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ts that do have wait-free implementations inasyn
hronous PRAM, as well as a general algorithm for implement-ing them. Our tools in
lude simple iterative algorithms for wait-freeapproximate agreement and atomi
 snapshot.1�During mu
h of the work des
ribed in this paper, J. Aspnes was funded by an IBMgraduate fellowship.yMu
h of the work des
ribed in this paper was 
ompleted while M. Herlihy was at DECCambridge Resear
h Laboratory1A preliminary version of this paper appeared in the Pro
eedings of the Se
ond Annual1



1 Introdu
tionIn the \
lassi
al" parallel random a

ess ma
hine (PRAM) model [20℄, aset of pro
esses exe
uting in lo
k-step 
ommuni
ate by applying read andwrite operations to a shared memory. Existing shared memory ar
hite
tures,however, are inherently asyn
hronous: pro
essors' relative speeds are unpre-di
table, at least in the short term, be
ause of timing un
ertainties intro-du
ed by variations in instru
tion 
omplexity, page faults, 
a
he misses, andoperating system a
tivities su
h as preemption or swapping. A number ofresear
hers have noted this mismat
h, and have proposed the asyn
hronousPRAM model as an alternative [16, 17, 21, 41℄. In this model, asyn
hronouspro
esses 
ommuni
ate by applying atomi
 read and write operations tothe shared memory 2. Te
hniques for implementing these memory lo
a-tions, often 
alled atomi
 registers, have also re
eived 
onsiderable attention[13, 14, 32, 35, 40, 43, 44℄.Mu
h of the work on asyn
hronous PRAM models addresses the prob-lem of 
omputing fun
tions, su
h as parallel summation or substring mat
h-ing, whose inputs reside in the shared memory. Many pra
ti
al appli
a-tions, however, su
h as operating systems and data bases, are not organizedaround fun
tional 
omputation. Instead, they are organized around long-lived data obje
ts su
h as sets, queues, dire
tories, and so on. In this paper,we investigate the extent to whi
h the asyn
hronous PRAM model supportslong-lived, highly-
on
urrent data obje
ts. There are several reasons whylong-lived obje
ts are inherently more diÆ
ult than fun
tional 
omputation.A data obje
t has an unbounded lifetime during whi
h ea
h pro
ess 
an ex-e
ute an arbitrary dynami
ally-
hosen sequen
e of operations. The thatdata stru
tures must be reused, but they must retain enough information toensure that \sleepy" pro
esses that arbitrarily suspend and resume exe
u-tion 
an 
ontinue to progress, while dis
arding enough information to keepthe obje
t size bounded. Care must be taken to guard against starvation,sin
e one operation 
an be \overtaken" by an arbitrary sequen
e of otheroperations.An implementation of a 
on
urrent obje
t is wait-free if every pro
essmust 
omplete an operation after taking a �nite number of steps, despitefailures of other pro
esses. It is k-bounded wait-free, for some �xed k > 0,if every pro
ess 
ompletes an operation after taking k steps. The wait-freeACM Symposium on Parallel Ar
hite
tures and Algorithms, Crete, Gree
e, July 1990 [7℄,and in the Pro
eedings of the Third Annual ACM Symposium on Parallel Ar
hite
turesand Algorithms, Hilton Head, North Carolina, July 1991 [25℄.2Some of these models also in
lude primitives for barrier syn
hronization.2



property ex
ludes starvation: any pro
ess that 
ontinues to take steps will�nish its operation. The bounded wait-free property bounds how long itwill take. Either of these properties rules out 
onventional syn
hronizationte
hniques su
h as barrier syn
hronization, busy-waiting, 
onditional wait-ing, or 
riti
al se
tions, sin
e the failure or delay of a single pro
ess within a
riti
al se
tion or before a barrier will prevent the non-faulty pro
esses frommaking progress.Whi
h obje
ts have wait-free implementations in asyn
hronous PRAM?Elsewhere [23, 26℄, we have shown that any obje
t X that solves 
onsensusfor two or more pro
esses 
annot be implemented without randomization ina model that provides only simple reads and writes of shared memory. Thusthe asyn
hronous PRAM model does not permit deterministi
 implementa-tions of 
ommon data types su
h as sets, queues, sta
ks, priority queues, orlists, most if not all the 
lassi
al syn
hronization primitives, su
h as test&set,
ompare&swap, and fet
h&add, and simple memory-to-memory operationssu
h as move or swap.In the �rst part of the paper, we give some additional impossibility resultsfor the asyn
hronous PRAM model. Given that one 
annot 
onstru
t await-free implementation of any obje
t that solves two-pro
ess 
onsensus,it is natural to ask whether the 
onverse holds: does asyn
hronous PRAMpermit wait-free implementations of all remaining obje
ts, i.e., those thatdo not solve two-pro
ess 
onsensus? In this paper, we show that the answeris no. In a system of two pro
esses, we demonstrate the existen
e of a stri
tin�nite hierar
hy among obje
ts that are still too weak to solve 
onsensus:� Obje
ts with implementations that are wait-free, but not boundedwait-free. Ea
h operation requires a �nite number of steps, but thereis no bound 
ommon to all operations. (Theorem 8.)� For all k > 0, obje
ts with implementations that are K-bounded wait-free for some K > k, but not k-bounded wait-free. (Theorem 7.)In the se
ond part of this paper, we give a new 
hara
terization of awide 
lass of obje
ts that do have wait-free implementations in the asyn-
hronous PRAM model. This 
hara
terization is algebrai
 in nature, in thesense that it is expressed in terms of simple 
ommutativity and overwritingproperties of the data type's sequential spe
i�
ation. We present a te
h-nique for transforming a sequential obje
t implementation into an n-pro
esswait-free implementation requiring a worst-
ase syn
hronization overheadof O(n2) reads and writes per operation. Examples of obje
ts that 
an be3



implemented in this way in
lude 
ounters, logi
al 
lo
ks [33℄, and 
ertainkinds of set abstra
tions.One 
ontribution of this paper is the impossibility hierar
hy, whi
h showsthat even relatively \weak" 
on
urrent obje
ts have a ri
h mathemati
alstru
ture. A se
ond 
ontribution is the 
hara
terization of a large 
lass of
onstru
tible obje
ts, implying that despite the weakness of the model, 
er-tain problems do have wait-free solutions. Perhaps the most general 
ontri-bution is to raise basi
 questions about the value of the asyn
hronous PRAMmodel. Although some syn
hronous PRAM algorithms 
an be adapted toasyn
hronous PRAM [16, 17, 21, 41℄, our results show that there is littlehope of 
onstru
ting useful highly-
on
urrent long-lived data stru
tures inthis model. Fortunately, however, one 
an argue that asyn
hronous PRAMis an in
omplete re
e
tion of 
urrent pra
ti
e. Starting with the IBM Sys-tem/370 ar
hite
ture [30℄ in the early 1970's, nearly every major ar
hite
-ture has provided some kind of atomi
 read-modify-write primitive. We haveshown elsewhere that one 
an 
onstru
t a bounded wait-free implementationof any obje
t by augmenting the read and write operations with suÆ
ientlypowerful read-modify-write primitives, su
h as 
ompare&swap [24℄. It is notour intent here to suggest a spe
i�
 alternative model, but we do believe thatthe resear
h 
ommunity would bene�t from a more realisti
 and powerfulmodel of 
on
urrent shared-memory 
omputation.2 Related WorkAlthough the work on atomi
 registers has a long history, it is only re
entlythat resear
hers have attempted to formalize the 
omputational power ofthe resulting model. Cole and Zaji
ek [16, 17℄ and Nishimura [41℄ propose
omplexity measures and basi
 algorithms for an \asyn
hronous PRAM"model in whi
h asyn
hronous pro
esses 
ommuni
ate through shared atomi
registers. Gibbons [21℄ proposes an asyn
hronous model in whi
h sharedatomi
 registers are augmented by a form of barrier syn
hronization. Ourwork extends these approa
hes in two ways: we 
onsider data stru
turesrather than the usual numeri
 or graph algorithms, and we fo
us on wait-free 
omputation, sin
e we feel that algorithms that require pro
esses towait for one another are poorly suited to asyn
hronous models.Re
ently, a number of resear
hers have investigated the problem of 
om-piling 
lassi
al PRAM programs onto other models [31, 15℄, some still syn-
hronous, some not. It must be emphasized that these resear
hers are ad-dressing very di�erent kinds of appli
ations. Their programs have the prop-4



