construction and maintenance of the precedence and linearization
graphs. For any particular data type, it should be possible to apply type-
specific optimizations to discard most of the precedence graph, and to avoid
reconstructing the entire linearization graph for each operation.

6 Atomic Scan

proc Scan(P: process, v: value) returns(value)
scan[P][0] := v V scan[P][0]
foriinl...n+1do
for Qin1l...n do
scan[P][i] := scan[P][i] V scan[Q][i-1]
end for
end for
return scan[P][n+1]
end Scan

L % RN DY LN L~

Figure 5: The Scan Procedure

In this section, we show how to take an atomic snapshot scan of an
array of multi-reader, single-writer registers in which process P writes the
P array element. It is convenient to cast this problem in slightly more
general form: since the array’s state does not depend on the order in which
distinct processes update their array elements, it is natural to treat the array
state as the join in a V-semilattice of the input values® The snapshot scan
simply returns the join of the register values.

Fix a V-semilattice L; for convenience we will assume that L contains
a bottom element | such that L V & = z for all z in L. The atomic scan
object has an operation Writer, (P, v) for each process P and element v of
L, and an operation ReadMax(P) for each process P. The serial semantics
of the object are straightforward: in any history H, the value returned
by a ReadMax(P) operation is the join of the values written by earlier
Writer,(Q, v) operations, for all Q.

The processes share an array scan[l ... n][0...n+1] of multi-reader/single-
writer atomic registers, where P alone writes to each scan[P][i]. The opera-

A V-semilattice is a partial order with a join operation (written as V); the join a V b
of a and b is the unique least element of the partial order that is greater than or equal to
both a and b.
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tions Writer, (P, v) and ReadMax(P) are each implemented using a stronger
primitive operation, Scan(P,v), defined in Figure 5. The Write;, operation is
implemented by executing Scan(P, v) and discarding the return value, while
the ReadMax operation is implemented by executing Scan(P, L).

6.1 Proof of Correctness

We demonstrate the correctness of the atomic scan algorithm in two steps.
First, we show that any two values returned by Scan operations are com-
parable within the lattice L. Second, we use the lattice ordering of the
returned values to order the implemented Writey, and ReadMax operations
in any concurrent history H; this ordering will produce an equivalent serial
history of the atomic scan object, thus proving linearizability. We use the
usual order symbols <, >, >, < for the semilattice order in L.

An implementation history is one in which high-level Scan invocations
and responses are interleaved with low-level read and write invocations and
respouses in a counstrained way: each Scan invocation is separated from its
matching response by a sequence of read and write operations of the same
process. Since read and write operations are linearizable by assumption,
we may assume without loss of generality that the subsequence of low-level
operations is a sequential history.

Let H be fixed implementation history, p a Scan operation in H executed
by process P, and ¢ a Scan operation by P. We use p[k] as an abbreviation
for the write operation to scan[P][k] executed on behalf of the high-level
operation p. We sometimes abuse this notation by using p[k] also to refer
to the value it writes. We say that p[k] directly-sees q[k — 1] if P’s read of
scan[P][k — 1] appears after ¢[k — 1] in H. We say that p[k] sees ¢[l] if they
lie in the in the reflexive, transitive closure of directly-sees. Note that for
plk] to see ¢[l] it is not enough that p[k] > ¢[l]; it must also occur later in
time after a sequence of intermediate reads and writes that would allow the
value ¢[l] to be incorporated in the value p[k].

Certain facts about the sees relation are important enough to state as
lemmas. The proofs are straightforward and are omitted for brevity.

Lemma 28 Ifi < j, then p[j] sees pli].
Lemma 29 Ifp <y q and q[k] and plk] exist, then q[k] > p[k].
It is also not difficult to see that any value written by a process is the

join of the values seen by that process; more formally, we state:
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Lemma 30 Foranyp(k] in H, if 0 <1 <k, then pk] = \/ {q[l] | p[k] sees ¢[l]}.

The following lemma describes the principle on which the atomic scan
algorithm depends:

Lemma 31 If p[k] and q[k] both appear in H, for k > 0, then either p[k]|
sees qlk — 1] or qlk] sees q[k — 1].

Proof: Suppose p[k — 1] precedes g[k — 1]. Since Q’s read of scan[Q][k — 1]
appears after g[k — 1], it appears after p[k — 1], and q[k] sees p[k — 1].
otherwise, if g[k — 1] precedes p[k — 1], then p[k] sees g[k — 1]. ]

We now prove the consistency of the atomic scan operation.
Lemma 32 Fither p[n + 1] > g[n + 1] or g[n + 1] > p[n + 1].

Proof: Let p, ¢’ be Scan operations such that p[n+1] sees p'[0], and g[n+1]
sees ¢'[0]. We claim that:

pln+1] = ¢[0] or qfn + 1] = p/[0]. 1)

Let {po,...,pn+1} be an indexed set of Scan operations (not necessarily
distinct) such that pg = p’, ppy1 = p, and for each k, 0 < k < n + 1, pi[k]
directly-sees pi_1[k —1]. Define {qq, ..., gn+1} similarly; the existence of the
sets follows from the definition of sees.

