
Tight Bounds for Anonymous Adopt-Commit Objects

James Aspnes
∗

Department of Computer Science
Yale University

New Haven, Connecticut, USA
aspnes@cs.yale.edu

Faith Ellen
†

Department of Computer Science
University of Toronto

Toronto, Ontario, Canada
faith@cs.toronto.edu

ABSTRACT
We give matching upper and lower bounds of

Θ
(

min
(

logm
log logm

, n
))

for the space and individual

step complexity of a wait-free m-valued adopt-commit
object implemented using multi-writer registers for n
anonymous processes. While the upper bound is determin-
istic, the lower bound holds for randomized adopt-commit
objects as well. Our results are based on showing that
adopt-commit objects are equivalent, up to small additive
constants, to a simpler class of objects that we call weak
conflict-detectors.

It follows that the same lower bound holds on the in-
dividual step complexity of m-valued wait-free anonymous
consensus, even for randomized algorithms with global coins
against an oblivious adversary. The upper bound can also
be used to slightly improve the cost of randomized consensus
in the probabilistic-write model.

Categories and Subject Descriptors
F.1.2 [Modes of Computation]: Parallelism and concur-
rency

General Terms
Algorithms, Theory

Keywords
distributed computing, shared memory, anonymity, adopt-
commit objects, conflict detectors, consensus

1. INTRODUCTION
An adopt-commit object [2] or ratifier [3] is a one-shot

shared-memory object that represents the adopt-commit

∗Supported in part by NSF grant CCF-0916389.
†Supported in part by the Natural Science and Engineering
Research Council of Canada.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’11, June 4–6, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0743-7/11/06 ...$10.00.

protocols of [14] and can be used to implement round-based
protocols for set-agreement and consensus. An m-valued
adopt-commit object supports a single operation, adopt-

Commit (u), where u is an input from a set of m values. The
result of this operation is an output of the form (commit, v)
or (adopt, v), where the first component is a decision bit
that indicates whether the process should decide value v im-
mediately or adopt it as its preferred value in later rounds of
the protocol. Improving the performance of adopt-commit
objects can improve the performance of consensus protocols
that use them. In addition, as observed in [3], lower bounds
on adopt-commit objects also yield immediate lower bounds
on consensus.

The requirements for an adopt-commit object are:

1. Validity. Every operation’s output equals some oper-
ation’s input.

2. Termination. Every operation finishes its operation
in a finite number of steps with probability 1, where
the probability is taken over the coin tosses performed
by the algorithm.

3. Coherence.1 If some operation returns (commit, v),
every operation returns either (adopt, v) or (commit, v).

4. Convergence. If all inputs are v, all operations re-
turn (commit, v).

These requirements are closely related to the validity, ter-
mination, and agreement requirements for consensus. The
difference is that agreement (which requires that all pro-
cesses obtain the same output) is replaced by the weaker
requirements of coherence and convergence. As observed
in [3], this means that consensus objects satisfy the require-
ments of adopt-commit objects. It follows that lower bounds
on adopt-commit objects immediately give lower bounds on
consensus objects.

Until now, the best implementations of m-valued adopt-
commit objects had Θ(n) individual step complexity, for n
processes [14] or Θ(logm) individual step complexity, for
any number of processes [3]. Both these implementations
are deterministic, but the latter is also anonymous. This
means that all processes run the same code. Differences be-
tween the behaviour of two different processes can arise only
as a result of different input values, (different supplies of ran-
dom bits, in the case of a randomized protocol), and when
1The definition of adopt-commit objects in [2] uses the term
agreement for this property. We use agreement instead for
the stronger unconditional agreement property of consensus
objects. The term coherence is from [3].

they are scheduled. A number of advantages of anonymity
are are discussed in [5].

Here, we consider how much further we can improve the
complexity of an implementation of an adopt-commit ob-
ject without losing anonymity. We give two simple, deter-
ministic, anonymous protocols for detecting multiple input
values, from which we obtain implementations of m-valued
adopt-commit objects. One of these has O(n) individual
step complexity, given an upper bound, n, on the number

of processes. The other has O
(

logm
log logm

)
individual step

complexity, for any number of processes. While this is only
a small improvement in complexity, we show a matching
lower bound on the individual step complexity of any anony-
mous implementation (including randomized implementa-
tions against an oblivious adversary) of an m-valued adopt-

commit object that supports at least Ω
(

logm
log logm

)
processes.