erty that all the program's arguments are present in publi
 memory when theprogram starts. Be
ause new information does not arrive dynami
ally, theseprograms are not subje
t to the 
onsensus-related impossibility results thatde�ne the 
omputational power of 
on
urrent obje
ts in this model. Thisassumption is a legitimate one for \o�-line" appli
ations su
h as s
ienti�

omputation, but not for rea
tive systems su
h as operating systems, �lesystems, databases, and any other kind of long-lived system.Two other atomi
 s
an algorithms were developed independently of theone presented here: by Afek et al. [2℄ and by Anderson [4℄. The former hastime 
omplexity 
omparable to ours, while the latter uses time exponentialin the number of pro
esses. Both of these proposals use bounded 
ounters,while the most straightforward implementation of our s
an algorithm usesunbounded 
ounters to represent latti
e elements.Anderson [5℄ gives a bounded implementation of pseudo read-modify-write instru
tions in asyn
hronous PRAM. Let F be a set of fun
tions that
ommute with one another. A pseudo read-modify-write instru
tion is pa-rameterized by a fun
tion f from F . When applied to a memory lo
ationholding a value v, it repla
es the 
ontents with f(v), but does not returna value. This 
onstru
tion uses bounded 
ounters, unlike our 
onstru
tion,but it does not permit overwriting operations.An obje
t implementation is randomized wait-free if ea
h operation 
om-pletes in a �xed expe
ted number of steps. Elsewhere [6℄, we have shownthat the asyn
hronous PRAM model is universal for randomized wait-freeobje
ts.Our approximate agreement algorithm and lower bounds give similarasymptoti
 results to the independent work of Attiya, Lyn
h, and Shavit [9℄.Hoest and Shavit [28℄ have re
ently shown that, when translated to an iter-ated snapshot model, the 
onstant fa
tors in our results are the best possible.Sin
e the �rst appearan
e of the preliminary versions of this paper [7, 25℄,there have been many advan
es in the study of wait-free obje
ts built fromatomi
 registers. In parti
ular, there has been 
onsiderable improvementin algorithms for atomi
 snapshots. The latti
e agreement te
hnique [8℄,where pro
esses agree on a 
hain in a latti
e, is 
losely related to the semi-latti
e 
onstru
tion we use in Se
tion 6. By allowing pro
esses to obtainvalues spread throughout the latti
e instead of pushing all pro
esses towardthe top, latti
e agreement allows for faster snapshot proto
ols su
h as theasymptoti
ally optimal O(n log n) proto
ol of Attiya and Ra
hman [10℄.
5



3 ModelInformally, our model of 
omputation 
onsists of a 
olle
tion of sequentialthreads of 
ontrol 
alled pro
esses that 
ommuni
ate through shared datastru
tures 
alled obje
ts. Ea
h obje
t has a type, whi
h de�nes a set of pos-sible states and a set of primitive operations that provide the only means tomanipulate that obje
t. Ea
h pro
ess applies a sequen
e of operations to ob-je
ts, issuing an invo
ation and re
eiving the asso
iated response. The basi

orre
tness 
ondition for 
on
urrent systems is linearizability [27℄: althoughoperations of 
on
urrent pro
esses may overlap, ea
h operation appears totake e�e
t instantaneously at some point between its invo
ation and re-sponse. In parti
ular, operations that do not overlap take e�e
t in their\real-time" order.3.1 AutomataA 
omplete formal exposition of our model is given elsewhere [26℄. Herewe give an abbreviated version, omitting some te
hni
al details for brevity.We model obje
ts as automata, using a simpli�ed form of I/O automataformalism of Lyn
h and Tuttle [38℄. Be
ause the wait-free 
ondition doesnot require any fairness or liveness 
onditions, and be
ause we 
onsider only�nite sets of pro
esses and obje
ts, we do not make use of the full powerof the I/O automata formalism. (For brevity, our algorithms are expressedusing pseudo
ode, although it is straightforward to translate this notationinto automata de�nitions.)An automaton A is a non-deterministi
 automaton with the following
omponents3: States(A) is a �nite or in�nite set of states, in
luding a dis-tinguished set of starting states, In(A) is a set of input events, Out(A) isa set of output events, Steps(A) is a transition relation given by a set oftriples (s0; e; s), where s and s0 are states and e is an event. Su
h a tripleis 
alled a step, and it means that an automaton in state s0 
an undergo atransition to state s, and that transition is asso
iated with the event e. Anexe
ution fragment of an automaton A is a �nite sequen
e s0; e1; s1; : : : en; snor in�nite sequen
e s0; e1; s1; : : : of alternating states and events su
h thatea
h (si; ei+1; si+1) is a step of A. An exe
ution is an exe
ution fragmentwhere s0 is a starting state. A history fragment of an automaton is the sub-sequen
e of events o

urring in an exe
ution fragment, and a history is the3To remain 
onsistent with the terminology of [27℄, we use \event" where Lyn
h andTuttle use \operation," and \history" where they use \s
hedule."6



subsequen
e o

urring in an exe
ution. A pre�x of an exe
ution or historyis a pre�x of the sequen
e that is itself an exe
ution or history, respe
tively.3.2 Linearizable Obje
tsAn obje
t is an automaton with input events invoke(P ,op) where P is a pro-
ess and op is an operation of the obje
t 4, and output events respond(P ,res),where res is a result value. We refer to these events as invo
ations and re-sponses. If H is a history, then HjP is the subsequen
e of invo
ations andresponses labeled with P . Two invo
ations and responses mat
h if their pro-
ess names agree. To 
apture the notion that a pro
ess represents a singlethread of 
ontrol, we say that a pro
ess history is well-formed if it beginswith an invo
ation and alternates mat
hing invo
ations and responses. Aninvo
ation is pending if it is not followed by a mat
hing response. A historyis well-formed if, for ea
h pro
ess P , HjP is well-formed. We restri
t ourattention to well-formed histories.An exe
ution is sequential if its �rst event is an invo
ation, and it al-ternates mat
hing invo
ations and responses. A history is sequential if itis derived from a sequential exe
ution. (Noti
e that a sequential exe
utionpermits pro
ess steps to be interleaved, but at the granularity of 
ompleteoperations.) If we restri
t our attention to sequential histories, then the be-havior of an obje
t 
an be spe
i�ed in a parti
ularly simple way: by givingpre- and post
onditions for ea
h operation. We refer to su
h a spe
i�
a-tion as a sequential spe
i�
ation. In this paper, we 
onsider only obje
tswhose sequential spe
i�
ations are total and deterministi
: if the obje
t hasa pending invo
ation, then it has a unique mat
hing enabled response. We
onsider only total operations be
ause it is un
lear how to interpret thewait-free 
ondition for partial operations. For example, the most naturalway to de�ne the e�e
ts of a partial dequeue operation of a shared queue ina 
on
urrent system is to have it wait until the queue be
omes non-empty,a spe
i�
ation that 
learly does not admit a wait-free implementation. We
onsider only deterministi
 operations be
ause one 
an always use a de-terministi
 implementation to satisfy a non-deterministi
 spe
i�
ation, e.g.,using the dequeue operation for queues to implement a non-deterministi

hoose operation for sets.If H is a history, let 
omplete(H) denote the maximal subsequen
e ofH 
onsisting only of invo
ations and mat
hing responses. Ea
h history Hindu
es a partial \real-time" order �H on its operations: p �H q if the4Op may also in
lude argument values. 7