For each pg, gk, where k > 0, Lemma 31 implies that either pg[k] sees
qr[k — 1] or gx[k] sees pg[k — 1], and thus one of py or g has the property
that its (k—1)** write is seen by both pi[k] and g[k]. Denote this operation
by xx, and the associated process by Xj.

Now consider the indexed set {zy,...,Z,+1}. By the pigeonhole princi-
ple, there exist distinct 4 and j such that ¢ < j and X; = X;. If 2; = x;,
Lemma 28 immediately implies that x;[j — 1] sees x;[i].

Otherwise, x; must precede x;, because x;[j] sees either ¢;[i] or p;|i],
both of which see z;[i — 1]. Thus, by Lemma 29, x;[j — 1] > z;[j — 1], but
since 7 —1 > ¢ Lemma 28 implies that x;[j — 1] sees x;[¢]. Thus in either
case =;[j — 1] > x;[i]. p[n + 1] and g[n + 1] see z;[j — 1], and ;[i] sees one
of p'[0], ¢'[0], showing that Equation 1 holds.

Now suppose that p[n + 1] and ¢[n + 1] are incomparable. By Lemma
30, there must then exist a p'[0] which p[n + 1] alone sees and a ¢'[0] which
g[n + 1] alone sees — contradicting Equation 1. ]

Theorem 33 The atomic scan object implementation is linearizable.
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Proof: Consider any two operations z and y. Let z < y if either z[n+1] <
y[n + 1] or z[n + 1] = y[n + 1], z is a Write;, operation and y is a ReadMax
operation. Extend </ to a total order <g; by Lemma 29 <g extends <y,
and thus we can use it to linearize H. That the resulting sequential history
is legal follows directly from Lemma 32. [

To implement the atomic snapshot algorithm used in the previous sec-
tion, we make each value an m-element array of pointers, where the entire
array is kept in a single register. (As noted above, numerous techniques
exist for constructing large atomic registers from smaller ones.) Each array
entry has an associated tag, and the maximum of two entries is the one with
the higher tag. The join of two values is the element-wise maximum of the
two arrays. The L value is just an array whose tags are all zero. P writes
the P position in the anchor array by initializing scan[P][0] to an array
whose P element has a higher tag than P’s latest entry, and whose other
elements have tag zero. (As a simple optimization, the other elements can
simply be omitted.)

6.2 Running Time

Each Scan operation requires one read and one write operation to set scan[P][0],
plus n read and one write operations for each of n + 1 passes through the
loop. Thus a single Scan operation requires a total of n? 4+ n + 1 read and
n + 2 write operations, where, as usual, n is the number of processes. Some
minor gains arise by eliminating superfluous operations that simplify the
proof: the very last write (to scan[P][n + 1]) is unnecessary, as are the reads
that a process does of its own registers. After eliminating these operations,

a Scan requires n? — 1 read and n + 1 write operations.

7 Conclusions

In this paper, we have explored some of the mathematical structure under-
lying the asynchronous PRAM model. We have seen that it encompasses a
rich impossibility hierarchy, but it still supports wait-free implementations
of a large class of objects that have a simple algebraic characterization.
Although we believe that asynchronous PRAM is considerably more real-
istic than its synchronous predecessor, it is still far from ideal. In one sense,
asynchronous PRAM is too weak to be realistic. The only way for processes
to synchronize is by read and write operations. One might justify this re-
striction in the same way one justifies ruler-and-compass constructions in
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classical geometry: simply as an intellectual challenge. One cannot justify
it as a realistic reflection of current practice. Nearly every major architec-
ture since the 1970’s has provided some form of read-modify-write operation
that atomically reads and modifies memory. Examples include test-and-set,
compare-and-swap, fetch-and-add, atomic swap, and many others. (Glew
and Hwu [22] give an excellent survey of synchronization primitives pro-
vided by current architectures.) Today, it would be inconceivable to design
a shared-memory multiprocessor without such atomic instructions.

There is another sense in which asynchronous PRAM may be too strong
to be realistic. Many modern shared-memory multiprocessors do not guar-
antee that memory is sequentially consistent [34]: reads and writes to shared
memory do not appear to occur atomically (e.g., [1, 36] and many commer-
cial multiprocessors). In modern architectures, processors are fast, while
memory and communication are slow, and as a result the cache coherency
protocols necessary to enforce sequential consistency are expensive, and ar-
chitects are often unwilling to pay this cost on every memory access. Re-
cently, a number of researchers have started exploring the implications of
such “weak” memories [3, 29, 37]. A satisfactory trade-off between ease of
implementation and ease of use has yet to be established for shared-memory
semantics.

In conclusion, although the asynchronous PRAM model explored in this
paper has its limitations, we believe that the model is interesting in its own
right, and we hope that the questions we have raised and the techniques we
have developed here will be useful and informative when the “right” model
comes along.
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