Our lower bound also implies a lower bound of Ω
(

logm
log logm

)
on the individual step complexity for anonymous random-
ized consensus with sufficiently many processes, even against
an oblivious adversary.

2. CONFLICT DETECTORS
The implementation of an adopt-commit object in [3] re-

lies on a quorum-based conflict detection mechanism, where
each process with value v writes to a set of registers Wv and
detects conflicting values by reading a set of registers Rv,
with the property that Wv ∩ Rv′ 6= ∅ when v 6= v′. It is
shown there that the smallest possible size for these quo-
rums is Θ(logm), using tools from extremal combinatorics.
The quorum-based mechanism generalizes a similar mecha-
nism in [14], where a process detects conflicting values by
performing a collect over single-writer registers, which re-
quires individual step complexity linear in the number of
processes.

If we set aside the quorum structure, we can define an
abstract conflict-detector object as a generalization of these
mechanisms. We begin with a linearizable version that can
be used as a drop-in replacement for existing conflict de-
tection mechansims. Then we further reduce it to a weaker
(and, thus, easier to implement) version that does not satisfy
linearizability.

Formally, an m-valued strong conflict-detector sup-
ports two operations, write(v), for inputs v from a set of
m values, and read(), where read() returns true (conflict)
if two or more different values have previously been written
and returns false (no conflict), otherwise. These operations
must appear to be atomic to the user of the strong conflict-
detector. Specifically, we require that any strong conflict-
detector implementation be linearizable [15], meaning that,
for any concurrent execution of strong conflict-detector op-
erations, we can construct a sequential execution with the
same operations such that each operation returns the same
response in both executions and non-concurrent operations
in the original execution occur in the same order as in the
sequential execution.

Linearizability is sometimes difficult to prove. To make
things simpler, we show that strong conflict-detectors can
be built from even weaker objects, which we call weak
conflict-detectors. An m-valued weak conflict-detector
supports only a single operation check(v), with input v from
a set of m values. It returns true (to indicate a conflict) or

false (to indicate no conflicts), and has the following two
properties: In any execution that contains a check(v) op-
eration and a check(v′) operation with v 6= v′, at least one
of these two operations returns true. In any execution in
which all check operations have the same argument, they all
return false. For weak conflict-detectors, we do not require
linearizability: it is fine for one check operation to return
true while subsequent check operations return false.

2.1 Equivalence of adopt-commit objects,
strong conflict-detectors, and weak
conflict-detectors

We show that the individual step complexities of adopt-
commit objects, strong conflict-detectors, and weak conflict-
detectors differ by small additive constants. Because our re-
ductions are anonymous, this also holds for anonymous im-
plementations. We use TadoptCommit, Twrite, Tread, and Tcheck to
denote the worst case step complexities of the adoptCommit,
write, read, and check operations.

We give implementations of a weak conflict-detector from
an adopt-commit object, a strong conflict-detector from a
weak conflict-detector, and finally an adopt-commit object
from a strong conflict-detector. We begin by showing how to
implement a weak conflict-detector from an adopt-commit
object. This is is the simplest case, since neither of these
objects is required to satisfy linearizability. The code is
presented in Figure 1.

shared data:
adopt-commit object r;

procedure check(v)1

begin2

(d, v′)← r.adoptCommit(v)3

if (d, v′) 6= (commit, v) then4

return true5

else6

return false7

end8

end9

Algorithm 1: A weak conflict-detector using an
adopt-commit object.

Lemma 1. Algorithm 1 implements a weak conflict-detector
with Tcheck = TadoptCommit.

Proof. If all check operations have the same input v,
then, they all call r.adoptCommit(v), which, by the conver-
gence property, all return (commit, v). In this case, all the
check(v) operations return false. If there are two opera-
tions, check(v) and check(v′), with v 6= v′, then, they call
r.adoptCommit(v) and r.adoptCommit(v′), respectively. By
coherence, it is not possible for (commit, v) to be the result
of r.adoptCommit(v) and for (commit, v′) to be the result
of r.adoptCommit(v′) in the same execution. It follows that
true is returned by at least one of the two check operations.
Thus, Algorithm 1 implements a weak conflict-detector.