response for p pre
edes the invo
ation for q. Operations unrelated by �Hare said to be 
on
urrent. If H is sequential, �H is a total order. An obje
tis linearizable if ea
h history H 
an be extended to a well-formed historyH 0, by adding zero or more responses, su
h that there exists a sequentialhistory S su
h that:� For all P , 
omplete(H 0)jP = SjP� �H��SIn other words, the history \appears" sequential to ea
h individual pro
ess,and this apparent sequential interleaving respe
ts the real-time pre
eden
eordering of operations. Equivalently, ea
h operation appears to take e�e
tinstantaneously at some point between its invo
ation and its response. Alinearizable obje
t is thus \equivalent" to a sequential obje
t, and its oper-ations 
an also be spe
i�ed by simple pre- and post
onditions.As dis
ussed in more detail elsewhere [27℄, linearizability di�ers fromrelated 
orre
tness 
onditions su
h as sequential 
onsisten
y [34℄ or stri
tserializability [42℄ be
ause it is a lo
al property: a set of obje
ts is linearizableif and only if ea
h individual obje
t is linearizable.3.3 ImplementationsAn implementation of an obje
t is itself an automaton 
omposed from a
olle
tion of smaller automata. When a pro
ess invokes an operation, thatinvo
ation is handled by a front-end automaton, whi
h applies a sequen
e ofoperations to a representation automaton, and eventually returns a responseto the pro
ess. The front-end models the pro
edure that implements theoperation, and the representation models shared memory in the obviousway: it a

epts read and write invo
ations, and its state is just the CartesianProdu
t of ea
h of the registers.An implementation is k-bounded wait-free if ea
h invo
ation returns pro-vided its front-end takes at least k steps, it is wait-free if ea
h pendinginvo
ation eventually returns provided its front-end 
ontinues to take steps.4 A Wait-Free Hierar
hyIn this se
tion, we 
onstru
t a family of obje
ts with the property that, forall k, there exists an obje
t whose implementations are K-bounded wait-freebut not k-bounded wait-free, for some K > k. There also exists an obje
twhose implementations are wait-free but not k-bounded wait-free for any k.8



We prove the lower bounds by redu
ing the (diÆ
ult) problem of analyzingall possible implementations of a parti
ular obje
t to the (more tra
table)problem of analyzing solutions to a related de
ision problem.If S is a nonempty set of real numbers, let range(S) = [min(S);max(S)℄,midpoint (S) = (min(S) + max(S))=2, and let jSj = max(S) �min(S). Forthe empty set, de�ne range(;) = ; and j;j = 0.An approximate agreement obje
t provides two operations:input(P: pro
ess, x: real)output(P: pro
ess) returns (real)A sequential spe
i�
ation for these operations, expressed in terms of pre- andpost-
onditions, appears in Figure 1. The obje
t's abstra
t state has two
omponents: a set of real input values X and a set of real output values Y ,initially both empty. In post
onditions, X 0 and Y 0 denote the 
omponents'new states. The input operation inserts its argument value in X. The outputoperation is de�ned only when X is non-empty. It inserts its result in Y ,ensuring that range(Y ) � range(X) and jY j < � for some �xed � > 0. Forbrevity, we leave unspe
i�ed how output behaves when X is empty.As a de
ision problem, approximate agreement has been studied in avariety of message-passing models [12, 18, 19, 39℄. Attiya, Lyn
h, and Shavit[9℄ independently derive upper and lower bounds for approximate agreementin shared memory that 
an be adapted obtain asymptoti
 bounds similar tothose given here. Their approximate agreement algorithm is optimized fora best-
ase model where pro
esses run approximately syn
hronously, andso involves some additional ma
hinery that exploits the eÆ
ien
ies possiblein this model. In 
ontrast, our algorithm is relatively simple, but does notperform as well for best-
ase exe
utions.A wait-free implementation of an approximate agreement obje
t appearsin Figure 2. The obje
t is represented by an n-element array r of entries,where ea
h entry has two �elds: an integer round initially zero, and a realprefer, initially ?. A pro
ess is a leader if its round �eld is greater thanor equal to any other pro
ess's round �eld. P advan
es its entry by settingits preferen
e to the midpoint of the leaders' preferen
es (line 16) and byin
rementing its round �eld by one. P s
ans the entries by reading them inan arbitrary order.The �rst time P 
alls input, it sets prefer to its input value. Subsequent
alls have no e�e
t. When P 
alls output, it returns the results of exe
utinga wait-free approximate agreement proto
ol. This proto
ol 
onsists of aloop in whi
h P s
ans the entries (line 10), and dis
ards those whose round�elds trail its own by two or more (line 11). If the diameter of the remaining9



Obje
t State:X is a set of reals, initially ;.Y is a set of reals, initially ;.input(P, x)pre: truepost: X 0 = X [ fxgy := output(P)pre: X 6= ;post: Y 0 = Y [ fyg ^range(Y ) � range(X) ^jrange(Y )j < �.Figure 1: Sequential Spe
i�
ation for Approximate Agreement1 pro
 input(P: pro
ess, x: real)2 if r[P℄.prefer = ? then3 r[P℄ := [prefer: x, round: 1℄4 end if5 end input7 pro
 output(P: pro
ess)8 advan
e := false9 loop10 S
an r11 E := fr[Q℄.prefer : r[Q℄.round � r[P℄.round� 1g12 L := fr[Q℄.prefer : r[Q℄.round = maxQ r[Q℄.roundg13 if jrange(E)j < �=2 then14 return r[P℄.prefer15 elseif jrange(L)j < �=2 or advan
e then16 r := [prefer: midpoint (L),17 round: r.round + 1℄18 advan
e := false19 else advan
e := : advan
e20 end if21 end loop22 end outputFigure 2: Wait-Free Implementation of Approximate Agreement Obje
t10



preferen
es is less than �=2, P returns its own preferen
e (lines 13{14). If thediameter of the leaders' preferen
es is less than �=2, then P advan
es its entryand resumes the loop (line 16). If the diameter of the leaders' preferen
esex
eeds �=2, then P res
ans the entries on
e more before advan
ing its entry.This res
an is implemented using the advan
e 
ag, set in lines 18 and 19.In analyzing the algorithm, it will be useful to keep tra
k of all values thata pro
ess writes to its register during the entire exe
ution, as opposed to justthe most re
ent value.. We will denote by \P 's r-entry" (or r-preferen
e) theunique value of r[P ℄ (or the prefer �eld in that value) with round numberr, of all values written to r[P ℄ during an exe
ution of the algorithm.The essential idea of the algorithm is that the range spanned by theset of all pro
esses r-entries shrinks in ea
h round, and when it gets smallenough, the pro
esses 
orre
tly dete
t termination. Consider some pre�x ofan exe
ution of the algorithm, and let Xr denote the set of all pro
esses'r-preferen
es in that pre�x, i.e., all prefer values written during that pre�xwith round number r. Lemmas 1, 2, and 3 bound how ea
h Xr relates tothe pre
eding Xr�1, and how these quantities 
hange over time.Lemma 1 In any pre�x of an exe
ution of the approximate agreement al-gorithm, for all r > 1, range(Xr) � range(Xr�1).Proof: The proof is by indu
tion on the length of the pre�x. The base 
aseis an empty pre�x, in whi
h the 
laim holds sin
e range(Xr) = ; for all r.If a pro
ess 
reates a preferen
e as part of an input operation in line 3,then it may in
rease range(X1) but does not in
rease the range of any largerround; thus writing inputs preserves the indu
tion hypothesis.Now suppose P 
reates an r-preferen
e xp by writing a new entry in line16. For ea
h s, let X 0s be the set of s-preferen
es in the pre�x pre
eding thiswrite operation. By the indu
tion hypothesis, range(X 0s) � range(X 0r�1) forall s � r � 1.If LP is the set of leaders P 
omputes (in the pre
eding line 12), then LP
onsists of preferen
es at some round rmax � r � 1 (as the maximum roundin
ludes P 's own round r � 1). Thus xp = midpoint (LP ) 2 range(X 0rmax) �range(X 0r�1) = range(Xr�1).We will say that P expands Xr if it writes a preferen
e that in
reasesjrange(Xr)j.Lemma 2 If P expands Xr after observing the set of leaders LP , then theentries 
orresponding to preferen
es in LP have round number r � 1.11



