
Theory of Computing Systems manuscript No.
(will be inserted by the editor)

Tight Bounds for Adopt-Commit Objects

James Aspnes · Faith Ellen

October 3rd, 2012

Abstract We give matching upper and lower bounds of Θ
(

min
(

logm
log logm , n

))
for the individual step complexity of a wait-free m-valued adopt-commit object
implemented using multi-writer registers for n anonymous processes. While the
upper bound is deterministic, the lower bound holds for randomized adopt-commit
objects as well. Our results are based on showing that adopt-commit objects are
equivalent, up to small additive constants, to a simpler class of objects that we
call conflict detectors.

Our anonymous lower bound also applies to the individual step complexity
of m-valued wait-free anonymous consensus, even for randomized algorithms with
global coins against an oblivious adversary. The upper bound can be used to
slightly improve the cost of randomized consensus against an oblivious adversary.

For deterministic non-anonymous implementations of adopt-commit objects,

we show a lower bound of Ω
(

min
(

logm
log logm ,

√
logn

log logn

))
and an upper bound of

O
(

min
(

logm
log logm , log n

))
on the worst-case individual step complexity. For ran-

domized non-anonymous implementations, we show that any execution contains
at least one process whose steps exceed the deterministic lower bound.

Keywords distributed computing · shared memory · anonymity · lower bounds ·
covering argument · adopt-commit · randomized consensus

1 Introduction

An adopt-commit object [2,21] or ratifier [3] is a one-shot shared-memory object
that represents the adopt-commit protocols of Gafni [15] and can be used to
implement round-based protocols for set-agreement and consensus. An m-valued

James Aspnes
Yale University, Department of Computer Science
E-mail: aspnes@cs.yale.edu

Faith Ellen
University of Toronto, Department of Computer Science.
E-mail: faith@cs.toronto.edu

2 James Aspnes, Faith Ellen

adopt-commit object supports a single operation, adoptCommit(u), where u is an
input from a set of m values. The result of this operation is an output of the
form (commit, v) or (adopt, v), where the second component is a value from this
set and the first component is a decision bit that indicates whether the process
should decide value v immediately or adopt it as its preferred value in later rounds
of the protocol. Improving the performance of adopt-commit objects can improve
the performance of consensus protocols that use them. Lower bounds on adopt-
commit objects also yield immediate lower bounds on consensus.

The requirements for an adopt-commit object are:

1. Validity. The output value of an operation is the input of some (possibly
different) operation.

2. Termination. With probability 1, each nonfaulty process produces an output
in a finite number of steps, where the probability is taken over the coin tosses
performed by the algorithm.

3. Coherence.1 If the output of some operation is (commit, v), then every output
is either (adopt, v) or (commit, v).

4. Convergence. If all inputs are v, all outputs are (commit, v).

These requirements are closely related to the validity, termination, and agree-
ment requirements for consensus. The difference is that agreement (which requires
that all outputs are the same) is replaced by the weaker requirements of coherence
and convergence. As observed in [3], this means that consensus objects satisfy the
requirements of adopt-commit objects, if each process returns the decision bit com-

mit together with its output value. It follows that lower bounds on adopt-commit
objects immediately give lower bounds on consensus objects.

Until now, the best implementations of m-valued adopt-commit objects had
Θ(n) individual step complexity, for n processes [15], or Θ(logm) individual step
complexity, for any number of processes [3]. Both these implementations are de-
terministic, but the latter is also anonymous. This means that all processes run
the same code. Differences between the behaviour of two different processes can
arise only as a result of different input values, (different supplies of random bits,
in the case of a randomized protocol), and when they are scheduled. A number of
advantages of anonymity are discussed in [5].

Here, we consider how much further we can improve the complexity of an im-
plementation of an adopt-commit object without losing anonymity. We give two
simple, deterministic anonymous protocols for detecting multiple input values,
from which we obtain implementations of m-valued adopt-commit objects. One
of these has O(n) individual step complexity, given an upper bound, n, on the

number of processes. The other has O
(

logm
log logm

)
individual step complexity, for

any number of processes. While this is only a small improvement in complexity, we
show a matching lower bound on the individual step complexity of any anonymous
implementation (including randomized implementations against an oblivious ad-

versary) of an m-valued adopt-commit object that supports at least Ω
(

logm
log logm

)
processes. Our lower bound also implies a lower bound of Ω

(
logm

log logm

)
on the

1 The definition of adopt-commit objects in [2] uses the term agreement for this property.
We use agreement instead for the stronger unconditional agreement property of consensus
objects. The term coherence is from [3].

Tight Bounds for Adopt-Commit Objects 3

individual step complexity for randomized anonymous consensus with sufficiently
many processes, even against an oblivious adversary.

We can extend our anonymous bounds to give a partial characterization of the
worst-case individual step complexity for non-anonymous adopt-commit objects.
We show that deterministic non-anonymous implementations have a worst-case in-

dividual step complexity between Ω
(

min
(

logm
log logm ,

√
logn

log logn

))
and O

(
min

(
logm

log logm , log n
))

.

2 Conflict detectors

We introduce a simpler object, a conflict detector, and show that it can be imple-
mented from an adopt-commit object. We also show that a conflict detector and
registers can be used to implement an adopt-commit object.

An m-valued conflict detector supports a single operation, check(v), with
input v from a set of m values. It returns true (to indicate a conflict) or false (to
indicate no conflicts), and has the following two properties:

– In any execution that contains a check(v) operation and a check(v′) operation
with v 6= v′, at least one of these two operations returns true.