The step complexity of check is the same as the step com-
plexity of adoptCommit, since only Line 3 contains a nonlocal
operation.

To extend a weak conflict-detector to a strong conflict-
detector, we add a one-bit register, conflict, which is set to

true whenever a write operation detects a conflict. The
code for read and write is presented in Algorithm 2. To
carry out a read operation, a process simply reads the conflict
bit and returns its value. We show, in Lemma 2, that
this does, in fact, give a strong (i.e., linearizable) conflict-
detector.

shared data:
weak conflict-detector d;
1-bit atomic register conflict, initially false.

procedure write(v)1

begin2

if d.check(v) then3

conflict← true4

end5

end6

procedure read()7

begin8

return conflict9

end10

Algorithm 2: A strong conflict-detector using a
weak conflict-detector.

Lemma 2. Algorithm 2 implements a strong conflict-
detector with Twrite ≤ Tcheck + 1 and Tread = 1.

Proof. The running time is immediate from the code.
To show that Algorithm 2 implements a strong conflict-

detector, we give an explicit linearization of the read and
write operations in any execution. The linearization point,
tr, of a read operation, r, is the time at which it reads
register conflict. Let τ be the first time during the execution
at which some process sets conflict to true, or +∞, if there
is no such time. For each write operation w, let sw be the
time at which the write operation starts. The linearization
point, tw, of operation w is defined to be max(sw, τ), if w
sets conflict to true, and sw, otherwise.

We show that these assigned times (with ties broken arbi-
trarily) gives a correct linearization. A write operation that
sets conflict to true is linearized when it starts or at the first
time in the execution that some process sets conflict to true,
whichever is later. Note that this occurs at or before the end
of the operation. All other operations are linearized when
they start. This linearization order is consistent with the
observable execution order.

Recall that τ is the time at which conflict is set to true.
Any read that is linearized before τ reads false from conflict.
Similarly, any read that is linearized after τ reads true from
conflict. We satisfy the specification of the strong conflict-
detector if (a) at most one distinct value appears as an argu-
ment to any write operation linearized strictly before τ and
(b) if τ 6= +∞, then at least two different values appear as
arguments to write operations linearized at or before time
τ .

To be linearized before τ , a write(v) operation must
not set conflict to true and, hence, its call to d.check(v)
must return false. But the specification of a weak conflict-
detector implies that all d.check operations which return
false must have the same input value. It follows that all
write operations linearized before τ have the same input
value. This proves (a).

If τ 6= +∞, then some write operation, w, sets conflict to
true at time τ and tw = max(sw, τ) = τ . This write oper-

ation previously completed a call to d.check that returned
true. If all calls to d.check that started before τ have the
same input value, then we can truncate the execution at
time τ and allow all check operations to run to completion.
This results in an execution of the weak conflict-detector
d in which all calls to d.check have the same input value,
but some call to d.check returns true, which violates the
specification of a weak conflict-detector. Hence, there are
two calls to d.check with different input values that started
before τ . Thus, there must be two corresponding write

operations w and w′ with different input values that also
started before τ . These are assigned linearization points
max(sw, τ) = max(sw′ , τ) = τ . This proves (b).

Finally, Algorithm 3 completes the cycle by showing how
to turn an anonymous strong conflict-detector into an adopt-
commit object, with the addition of an extra register for
holding proposed values. The mechanism is essentially the
same as in the adopt-commit implementation given in [3],
with a generic strong conflict-detector taking the place of
the quorum-based mechanism used there.

shared data:
register proposal, initially ⊥;
strong conflict-detector c.

procedure adoptCommit(v)1

begin2

c.write(v)3

u← proposal4

if u 6= ⊥ then5

v ← u6

else7

proposal← v8

end9

if c.read() = true then10

return (adopt, v)11

else12

return (commit, v)13

end14

end15

Algorithm 3: An adopt-commit object using a
strong conflict-detector.

Lemma 3. Algorithm 3 implements an adopt-commit ob-
ject with TadoptCommit ≤ Twrite + Tread + 2.