Proof: As in the proof of Lemma 1, we use the fa
t that all preferen
es inLP 
orrespond to entries with the same round number rmax � r � 1.Suppose now that rmax > r � 1. Then when P exe
utes line 16, it
hooses as its new preferen
e midpoint (LP ) 2 range(LP ) � range(Xrmax) �range(Xr), where the last in
lusion follow from Lemma 1. But this 
ontra-di
ts the fa
t that P expands Xr. Thus rmax = r � 1.Lemma 3 In any pre�x of an exe
ution of the approximate agreement al-gorithm, for all r > 1, jrange(Xr)j � jrange(Xr�1)j=2.Proof: We will show that the endpoints of range(Xr) are the midpointsof overlapping subranges of range(Xr�1), from whi
h the 
laim follows by asimple 
ase analysis.Let P be the �rst pro
ess to write xp = min(Xr), Q be the �rst pro
essto write xq = max(Xr), and let LP and LQ their respe
tive sets of leaders as
omputed in line 12 immediate pre
eding their writes of xp and xq in line 16.Sin
e both writes expand Xr, Lemma 2 implies that all entries in LP and LQhave round number r� 1. Note also that LP 
ontains P 's (r� 1)-preferen
eand LQ 
ontains Q's (r � 1)-preferen
e.We will now show that at least one of these preferen
e also o

urs in theset of leader values observed by the other pro
ess, and thus that LP \ LQis nonempty.Let P1, Q1 be the events that P and Q write their (r � 1)-preferen
es,respe
tively; and let P2; Q2 be the events that P and Q start their followings
ans (line 10). Suppose P does not observe Q's (r � 1)-preferen
e in LP .Then Q1 o

urs after P2, in whi
h 
ase Q2 o

urs after P1, and thus Q'ss
an in
ludes P 's (r� 1)-preferen
e. Thus at least one of P 's or Q's (r� 1)-preferen
es appears in both LP and LQ.It follows that range(LP )\range(LQ) is nonempty. Let [a; b℄ = range(LP )and [
; d℄ = range(LQ), so that xp = midpoint(range(LP )) = a+b2 andxq = midpoint (range(LP )) = 
+d2 . Then xq � xp = 
+d�a�b2 . If a � 
 �b � d, then 
 � a and d � b are the lengths of non-overlapping intervals
ontained in range(Xr�1 and so xq � xp � (
�a)+(d�b)2 � jrange(Xr�1)j=2.If a � 
 � d � b, then xq 2 [a; b℄ and xq � a+b2 � b�a2 � jrange(Xr�1)j=2.The remaining 
ase 
 � a � b � d follows similarly. In ea
h 
ase, we havejrange(Xr)j = jxp � xqj � jrange(Xr�1)j=2.Lemma 3 says that the range of preferen
es shrinks exponentially inthe number of rounds. Thus the range will eventually drop below �=2, thethreshold for the termination test in line 13. In Lemma 4, we show that if12



this test is true and a pro
ess exe
utes the return in line 14, then later a
tionsby other pro
esses will not produ
e values outside the � range permitted bythe spe
i�
ation.Lemma 4 If P returns xp at round r, and Q writes xq at round r, thenjxp � xqj < �.Proof: By 
ontradi
tion. Without loss of generality, let Q the �rst pro
essto write an r-preferen
e xq su
h that jxp � xqj � �. Let LP be the set ofleaders observed by P after writing xp, and let LQ be the set of leadersobserved by Q before writing xq. Note that xp 2 range(LP ) and xq 2range(LQ). Moreover, xq 62 LP be
ause jrange(LP )j < �=2 (from line 13),and P 's write of xp is not observed by Q when 
omputing LQ, by Lemma 2.Suppose jrange(LQ)j < �=2. Be
ause ea
h pro
ess wrote its (r � 1)-entry before reading the other's entry, and be
ause neither pro
ess readthe other's r-entry, one of the two pro
esses must have read the other's(r�1)-entry, and therefore LP \LQ 6= ;. It follows that jrange(LP [LQ)j �jrange(LP )j+jrange(LQ)j < �. Be
ause xp and xq lie within range(LP [LQ),jxp � xqj < �.Otherwise, if jrange(LQ)j � �=2, then Q reads twi
e before writing xq.Let L0Q be the set of leaders it saw during the �rst read. Sin
e Q readstwi
e, jrange(L0Q)j � �=2. If Q �nished reading L0Q before Q wrote xp,then L0Q � LP , and jrange(L0Q)j � jrange(LP )j < �=2, a 
ontradi
tion. If Q�nished reading L0Q after Q wrote xp, then it started reading LQ afterwards,and xp 2 LQ, a 
ontradi
tion.Theorem 5 Let � be an upper bound on the size of the range of the in-puts. There exists a wait-free implementation of the approximate agree-ment obje
t in asyn
hronous PRAM, in whi
h ea
h pro
ess exe
utes at most(2n+ 1) log2(�=�) +O(n) steps before �nishing.Proof: We show that the proto
ol in Figure 2 is 
orre
t. There are threepoints to 
he
k: (1) that every output value lies within the original inputrange, (2) that the diameter of the output set is less than �, and (3) thatthe algorithm is wait-free and runs within the spe
i�ed time bound.The �rst point is an immediate 
onsequen
e of Lemma 1. For the se
ondpoint, suppose P returns xp after round r and Q returns xq after round s,where r � s. Lemma 4 states that every element ofXr lies within � of xp, andLemma 1 that range(Xs) � range(Xr), hen
e jxp�xqj < �. Finally, Lemma3 implies that jXrj � � � 2�r+1, so that for some r = log2(�=�) + O(1) we13



have states that jXrj < �=2 in any pre�x of the exe
ution. Thus no pro
essever sees a larger range among the leaders at round r, and every pro
essreturns on or before round r + 1. To get the bound stated in the theorem,note that ea
h pro
ess takes at most (2n+ 1) steps in ea
h round.Lemma 6 Let � be the size of range of the inputs. An adversary s
heduler
an for
e some pro
ess exe
uting any deterministi
 implementation of theoutput operation of an approximate agreement obje
t to exe
ute blog3(�=�)
steps before �nishing.Proof: It is enough to prove the result for two pro
esses. Consider anexe
ution in whi
h P and Q have distin
t input values, and ea
h exe
utes anoutput. De�ne a pro
ess's preferen
e at any point to be the value it returnsif it runs by itself until termination. Note that the preferen
e is well-de�nedas long as the pro
ess is deterministi
, that the preferen
e of a pro
ess thatreturns is equal to its return value, and that on
e one pro
ess returns theother will eventually return its own preferen
e (as the �rst pro
ess is nolonger running). Thus the output operations 
annot both terminate whiletheir preferen
es di�er by more than �.We will show a lower bound on the number of steps it takes for the pref-eren
es of the two pro
esses to 
onverge. Initially, ea
h pro
ess's preferen
eis its input, for if it returns some other value without seeing any inputs ofother pro
esses, it may violate the 
ondition that range(Y ) � range(X).It is immediate from the de�nition that a pro
ess's preferen
e 
an only
hange as the result of a step by another pro
ess. Consider the followings
enario. Run P until it is about to 
hange Q's preferen
e, then do the samefor Q. Alternate P and Q in this way as long as neither pro
ess 
hangespreferen
e. Eventually, sin
e the operations 
annot run forever, the obje
trea
hes a state where ea
h pro
ess is about to 
hange the other's preferen
e.The adversary now has a 
hoi
e of running P , Q, or both. Let p0 be P 's
urrent preferen
e, p1 its preferen
e if Q takes the next step, and let q0 andq1 be de�ned similarly. Depending on whom the adversary s
hedules next,the new preferen
es will di�er by either jp0 � q1j, jp1� q0j, or jp1� q1j. Thesum of these quantities is at least jp0 � q0j, thus the adversary 
an always
hoose one that is greater than or equal to jp0 � q0j=3, preventing the gapbetween the preferen
es from shrinking by more than one third. Repeatingthis strategy k times, an adversary s
heduler 
an ensure that the range of thepreferen
es is at least �=(3k). Sin
e ea
h iteration of the strategy involvesat least one operation by ea
h pro
ess, we get the desired lower bound.14