Proof. The proof of coherence relies on the following key
observation: If an adoptCommit operation returns (commit, v),
then proposal was set to v before any adoptCommit(v′) op-
eration with v′ 6= v finished its call to c.write. It follows
that all adoptCommit(v′) operations with v′ 6= v read v from
proposal and return (adopt, v). The other properties of the
adopt-commit object are easily verified.

Since the specification of a weak conflict-detector is sim-
pler than those of strong conflict-detectors or adopt-commit
objects, it will be easiest to obtain bounds on their complex-
ity by concentrating on weak conflict-detectors.

3. UPPER BOUNDS ON ANONYMOUS
WEAK CONFLICT-DETECTORS

In this section, we give two complementary implementa-
tions of anonymous m-valued weak conflict-detectors. The

first uses O
(

logm
log logm

)
steps for any number of processes,

while the second uses O(n) steps, for any value of m, where
n is an upper bound on the number of processes. By choos-
ing the first implementation when m is small and the second
when m is large, we obtain a weak conflict-detector that runs

in O
(

min
(

logm
log logm

, n
))

steps, which we show to be optimal

in Section 4.

3.1 Permutation-based weak conflict-detector
Algorithm 4 implements an anonymous, deterministic

weak conflict-detector for m ≤ k! values using at most 2k
operations for check(v). As a function of m, this gives
a worst-case individual step complexity of 2 fact−1(m) =

O
(

logm
log logm

)
, where fact(k) = k! is the factorial function.

shared data:
registers R[1..k], initially ⊥.

procedure check(v)1

begin2

for i← 1..k do3

r ← R[πv(i)]4

if r = ⊥ then5

R[πv(i)]← v6

else if r 6= v then7

return true8

end9

end10

return false11

end12

Algorithm 4: Permutation-based weak conflict-
detector for m values.

In the natural algorithm for two values, a process per-
forming check(b), for b ∈ {0, 1}, writes to R[b] and then
checks R[1 − b]. Then, whichever of R[0] or R[1] is written
first will later be seen to have a non-⊥ value by any process
that writes to the other register, detecting the conflict.

Algorithm 4 is a generalization of this algorithm from
m = 2 values to m = k! values. Each of the k! pos-
sible input values v is mapped to a distinct permutation
πv : {1, . . . , k} → {1, . . . , k}. Then, for any two different
input values, there exist two registers which function as in
the natural two-value algorithm.

Lemma 4. Algorithm 4 implements a weak conflict-
detector.

Proof. If all calls to check have the same input value
v, then only v will be written to each register R[i] and no
process ever observes any value other than v or ⊥. In this
case, all operations correctly return false.

Now suppose there is an execution E in which two pro-
cesses, pu and pu′ , with different input values, u and u′,
both return false. Then both processes read from all of the
registers R[1], . . . , R[k] and the values u and u′ will both be
written to all of the registers. Let j, j′ ∈ {1, . . . , k} be two
indexes such that j occurs before j′ in πu, but j′ occurs be-
fore j in πu′ . If u is written to R[j] before u′ is written to

R[j′] in E, then, when pu′ or any other process with value
u′ reads R[j], it will not see ⊥. This is because, before it
reads R[j], it either writes u′ to R[j′] or reads u′ from R[j′].
This implies that no process writes u′ to R[j], which is a
contradiction.

Therefore u′ is written to R[j′] before u is written to R[j].
But, then, no process writes u to R[j′], which is also a con-
tradiction.

3.2 Collect-based weak conflict-detector
Algorithm 5 is another implementation of a weak conflict-

detector. It places no limit on the number of distinct values
m, but it works only when an upper bound, n, on the num-
ber of processes is known. The worst-case individual step
complexity of a check(v) operation in Algorithm 5 is 3n+1.

shared data:
registers R[1..n], initially ⊥;
1-bit atomic register done, initially false.

procedure check(v)1

begin2

for i← 1..n do3

if done then4

break5

else6

R[i]← v7

end8

end9

done← true10

for i← 1..n do11

if R[i] 6= v then12

return true13

end14

end15

return false16

end17

Algorithm 5: A collect-based weak conflict-detector
for n processes.