Curiously, the gap between the log2(�=�) rounds of the upper boundin Theorem 5 and the log3(�=�) rounds of the lower bound in Lemma 6is not an a

ident. Sin
e the �rst appearan
e of our results [25℄, Hoestand Shavit [28℄ have shown using topologi
al methods that in an iteratedsnapshot model with a stru
ture similar to that of our algorithm, log3(�=�)is in fa
t a tight bound for two pro
esses, while log2(�=�) is tight for threeor more.Theorem 7 For all k > 0, there exists an obje
t with a K-bounded wait-freeimplementation, for K > k, that is not k-bounded wait-free.Proof: Consider an approximate agreement obje
t with the unit intervalas potential input range, and � = 1=3k. From Lemma 6, this obje
t isnot k-bounded wait-free, but it is K-bounded wait-free for K = O(nk) byTheorem 5.Theorem 8 There exists an obje
t with a wait-free implementation but nobounded wait-free implementation.Proof: Consider an approximate agreement obje
t with an unbounded in-put range. For any parti
ular set of inputs, � = jrange(X1)j is bounded,and Theorem 5 shows that the approximate agreement algorithm eventuallyterminates. But by setting � large enough, any implementation 
an be for
eto run longer than any �xed bound by Lemma 6.5 A Class of Constru
tible Obje
tsIn this se
tion, we des
ribe a 
lass of obje
ts that 
an be 
onstru
ted in theasyn
hronous PRAM model. These obje
ts are 
hara
terized by a simplealgebrai
 property of their operations, des
ribed in detail in Se
tion 5.1. Theproperty says that any two operations of the obje
t must either 
ommute,meaning that the state of the obje
t after both have o

urred does not revealwhi
h happened �rst; or at least one must overwrite the other, meaningthat if the overwriter o

urs last it is impossible to determine if the otheroperation o

urred at all. Some te
hni
al 
onsequen
es of this de�nitionare elaborated in Se
tion 5.2. These are used in Se
tion 5.3 to show thatany history of an obje
t satisfying the 
hara
terization 
an be des
ribed bya linearization graph, with the properties that (a) all linearizations of thegraph 
orrespond to histories of the obje
t that are equivalent (in a formally15



de�ned sense); and (b) appropriately-de�ned subgraphs of the linearizationgraph produ
e linearizations that 
orrespond to histories of the obje
t thatare equivalent to pre�xes of the full history. An algorithm that simulatesobje
ts by 
onstru
ting families of 
onsistent linearization graphs for ea
hpro
ess, together with a proof of its 
orre
tness, is given in Se
tion 5.4.5.1 Commuting and OverwritingWe are now ready to state the algebrai
 
onditions an obje
t must satisfyfor us to provide a wait-free implementation.These 
onditions are de�ned in terms of the set of legal histories, de�nedas those meeting the obje
t's sequential spe
i�
ation. If p is an operation,pi denotes p's invo
ation, and pr its response. We use \�" to denote 
on-
atenation, and H � p to denote H � pi � pr, where H is a sequential history.De�nition 9 Two sequential histories H and H 0 are equivalent if, for allsequential histories G, H �G is legal if and only if H 0 �G is legal.De�nition 10 Invo
ations pi and qi 
ommute if, for all sequential historiesH, if H �p and H �q are legal then H �p�q and H �q �p are legal and equivalent.De�nition 11 Invo
ation qi overwrites pi if, for all sequential histories H,if H � p and H � q are legal then H � p � q is legal and equivalent to H � q.This parti
ular notion of 
ommutativity is due to Weihl [45℄. For brevity,we say that two operations 
ommute when their invo
ations 
ommute.We will show how to 
onstru
t a wait-free asyn
hronous PRAM imple-mentation for any obje
t whose sequential spe
i�
ation satis�es the followingproperty:Property 1 For all operations p and q, either p and q 
ommute, or oneoverwrites the other.For example, one data type that satis�es these 
onditions is the following
ounter data type, providing the following operations:in
(
: 
ounter, amount: integer)de
(
: 
ounter, amount: integer)respe
tively in
rement and de
rement the 
ounter by a given amount,reset(
: 
ounter, amount: integer)16



reinitializes the 
ounter to amount, andread(
: 
ounter) returns(integer)returns the 
urrent 
ounter value. Note that in
 and de
 operations 
om-mute, every operation overwrites read, and reset overwrites every operation.Su
h a shared 
ounter appears, for example, in randomized shared-memoryalgorithms [6℄, and in the implementation of logi
al 
lo
ks [33℄.5.2 Preliminary LemmasLemma 12 The overwrites relation is transitive.Proof: Suppose r overwrites q, and q overwrites p.By the de�nition of overwrites, there exists a sequential history H su
hthat H �p, H �q, and H �r are legal, H �p �q is equivalent to H �q, and H �q �ris equivalent to H � r.Sin
e operations are total, there exists a response r0r su
h that G =H � p � q � ri � r0r is legal. Sin
e q overwrites p, G is equivalent to H � q � ri � r0r.Sin
e H � q � r is legal, and sin
e operations are deterministi
, rr = r0r.Sin
e r overwrites q, G is equivalent to H � p � r. Sin
e q overwrites p, Gis also equivalent to H � r. We have shown that if H � p and H � r are legal,then H � p � r is legal and equivalent to H � r, hen
e r overwrites p.Lemma 13 Let H be a history with operations p, q, r, and s su
h that ppre
edes q, r pre
edes s, and p and s are 
on
urrent. We 
laim that r mustpre
ede q.Proof: Sin
e p and s are 
on
urrent, si appears before pr in H. Sin
e rpre
edes s, ri and rr also appear before pr. Finally, sin
e p pre
edes q, qiand qr appear after pr, and therefore r and q do not overlap, and r pre
edesq in H.Our obje
t simulation algorithm works by impli
itly 
onstru
ting sequen-tial histories 
onsistent with a 
on
urrent exe
ution. A 
entral problem is toget all pro
esses to agree on the order of operations in those 
ases where theorder matters. In general, we will try to put overwritten operations beforetheir overwriters, sin
e this destroys the most eviden
e that might otherwisebe used to 
onvi
t us of non-linearizability. Unfortunately this heuristi
 isnot enough to order all operations, as some pairs of operations might over-write ea
h other. For su
h groups of mutually overwriting operations, we17



break ties using the indi
es of the pro
esses 
arrying out the operations.This gives us an extended notion of overwriting, whi
h we 
all dominan
e.For the following de�nition, pro
esses are ordered by their indi
es: Pi <Pj if and only if i < j.De�nition 14 An operation p of pro
ess P dominates operation q of Q ifeither (1) p overwrites q but not vi
e-versa, or (2) p and q overwrite ea
hother and P > Q.Lemma 15 The dominan
e relation is a stri
t partial order.Proof: First we show that dominan
e is transitive. Suppose r dominates q,and q dominates p, where operations p, q, and r are respe
tively exe
utedby pro
esses P , Q, R. By the de�nition of dominan
e, r overwrites q, and qoverwrites p, hen
e, by transitivity (Lemma 12), r overwrites p. If p does notoverwrite r, we are done, so suppose p also overwrites r. Sin
e p overwritesr and r overwrites q, p overwrites q. Sin
e p and q overwrite one another,and q dominates p, it must be that P < Q. Similarly, sin
e q overwritesp, and p overwrites r, q overwrites r, and, by similar reasoning, Q < R. Itfollows that P < R, hen
e r dominates p.We must also show that dominan
e is antisymmetri
. Suppose an oper-ation p of pro
ess P dominates an operation q of pro
ess Q. Then either(1) q does not overwrite p and thus does not dominate p; or (2) p and qoverwrite ea
h other, but sin
e P > Q, q does not dominate p.5.3 Pre
eden
e and Linearization GraphsIn this se
tion, we de�ne the pre
eden
e and linearization graphs used inthe algorithm presented in Se
tion 5.4.A pre
eden
e graph is a dire
ted a
y
li
 graph that represents the partialorder of operations in some history; ea
h node in the graph 
orresponds toan operation, and there is an edge from p to q if p pre
edes q, i.e., if theresponse of p o

urs before the invo
ation of q in the history.Any linearization of the history is a linear extension of the partial orderrepresented by the pre
eden
e graph, and thus 
orresponds to a topolog-i
al sort of the graph. However, not all linear extensions give equivalentsequential histories. To ensure that all pro
esses see a 
onsistent pi
ture,we augment the pre
eden
e graph with additional dominan
e edges basedon the dominan
e relation of De�nition 14. A dominan
e edge is dire
tedfrom p to q if q dominates p; their dire
tion is thus the reverse of the pre
e-den
e edges, sin
e a pre
eden
e edge runs from p to q if p pre
edes q. The18



intuition is that we would like dominated operations to be pla
ed earlier inthe history, so that eviden
e of their presen
e or absen
e does not propagatein ways that might overly 
onstrain the story that the implementation tellsabout the sequential exe
ution it is 
laiming to simulate.Be
ause the 
ombination of pre
eden
e and dominan
e edges might 
re-ate 
y
les, not all possible dominan
e edges are added to the pre
eden
egraph. Instead, we add a maximal set that does not 
reate a 
y
le, usingthe lingraph pro
edure from Figure 3. The result of this pro
edure is 
alleda linearization graph, be
ause its topologi
al sort de�nes a linearization ofthe 
on
urrent history.In the a
tual algorithm, the purpose of the linearization graph is toensure that no operation's result is a�e
ted by 
on
urrent operations. Inthis respe
t, linearization graphs owe something to the serialization graphs[11℄ used in database theory, although the te
hni
al details are di�erent.Given a pre
eden
e graph G, the asso
iated linearization graph L(G) isde�ned by the lingraph algorithm shown in Figure 3. Here, fp1; : : : ; pkgrepresent the operations sorted in any order 
onsistent with the pre
eden
eorder. The algorithm 
onstru
ts a sequen
e of intermediate graphs Li;j, for0 � i < j � k. For brevity, we say that the 
onstru
tion visits pi when it
ompares pi to pj , for i < j.Lemma 16 If p and q are 
on
urrent in G, and p dominates q, then thereis either a path from p to q or a path from q to p in L(G).Proof: When lingraph visits the �rst of p or q, either there is already apath from p to q, or the edge q ! p will be added in line 8 or line 11.Lemma 17 If there is no path between p and q in L(G), then they 
ommute.Proof: First observe that p and q must be 
on
urrent, as otherwise theyare adja
ent in the pre
eden
e graph G.Suppose p and q do not 
ommute. Then at least one overwrites theother and so one dominates the other. Applying Lemma 16, there is a pathbetween them.Lemma 18 L(G) is a
y
li
.Proof: By indu
tion on the sequen
e of intermediate Li;j graphs. Sin
e Gis a
y
li
, L1;0 = G is a
y
li
. But be
ause of the tests in lines 7 and 10, nonew 
y
les are 
reated by adding dominan
e edges.19



1 pro
 lingraph(G: pre
eden
e graph)2 L0;k := G3 for i in 1 : : : k do4 Li;i := Li�1;k5 for j in i+ 1 : : : k do6 if pi dominates pj and7 adding pj ! pi to Li;j�1 does not 
reate a 
y
le8 then Li;j := Li;j�1 [pj ! pi9 elseif pj dominates pi and10 adding pi ! pj to Li;j�1 does not 
reate a 
y
le11 then Li;j := Li;j�1 [ pi ! pj12 else Li;j := Li;j�113 end if14 end for15 end for16 return Lk;k17 end lingraphFigure 3: The Linearization Graph Constru
tionLemma 18 tells us that the linearization graph 
ontains no 
y
les, and
an thus be topologi
ally sorted to give a total order on operations. Lemma 17tells us that this total order will 
orre
tly order all operations whose orderwe 
are about. In Lemma 20, below, we show that this fa
t is suÆ
ient toshow that all orderings of the linearization graph yield equivalent histories.De�nition 19 A linearization of a pre
eden
e graph G is a sequential his-tory 
onstru
ted by a topologi
al sort of L(G).Lemma 20 If G has a legal linearization, then all linearizations of G arelegal and equivalent.Proof: By indu
tion on the number of operations in G. The result isimmediate when the graph has a single operation.Pi
k an operation p su
h that p has no outgoing edges in L(G). LetH = H1 � p �H2 be the legal linearization of G, and G = G1 � p �G2 any otherlinearization. Let G' be G with p removed.Sin
e p has no outgoing edges in L(G), ea
h operation in H2 and G2is 
on
urrent with p, and hen
e 
ommutes with p (Lemma 17), so H isequivalent to H1 � H2 � p. Now, h0 = H1 � H2 is a legal linearization of G0,20



G0 = G1 �G2 is a linearization of G0, hen
e by the indu
tion hypothesis, G0 islegal and equivalent to H 0. It follows that H is equivalent to G1 �G2 � p, andsin
e p 
ommutes with ea
h operation in G2 (see above), H is also equivalentto G1 � p �G2.We now prove a few te
hni
al lemmas that will be used to show thatappropriate partial views of the linearization graph yield 
onsistent histories.Lemma 21 Let G be a pre
eden
e graph, and p0 and p1 operations 
on
ur-rent in G, su
h that there is a path from p0 to p1 in the intermediate graphLi;j in the 
onstru
tion of L(G). Any path of minimal length from p0 to p1in Li;j 
ontains at most one edge from G.Proof: If there is more than one pre
eden
e edge, then there exist opera-tions p, q, r, and s in the path su
h that p pre
edes q, there is a path fromq to r, and r pre
edes s. If q pre
edes s, then the path 
an be shortened,and therefore p and s are 
on
urrent. By Lemma 13, however, r would thenpre
ede q, whi
h 
ontradi
ts the assumption that there is path from q tor.Lemma 22 If p dominates q, and there is a path from p to q in L(G), thenthere exists an r su
h that r dominates p and r pre
edes q.Proof: Consider the �rst intermediate graph in the 
onstru
tion of L(G) to
ontain a path from p to q. We 
laim that any path of minimal length fromp to q in this graph 
ontains exa
tly one pre
eden
e edge. It 
annot 
ontainmore than one (Lemma 21), and if it 
ontains none, then q dominates p bytransitivity (Lemma 15), whi
h is impossible be
ause p dominates q.This path traverses operations p0 = p; p1; : : : ; pm and q0; q1; : : : ; q` = q,su
h that dominan
e edges link pi to pi+1 and qi to qi+1, and pm pre
edesq0. Suppose p 6= pk and q 6= q0. To 
onstru
t the paths from p to pk and q toq0, the 
onstru
tion must add at least one edge between two of the pi and atleast one edge between two of the qj. When the 
onstru
tion visits pi, it addsa dominan
e edge from p0 to pi (unless p0 = pi), and from pi to pm (unlesspm = pi). Although p dominates q, and hen
e so does pi, the 
onstru
tiondoes not add an edge from q to pi, implying that there must already be apath from pi to q. Visiting pi thus 
ompletes the path from p to q, implyingthat pi must be the last operation visited. A symmetri
 argument, however,also shows that visiting qj also 
ompletes a path from p to q, implying thatqj must also be the also last operation visited, a 
ontradi
tion.21



Suppose pm = p. Consider the �rst intermediate graph in the 
onstru
-tion of L(G) to 
ontain a path from q0 to some q0, 
on
urrent with q0, thatdominates p. Pi
k a path of minimal length, and let q00 be the operation im-mediately before q0 in this path. We 
laim that p and q0 must be 
on
urrent,sin
e otherwise the path 
ould be shortened. Lemma 13, however, impliesthat q00 pre
edes q0, 
ontradi
ting the assumption that there is a path fromq0 to q00.It follows that q0 = q, and the r in the lemma statement is pk 6= p.Lemma 23 Let G be a pre
eden
e graph, p an operation of G with no out-going edges, and let G0 = G � p be the graph obtained by removing p from G.Then L(G0) is a subgraph of L(G).Proof: Suppose there is an edge from q to r in L(G0) but not in L(G).Be
ause G is a subgraph of G, the missing edge must be a dominan
e edge.The 
onstru
tion for L(G) fails to insert this edge only if it 
ompletes a pathfrom r to q before it 
an add an edge from q to r.By Lemma 22, there exists r0 in L(G) su
h that r0 dominates r, and r0pre
edes q. Sin
e p does not pre
ede any operations, r0 and p are distin
t,therefore r0 is in G0. Sin
e r0 pre
edes q, the 
onstru
tion visits either r orr0 before it visits q. Either way, it 
onstru
ts a path from r to r0 before it
ompares r and q, thus it 
ompletes a path from r to q, a path that doesnot exist in L(G0).Lemma 24 Let p be an operation; let H1 and H2 be sequential historiessu
h that H1 � p and H2 � p are both legal; and suppose that for any q in H2that is dominated by p, there exists an r in H2 that pre
edes q and dominatesp. Then H1 � p �H2 is legal.Proof: By indu
tion on the length of H2. The result is immediate if H2is empty. Otherwise, H2 
an be written as q � H 02, where q is an operationthat p does not dominate. Either q dominates p, in whi
h 
ase the result isimmediate, or p and q 
ommute, in whi
h 
ase H1 � p � q � H 02 is equivalentto H1 � q � p �H 02, where the latter satis�es the 
onditions of the lemma, andthe result follows from the indu
tion hypothesis.5.4 The AlgorithmA wait-free algorithm for implementing an obje
t satisfying Property 1 isshown in Figure 4. The obje
t is represented by its pre
eden
e graph. Ea
h22