The essential idea is that once some process finishes the
first loop in check(v) and sets done to true, each of the at
most n−1 other processes can write to at most one location
in R before seeing done = true and leaving the loop. Be-
cause no process executes the collect in the second loop until
done = true, any views obtained by two different processes
in this loop can differ in at most n−1 places. It follows that
no two processes with different inputs can both see their
own input in all n positions during the collect. Therefore,
at least one of them will return true. If all calls to check

have the same input, then only this input will appear in R,
so all the calls will return false.

More formally, we have shown:

Lemma 5. Algorithm 5 implements a weak conflict-
detector.

4. LOWER BOUND ON ANONYMOUS
WEAK CONFLICT-DETECTORS

In this section, we show that any m-valued weak
conflict-detector for n anonymous processes has

Ω
(

min
(

logm
log logm

, n
))

worst-case solo step complexity.

Fix some anonymous, deterministic implementation of an
m-valued weak conflict-detector. For each input value v, we
consider the solo execution Ev in which a process executes
check(v) starting from the initial configuration. Note that,
because processes are deterministic and anonymous, the
sequence of operations in Ev is fully determined by v.

Let kv be the step complexity of Ev. Let Wv be the set
of registers that a process writes to in Ev and let Xv be the
set of registers that it reads from but does not write to. Let
Av be the permutation of Wv ∪Xv arranged in the order in
which the registers in Wv are first written and the registers
in Xv are last read in Ev.

Lemma 6. For all distinct input values u and v, if ku +
kv ≤ n, then there exist two registers Ri, Rj ∈ (Wu ∪Xu) ∩
(Wv ∪Xv) that occur in different orders in Au and Av.

Proof. Suppose there are two input values u 6= v such
that ku + kv ≤ n and all registers Ri, Rj ∈ (Wu ∪ Xu) ∩
(Wv ∪Xv) occur in the same order in Au and Av. We show
that an adversary can construct an execution E involving
ku + kv ≤ n processes that is indistinguishable from Eu to
some process pu performing check(u) and indistinguishable
from Ev to some other process pv performing check(v). In
this execution, both pu and pv return false, violating the
specification of a weak conflict-detector.

For each Ri ∈Wu ∩ (Wv ∪Xv), let σi,u be the first write
to Ri in Eu and, for each Ri ∈ Xu ∩ (Wv ∪ Xv), let σi,u

be the last read from Ri in Eu. Let Su = {σi,u | Ri ∈
(Wu ∪Xu) ∩ (Wv ∪Xv)}. Define σi,v and Sv analogously.

The adversary starts by constructing an interleaving E′ of
the operations in Eu and Ev. The operations in E′ appear in
the same order as in Eu. Hence E′|pu = Eu. The adversary
schedules each read operation σi,v ∈ Sv immediately before
σi,u and schedules each write operation σi,v ∈ Sv immedi-
ately after σi,u. Note that, by assumption, the operations in
Sv appear in the same order in E′ as they do in Ev, namely,
in the order the registers Ri ∈ (Wu ∪Xu)∩ (Wv ∪Xv) they
access occur in Au and Av.

If no operations in Sv occur between σi,v and σj,v, then, in
E′, the adversary arbitrarily interleaves the operations in Ev

that occur strictly between σi,v and σj,v with the operations
in Eu that occur strictly between σi,u and σj,u. Likewise, the
adversary arbitrarily interleaves the operations in Ev that
occur before the first operation in Sv with the operations
in Eu that occur before the first operation in Su and the
operations in Ev that occur after the last operation in Sv

with the operations in Eu that occur after the last operation
in Su. Hence E′|pv = Ev.

The sequence of operations in E′ is not necessarily a valid
execution, because pu may read a value written by pv or pv
may read a value written by pu. To prevent this, we add
clones, as used in [13]. A clone of a process p is a process
with the same input and code as p, which proceeds in lock-
step with p, reading and writing the same values as p, until
immediately before some write to a register. The adversary
has the clone perform that write at some later point in the
execution to ensure that the value p reads from that register

is the same as the value p last wrote there. After performing
its delayed write, a clone performs no further steps.

For each register Ri ∈ Wu ∩Wv, the adversary adds one
clone of pu to E′ for each read of Ri by pu after σi,v and one
clone of pv to E′ for each read of Ri by pv after σi,v. Let E
be the resulting execution.