1 % Shared data2 root: array[1..n℄ of pointer to entry4 pro
 exe
ute(pi: invo
ation) returns(response)5 % Step 1: 
onstru
t a response6 view := atomi
 s
an of root array7 H := linearization of view8 e := new entry9 e.invo
ation := pi10 e.response := pr su
h that H � pi � pr is legal11 for i in 1 . . . n do12 e.pre
eding[i℄ := view[i℄13 end for14 % Step 2: write out the response15 root[P℄ := address of e16 return pr17 end exe
uteFigure 4: A Wait-Free Implementationoperation is represented by an entry, a data stru
ture with �elds for theinvo
ation, the response, and n pointers to ea
h pro
ess's pre
eding entry.The graph is rooted in an an
hor array whose P th entry holds a pointer tothe entry for pro
ess P 's most re
ent operation.A pro
ess exe
utes an operation in two steps:1. It takes an instantaneous snapshot of the an
hor array using the atomi
s
an pro
edure des
ribed in Se
tion 6. It then 
onstru
ts a lineariza-tion graph from the pre
eden
e graph rooted at the snapshot array,and then 
onstru
ts a linearization, 
alled its view. Using a sequentialimplementation of the obje
t, it determines the response to the invo-
ation 
onsistent with the view. It 
reates an entry for the operation,�lling in the response and the pre
eden
e edges from the snapshotarray.2. The pro
ess updates the pre
eden
e graph by storing a pointer to thenew entry in its position in the an
hor array.Ea
h of these steps makes a single a

ess to shared data: Step 1 uses theatomi
 s
an algorithm given below, and Step 2 writes a single pointer intothe shared root array. Informally, this algorithm exploits the 
ommutativityand overwriting properties of operations to ensure that ea
h pro
ess sees23



\enough" of the obje
t state to 
hoose a 
orre
t response independently ofany operations that may be taking pla
e 
on
urrently. We will show thatthe shared pre
eden
e graph always has a legal linearization.Lemma 25 Let H1 � p �H2 be a linearization of the shared pre
eden
e graphG. If p and q are 
on
urrent in G, p dominates q, and q is in H2, then thereexists an r su
h that r dominates p and r pre
edes q.Proof: Sin
e p and q are 
on
urrent and do not 
ommute, L(G) 
ontainsa path from one to the other (Lemma 16). Sin
e p appears before q in thelinearization, this path must go from p to q. The result now follows dire
tlyfrom Lemma 22.An entry that has been initialized but not yet written out is pending.Theorem 26 The following property is invariant: if the shared pre
eden
egraph is linearizable, then it remains linearizable after writing out any pend-ing entry.Proof: By indu
tion. The property holds trivially in the obje
t's initialstate, when the pre
eden
e graph is empty and no entries are pending. Theproperty is preserved when P exe
utes Step 1, sin
e the result of writingout P 's entry is linearizable by 
onstru
tion, and the result of writing outany other entry is un
hanged.It remains to 
he
k that writing out P 's pending entry does not vio-late linearizability by \invalidating" any other pro
ess's pending operation.Suppose P and Q respe
tively have pending operations p and q. Let G bethe 
urrent pre
eden
e graph, Gp the pre
eden
e graph after writing out p,Gq the pre
eden
e graph after writing out q, and Gpq the pre
eden
e graphafter writing out both.Let H1 � p �H2 � q �H3 be a linearization of L(Gpq). By Lemma 23, L(Gp)and L(Gq) are subgraphs of L(Gpq), hen
e H1 � p �H2 �H3 is a linearizationof Gp and H1 �H2 � q �H3 a linearization of Gq. By the indu
tion hypothesis,these are both legal sequential histories.In parti
ular, H1 �p is legal, H1 �H2 �q �H3 is legal, and if p dominates anyoperation r in H2 � q �H3, then there exists an r0 in H2 � q �H3 that pre
edesr and dominates p (Lemma 25). By Lemma 24, G = H1 � p � H2 � q � H3 islegal.Corollary 27 The obje
t implementation in Figure 4 is linearizable.24



Be
ause of the generality of the algorithm, there is quite a bid of overheadin the 
onstru
tion and maintenan
e of the pre
eden
e and linearizationgraphs. For any parti
ular data type, it should be possible to apply type-spe
i�
 optimizations to dis
ard most of the pre
eden
e graph, and to avoidre
onstru
ting the entire linearization graph for ea
h operation.6 Atomi
 S
an1 pro
 S
an(P: pro
ess, v: value) returns(value)2 s
an[P℄[0℄ := v _ s
an[P℄[0℄3 for i in 1 : : : n+ 1 do4 for Q in 1 : : : n do5 s
an[P℄[i℄ := s
an[P℄[i℄ _ s
an[Q℄[i-1℄6 end for7 end for8 return s
an[P℄[n+1℄9 end S
anFigure 5: The S
an Pro
edureIn this se
tion, we show how to take an atomi
 snapshot s
an of anarray of multi-reader, single-writer registers in whi
h pro
ess P writes theP th array element. It is 
onvenient to 
ast this problem in slightly moregeneral form: sin
e the array's state does not depend on the order in whi
hdistin
t pro
esses update their array elements, it is natural to treat the arraystate as the join in a _-semilatti
e of the input values5 The snapshot s
ansimply returns the join of the register values.Fix a _-semilatti
e L; for 
onvenien
e we will assume that L 
ontainsa bottom element ? su
h that ? _ x = x for all x in L. The atomi
 s
anobje
t has an operation WriteL(P; v) for ea
h pro
ess P and element v ofL, and an operation ReadMax(P ) for ea
h pro
ess P . The serial semanti
sof the obje
t are straightforward: in any history H, the value returnedby a ReadMax(P ) operation is the join of the values written by earlierWriteL(Q; v) operations, for all Q.The pro
esses share an array s
an[1 : : : n℄[0 : : : n+1℄ of multi-reader/single-writer atomi
 registers, where P alone writes to ea
h s
an[P ℄[i℄. The opera-5A _-semilatti
e is a partial order with a join operation (written as _); the join a _ bof a and b is the unique least element of the partial order that is greater than or equal toboth a and b. 25



tions WriteL(P; v) and ReadMax(P ) are ea
h implemented using a strongerprimitive operation, S
an(P; v), de�ned in Figure 5. The WriteL operation isimplemented by exe
uting S
an(P; v) and dis
arding the return value, whilethe ReadMax operation is implemented by exe
uting S
an(P;?).6.1 Proof of Corre
tnessWe demonstrate the 
orre
tness of the atomi
 s
an algorithm in two steps.First, we show that any two values returned by S
an operations are 
om-parable within the latti
e L. Se
ond, we use the latti
e ordering of thereturned values to order the implemented WriteL and ReadMax operationsin any 
on
urrent history H; this ordering will produ
e an equivalent serialhistory of the atomi
 s
an obje
t, thus proving linearizability. We use theusual order symbols <;>;�;� for the semilatti
e order in L.An implementation history is one in whi
h high-level S
an invo
ationsand responses are interleaved with low-level read and write invo
ations andresponses in a 
onstrained way: ea
h S
an invo
ation is separated from itsmat
hing response by a sequen
e of read and write operations of the samepro
ess. Sin
e read and write operations are linearizable by assumption,we may assume without loss of generality that the subsequen
e of low-leveloperations is a sequential history.Let H be �xed implementation history, p a S
an operation inH exe
utedby pro
ess P , and q a S
an operation by P . We use p[k℄ as an abbreviationfor the write operation to s
an[P ℄[k℄ exe
uted on behalf of the high-leveloperation p. We sometimes abuse this notation by using p[k℄ also to referto the value it writes. We say that p[k℄ dire
tly-sees q[k � 1℄ if P 's read ofs
an[P ℄[k � 1℄ appears after q[k � 1℄ in H. We say that p[k℄ sees q[l℄ if theylie in the in the re
exive, transitive 
losure of dire
tly-sees. Note that forp[k℄ to see q[l℄ it is not enough that p[k℄ � q[l℄; it must also o

ur later intime after a sequen
e of intermediate reads and writes that would allow thevalue q[l℄ to be in
orporated in the value p[k℄.Certain fa
ts about the sees relation are important enough to state aslemmas. The proofs are straightforward and are omitted for brevity.Lemma 28 If i � j, then p[j℄ sees p[i℄.Lemma 29 If p �H q and q[k℄ and p[k℄ exist, then q[k℄ � p[k℄.It is also not diÆ
ult to see that any value written by a pro
ess is thejoin of the values seen by that pro
ess; more formally, we state:26