If Ri ∈Wu∩Wv, then, by construction, any read of Ri by
pu in E after σi,v sees the same value it saw in Eu, namely,
the value it last wrote to Ri. Any read of Ri prior to σi,u sees
the initial value of Ri, since σi,u and σi,v are, by definition,
the first writes to Ri by pu and pv in E′ and, hence, E.

If Ri ∈ Xu ∩Wv, then all reads of Ri by pu in E occur at
or before σi,u and, hence, see the initial value of Ri, as they
do in Eu. This is because, in E, all writes to Ri by pv occur
at or after σi,v, which is after σi,u.

If Ri ∈ (Wu ∪Xu)−Wv, then pv does not write to Ri in
E, so all reads of Ri by pu are the same as in Eu. Finally,
if Ri 6∈ Wu ∪Xu, then pu does not read Ri in E. Thus Eu

and E are indistinguishable to pu.
Similarly, Ev and E are indistinguishable to pv.

The following combinatorial lemma allows us to bound
m as a function of the step complexities, kv, of the solo
executions Ev. The proof is similar to Lubell’s proof of
Sperner’s Lemma [16].

Lemma 7. Let {A1, . . . , Am} be a set of finite sequences
without repetition such that, for any two sequences Ai and
Aj, there exist elements xi,j and yi,j that appear in different
orders in Ai and Aj. Then

∑m
i=1

1
|Ai|!

≤ 1.

Proof. Let A =
⋃m

i=1Ai be the set of all elements ap-
pearing in any of the sequences A1, . . . , Am. Choose an or-
dering of A uniformly at random. Let Xi be the indicator
variable that has value 1, if the ordering of the elements in
Ai is consistent with this ordering, and has value 0, other-
wise. Let X =

∑m
i=1Xi.

Note that Xi = 1 implies that Xj = 0 for all j 6= i. This
is because xi,j and yi,j appear in different orders in Ai and
Aj . It follows that X ≤ 1.

For each sequence Ai, the probability that it is consistent
with the chosen ordering is exactly 1

|Ai|!
, so E[Xi] = 1

|Ai|!
.

Hence
∑m

i=1
1
|Ai|!

=
∑m

i=1 E[Xi] = E[X] ≤ 1.

Theorem 8. The worst-case solo step complexity of
any anonymous deterministic implementation of an m-
valued weak conflict detector for n processes is at least
min(fact−1(m), n/2), where fact(`) = `! is the factorial func-
tion.

Proof. Fix any anonymous deterministic implementa-
tion of an m-valued weak conflict-detector for n processes
and let k be its worst-case solo step complexity. Then, for
every input value v, |Av| ≤ kv ≤ k.

If k > n/2, then the claim is true, so suppose that k ≤
n/2. Then, for all distinct inputs u and v, ku + kv ≤ n
and, hence, by Lemma 6, there are two registers that occur
in different orders in Au and Av. It follows from Lemma 7
that

∑
v

1
|Av|! ≤ 1. Since there m different input values,∑

v
1
|Av|! ≥

∑
v

1
k!

= m/k!. Thus k ≥ fact−1(m).

Theorem 8 implies that Tcheck ≥ min(fact−1(m), n/2).
This matches the upper bound from Section 3 to within a
small constant factor.

From Lemma 1, it follows that TadoptCommit ≥ Tcheck and,
from Lemma 3, it follows that Twrite+Tread ≥ TadoptCommit−2.
Thus, we get lower bounds for the individual step complex-
ities of adopt-commit objects and strong conflict-detectors.

Lemma 2 says that Algorithm 2 implements a strong
conflict-detector with Twrite ≤ Tcheck + 1 and Tread = 1, so
Twrite + Tread ≤ TadoptCommit + 2. It is also possible to con-
struct a strong conflict-detector with Twrite = 1 using one
Boolean register Rv for each input value v. The idea is to
have write(v) set Rv to true and have read() return true
if at least two of these m registers are true. Note that, for
this algorithm, Twrite + Tread = m+ 1, which is much larger
than the lower bound. It is still open whether an algorithm
with constant Twrite and smaller Tread is possible.

Because the requirements for weak conflict-detectors are
safety properties, we can show that the lower bound applies
to randomized anonymous implementations of weak conflict-
detectors as well.

Corollary 9. Given any anonymous randomized imple-
mentation of an m-valued weak conflict detector for n pro-
cesses, there is an input v such that any solo execution of
check(v) has step complexity at least min(fact−1(m), n/2)
with probability 1 against an oblivious adversary.

Proof. Suppose not. Then, for any input v, there is
some sequence of coin-flip outcomes that causes a process
pv with input v to complete a solo execution of check(v)
in less than min(fact−1(m), n/2) steps. For each v, let Ev

be the execution of the deterministic protocol obtained by
fixing the coin-flips to have these outcomes. The proof of
Theorem 8 constructs a combined execution E in which two
processes pu and pv with different inputs both return false.
Such an execution occurs with nonzero probability in the
randomized algorithm, because pu, pv, and all of their re-
spective clones can generate these fixed sequences of coin-flip
outcomes. This violates the correctness of the implementa-
tion.

The corresponding bounds also hold for anonymous ran-
domized implementations of adopt-commit objects and
strong conflict-detectors.

5. CONSEQUENCES FOR CONSENSUS
Here we consider the effect of our improved bounds for

adopt-commit objects on the consensus problem. In the con-
sensus problem, n processes must agree on a value, which
must be equal to some process’s input. A protocol is ran-
domized wait-free if, in addition, any process can complete
it in a finite expected number of steps, regardless of the tim-
ing of the other’s processes’ steps or the occurrence up to
n− 1 crash failures.

The cost of consensus depends strongly on the power of
the adversary scheduler that controls timing and process
failures and, to a lesser extent, on the number of possible
values. For an adaptive adversary, which can observe
the internal states of the processes, there is a tight bound
of Θ(n) on the individual step complexity of binary (two-
valued) consensus [4, 6]. The high cost of consensus in this
model has led to examination of models with weaker ad-
versaries, particularly adversaries that are prevented from
changing the schedule based on coin-flip values known only
to one process.

One approach is to limit the adversary’s ability to ob-
serve the state of the system. A value-oblivious adver-
sary [8–10] cannot observe the internal states of processes,
the contents of registers, or pending operations. It bases its
choice of schedule only on the history of which operations
the processes have applied to which registers. The best cur-
rently known protocol in this model, due to Aumann [8],
achieves consensus with O(logn) expected individual step
complexity for any number of input values.

An alternative is to give extra power to the algorithm by
allowing probabilistic writes [1, 11, 12], where a process
can flip a coin and choose to execute a write operation or not
based on the outcome of the coin-flip, without affecting the
scheduling done by the adversary. In this model, a protocol
of Aspnes [3], based on combining adopt-commit objects and
a class of randomized objects called conciliators, gives an
anonymous protocol for m-valued consensus with expected
O(logm+logn) individual step complexity, where O(logm)
is the cost of the adopt-commit and O(logn) is the cost of
the conciliator using implementations given in [3].

An oblivious adversary that must fix the schedule in
advance, without seeing the actions of the processes, gives
an even stronger model than both the value-oblivious and
probabilistic-write models. (As observed in [3], a process
in an oblivious-adversary model can simulate a probabilis-
tic write by choosing randomly between carrying out a write
and a dummy operation.) In this model, Attiya and Censor-
Hillel [7] have shown that any protocol with two input val-
ues runs for at least k steps with probability c−k for some
constant c, a bound that translates into constant expected
individual step complexity.

Our results improve the previous upper bound for the
probabilistic-write model and give a non-trivial lower bound
on expected individual step complexity for the oblivious-
adversary model when the number of input values m is
ω(1). For the probabilistic-write model, substituting our im-
proved adopt-commit implementation for the adopt-commit
object in [3] reduces the expected individual step complex-

ity from O(logm+ logn) to O
(

min
(

logm
log logm

, n
)

+ logn
)

.

For the oblivious-adversary model, our lower bound on
anonymous adopt-commit objects gives an immediate

Ω
(

min
(

logm
log logm

, n
))

lower bound with probability 1 on

the worst-case individual step complexity of anonymous m-
valued consensus implementations, because consensus ob-
jects satisfy the specification of adopt-commit objects. This
is the first lower bound for consensus for which the number
of values m is significant.