Lemma 30 For any p[k℄ in H, if 0 � l < k, then p[k℄ = W fq[l℄ j p[k℄ sees q[l℄g.The following lemma des
ribes the prin
iple on whi
h the atomi
 s
analgorithm depends:Lemma 31 If p[k℄ and q[k℄ both appear in H, for k > 0, then either p[k℄sees q[k � 1℄ or q[k℄ sees q[k � 1℄.Proof: Suppose p[k � 1℄ pre
edes q[k � 1℄. Sin
e Q's read of s
an[Q℄[k � 1℄appears after q[k � 1℄, it appears after p[k � 1℄, and q[k℄ sees p[k � 1℄.otherwise, if q[k � 1℄ pre
edes p[k � 1℄, then p[k℄ sees q[k � 1℄.We now prove the 
onsisten
y of the atomi
 s
an operation.Lemma 32 Either p[n+ 1℄ � q[n+ 1℄ or q[n+ 1℄ � p[n+ 1℄.Proof: Let p0, q0 be S
an operations su
h that p[n+1℄ sees p0[0℄, and q[n+1℄sees q0[0℄. We 
laim that:p[n+ 1℄ � q0[0℄ or q[n+ 1℄ � p0[0℄: (1)Let fp0; : : : ; pn+1g be an indexed set of S
an operations (not ne
essarilydistin
t) su
h that p0 = p0, pn+1 = p, and for ea
h k, 0 < k < n+ 1, pk[k℄dire
tly-sees pk�1[k�1℄. De�ne fq0; : : : ; qn+1g similarly; the existen
e of thesets follows from the de�nition of sees.For ea
h pk, qk, where k > 0, Lemma 31 implies that either pk[k℄ seesqk[k � 1℄ or qk[k℄ sees pk[k � 1℄, and thus one of pk or qk has the propertythat its (k�1)st write is seen by both pk[k℄ and qk[k℄. Denote this operationby xk, and the asso
iated pro
ess by Xk.Now 
onsider the indexed set fx0; : : : ; xn+1g. By the pigeonhole prin
i-ple, there exist distin
t i and j su
h that i < j and Xi = Xj . If xi = xj ,Lemma 28 immediately implies that xj [j � 1℄ sees xi[i℄.Otherwise, xi must pre
ede xj , be
ause xj [j℄ sees either qi[i℄ or pi[i℄,both of whi
h see xi[i � 1℄. Thus, by Lemma 29, xj[j � 1℄ � xi[j � 1℄, butsin
e j � 1 � i Lemma 28 implies that xi[j � 1℄ sees xi[i℄. Thus in either
ase xj [j � 1℄ � xi[i℄. p[n+ 1℄ and q[n+ 1℄ see xj [j � 1℄, and xi[i℄ sees oneof p0[0℄, q0[0℄, showing that Equation 1 holds.Now suppose that p[n + 1℄ and q[n + 1℄ are in
omparable. By Lemma30, there must then exist a p0[0℄ whi
h p[n+ 1℄ alone sees and a q0[0℄ whi
hq[n+ 1℄ alone sees | 
ontradi
ting Equation 1.Theorem 33 The atomi
 s
an obje
t implementation is linearizable.27



Proof: Consider any two operations x and y. Let x �0S y if either x[n+1℄ <y[n+ 1℄ or x[n+ 1℄ = y[n+ 1℄, x is a WriteL operation and y is a ReadMaxoperation. Extend �0S to a total order �S; by Lemma 29 �S extends �H ,and thus we 
an use it to linearize H. That the resulting sequential historyis legal follows dire
tly from Lemma 32.To implement the atomi
 snapshot algorithm used in the previous se
-tion, we make ea
h value an n-element array of pointers, where the entirearray is kept in a single register. (As noted above, numerous te
hniquesexist for 
onstru
ting large atomi
 registers from smaller ones.) Ea
h arrayentry has an asso
iated tag, and the maximum of two entries is the one withthe higher tag. The join of two values is the element-wise maximum of thetwo arrays. The ? value is just an array whose tags are all zero. P writesthe P th position in the an
hor array by initializing s
an[P ℄[0℄ to an arraywhose P th element has a higher tag than P 's latest entry, and whose otherelements have tag zero. (As a simple optimization, the other elements 
ansimply be omitted.)6.2 Running TimeEa
h S
an operation requires one read and one write operation to set s
an[P ℄[0℄,plus n read and one write operations for ea
h of n + 1 passes through theloop. Thus a single S
an operation requires a total of n2 + n + 1 read andn+2 write operations, where, as usual, n is the number of pro
esses. Someminor gains arise by eliminating super
uous operations that simplify theproof: the very last write (to s
an[P ℄[n+1℄) is unne
essary, as are the readsthat a pro
ess does of its own registers. After eliminating these operations,a S
an requires n2 � 1 read and n+ 1 write operations.7 Con
lusionsIn this paper, we have explored some of the mathemati
al stru
ture under-lying the asyn
hronous PRAM model. We have seen that it en
ompasses ari
h impossibility hierar
hy, but it still supports wait-free implementationsof a large 
lass of obje
ts that have a simple algebrai
 
hara
terization.Although we believe that asyn
hronous PRAM is 
onsiderably more real-isti
 than its syn
hronous prede
essor, it is still far from ideal. In one sense,asyn
hronous PRAM is too weak to be realisti
. The only way for pro
essesto syn
hronize is by read and write operations. One might justify this re-stri
tion in the same way one justi�es ruler-and-
ompass 
onstru
tions in28




lassi
al geometry: simply as an intelle
tual 
hallenge. One 
annot justifyit as a realisti
 re
e
tion of 
urrent pra
ti
e. Nearly every major ar
hite
-ture sin
e the 1970's has provided some form of read-modify-write operationthat atomi
ally reads and modi�es memory. Examples in
lude test-and-set,
ompare-and-swap, fet
h-and-add, atomi
 swap, and many others. (Glewand Hwu [22℄ give an ex
ellent survey of syn
hronization primitives pro-vided by 
urrent ar
hite
tures.) Today, it would be in
on
eivable to designa shared-memory multipro
essor without su
h atomi
 instru
tions.There is another sense in whi
h asyn
hronous PRAM may be too strongto be realisti
. Many modern shared-memory multipro
essors do not guar-antee that memory is sequentially 
onsistent [34℄: reads and writes to sharedmemory do not appear to o

ur atomi
ally (e.g., [1, 36℄ and many 
ommer-
ial multipro
essors). In modern ar
hite
tures, pro
essors are fast, whilememory and 
ommuni
ation are slow, and as a result the 
a
he 
oheren
yproto
ols ne
essary to enfor
e sequential 
onsisten
y are expensive, and ar-
hite
ts are often unwilling to pay this 
ost on every memory a

ess. Re-
ently, a number of resear
hers have started exploring the impli
ations ofsu
h \weak" memories [3, 29, 37℄. A satisfa
tory trade-o� between ease ofimplementation and ease of use has yet to be established for shared-memorysemanti
s.In 
on
lusion, although the asyn
hronous PRAM model explored in thispaper has its limitations, we believe that the model is interesting in its ownright, and we hope that the questions we have raised and the te
hniques wehave developed here will be useful and informative when the \right" model
omes along.A
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