6. CONCLUSIONS
We have shown how to reduce adopt-commit objects to

a much simpler class of weak conflict-detectors, and used
this reduction to get tight bounds on the individual step
complexity of anonymous m-valued adopt-commit objects.
These bounds also translate into improved bounds on anony-
mous m-valued consensus. The natural question is what
happens when the assumption of anonymity is removed. We
conjecture that for unboundedly many processes, Ramsey-
theoretic techniques may be used to show that similar bounds
hold. However, the complexity of non-anonymous adopt-
commit objects is still unknown.

7. REFERENCES
[1] Karl Abrahamson. On achieving consensus using a

shared memory. In Proceedings of the 7th Annual
ACM Symposium on Principles of Distributed
Computing (PODC), pages 291–302, 1988.

[2] Dan Alistarh, Seth Gilbert, Rachid Guerraoui, and
Corentin Travers. Of choices, failures and asynchrony:
The many faces of set agreement. In Yingfei Dong,
Ding-Zhu Du, and Oscar H. Ibarra, editors, ISAAC,
volume 5878 of Lecture Notes in Computer Science,
pages 943–953. Springer, 2009.

[3] James Aspnes. A modular approach to shared-memory
consensus, with applications to the probabilistic-write
model. In Proceedings of the Twenty-Ninth Annual
ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing, pages 460–467, July 2010.

[4] James Aspnes and Keren Censor. Approximate
shared-memory counting despite a strong adversary.
In Claire Mathieu, editor, Proceedings of the
Twentieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2009, New York, NY,
USA, January 4-6, 2009, pages 441–450. SIAM, 2009.

[5] James Aspnes, Faith Ellen Fich, and Eric Ruppert.
Relationships between broadcast and shared memory
in reliable anonymous distributed systems. Distributed
Computing, 18(3):209–219, February 2006.

[6] Hagit Attiya and Keren Censor. Tight bounds for
asynchronous randomized consensus. J. ACM,
55(5):20, 2008.

[7] Hagit Attiya and Keren Censor-Hillel. Lower bounds
for randomized consensus under a weak adversary.
SIAM J. Comput., 39(8):3885–3904, 2010.

[8] Yonatan Aumann. Efficient asynchronous consensus
with the weak adversary scheduler. In PODC ’97:
Proceedings of the Sixteenth Annual ACM Symposium
on Principles of Distributed Computing, pages
209–218, New York, NY, USA, 1997. ACM.

[9] Yonatan Aumann and Michael A. Bender. Efficient
low-contention asynchronous consensus with the
value-oblivious adversary scheduler. Distributed
Computing, 17(3):191–207, 2005.

[10] Tushar Deepak Chandra. Polylog randomized
wait-free consensus. In Proceedings of the Fifteenth
Annual ACM Symposium on Principles of Distributed
Computing, pages 166–175, Philadelphia,
Pennsylvania, USA, 23–26 May 1996.

[11] Ling Cheung. Randomized wait-free consensus using
an atomicity assumption. In Principles of Distributed
Systems, 9th International Conference, OPODIS 2005,
Pisa, Italy, December 12-14, 2005, Revised Selected
Papers, volume 3974 of Lecture Notes in Computer
Science, pages 47–60. Springer, 2006.

[12] Benny Chor, Amos Israeli, and Ming Li. Wait-free
consensus using asynchronous hardware. SIAM J.
Comput., 23(4):701–712, 1994.

[13] Faith Fich, Maurice Herlihy, and Nir Shavit. On the
space complexity of randomized synchronization. J.
ACM, 45:843–862, September 1998.

[14] Eli Gafni. Round-by-round fault detectors: Unifying
synchrony and asynchrony (extended abstract). In
Proceedings of the Seventeenth Annual ACM
Symposium on Principles of Distributed Computing,
pages 143–152, 1998.

[15] Maurice Herlihy and Jeannette M. Wing.
Linearizability: A correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst.,
12(3):463–492, 1990.

[16] D. A. Lubell. A short proof of Sperner’s lemma.
Journal of Combinatorial Theory A, 1(2):402, 1966.