– In any execution in which all check operations have the same input value, they
all return false.

2.1 Non-linearizability

Neither adopt-commit objects nor conflict detectors are required to be lineariz-
able. An implementation of an object is linearizable [17] if, for any execution
in which processes perform operations on the implemented object, there is a se-
quential execution with the same operations such that each operation returns the
same response in both executions and non-concurrent operations in the original
execution occur in the same order as in the sequential execution.

It is easy to show that neither adopt-commit objects nor conflict detectors
have deterministic linearizable implementations from atomic registers, and our
implementations are not linearizable. In a solo execution (in which only one
process runs), adoptCommit(v) must return (commit, v), since it is possible that
no process has a conflicting input. Hence, if the first operation linearized in an
execution is adoptCommit(v), then it must return (commit, v), and the output value
of every subsequent adoptCommit operation in the execution must be v. Hence a
deterministic linearizable implementation of an adopt-commit object gives rise to a
deterministic implementation of consensus, which does not exist [14,18]. Similarly,
the first check operation linearized in any execution of a conflict detector must
return false and subsequent check operations with different inputs must return
true, which can be used to implement test-and-set, for which no deterministic
implementation from registers exists [16].

2.2 Equivalence of adopt-commit objects and conflict detectors

In this section, we show that the individual step complexities of adopt-commit
objects and conflict detectors differ by small additive constants. Because our re-

4 James Aspnes, Faith Ellen

ductions are anonymous, this also holds for anonymous implementations. We use
Tac and Tch to denote the worst case step complexities of the adoptCommit and
check operations, respectively.

We begin by giving a straightforward implementation of a conflict detector
from an adopt-commit object. The code is presented in Algorithm 1.

shared data:
adopt-commit object r.

procedure check(v)1

begin2

(d, v′)← r.adoptCommit(v)3

if (d, v′) = (commit, v) then4

return false5

else6

return true7

end8

end9

Algorithm 1: A conflict detector using an adopt-commit object.

Lemma 1 Algorithm 1 implements a conflict detector with worst case step complexity

Tac.

Proof If all check operations have the same input u, then, they all call r.adoptCommit(u),
which, by the convergence property, all return (commit, u). Consequently, all the
check(u) operations return false.

Suppose there is an execution in which two operations, check(u) and check(u′),
are performed, where u 6= u′. These operations call r.adoptCommit(u) and r.adoptCommit(u′),
respectively. By coherence, either the result of r.adoptCommit(u) is not (commit, u)
or the result of r.adoptCommit(u′) is not (commit, u′). It follows that true is returned
by at least one of these two check operations. Thus, Algorithm 1 implements a
conflict detector.

The step complexity of check is the same as the step complexity of adoptCommit,
since only line 3 contains a nonlocal operation. ut

Conversely, an adopt-commit object can be implemented from a conflict de-
tector and two registers. One of the registers, conflict, contains a single bit. It is
initially false and is set to true when a process detects a conflict. It is never re-
set to false. Each process reads conflict immediately before returning and uses its
value to determine its decision bit. The other register, proposal, initially contains
the special value ⊥, which is different from all input values. A process writes its
input value to proposal after reading it and seeing that it contains ⊥. The code is
presented in Algorithm 2.

Lemma 2 Algorithm 2 implements an adopt-commit object with worst case step com-

plexity Tch + 4.

Proof The output value of an adoptCommit operation is its input value, if the pro-
cess performing the operation read that proposal has value ⊥ on line 5. Otherwise,

Tight Bounds for Adopt-Commit Objects 5

shared data:
register conflict, initially false;
register proposal, initially ⊥;
conflict detector c.

procedure adoptCommit(v) begin1

if c.check(v) = true then2

conflict← true3

end4

u← proposal5

if u = ⊥ then6

proposal← v7

v′ ← v8

else9

v′ ← u10

end11

if conflict = true then12

return (adopt, v′)13

else14

return (commit, v′)15

end16

end17

Algorithm 2: An adopt-commit object using a conflict detector and reg-
isters.

the value it read from proposal is output. Since the only values written to proposal

are input values, validity is satisfied.

If all inputs have the same value, w, then check always returns false, so conflict

remains false. Thus, every output is (commit, w) and convergence is satisfied.

If some adoptCommit operation returns (commit, w), then the process, p, per-
forming this operation either read w from proposal on line 5 or it wrote w to proposal

on line 7. It also read that conflict = false on line 12. In particular, this means
that p did not perform line 3 and, hence, received false from check. Thus, all
processes that perform check with input values different from w receive true and
will set conflict to true on line 3 before reading proposal on line 5. Since process p
read conflict before it was set to true, proposal had value w before these processes
read it. Thus, none of them read ⊥ from proposal and, hence, the value of proposal

does not change after w is written to it. It follows that they can only read w from
proposal and return (adopt, w). All processes with input value w, including p, can
only read ⊥ or w from proposal and, hence, they can only output (commit, w) or
(adopt, w). It follows that coherence is satisfied.

Reads and writes to shared registers occur only on lines 3, 5, 7, and 12. Thus,
the step complexity of adoptCommit is 4 greater than the step complexity of check.
ut

The simplicity of a conflict detector makes it easier to obtain bounds on its step
complexity. In the next two sections, we obtain asymptotically matching upper and
lower bounds for anonymous implementations of conflict detectors. These results
imply the same bounds for anonymous adopt-commit objects.

3 Upper bounds on anonymous conflict

6 James Aspnes, Faith Ellen

detectors

In this section, we give two complementary implementations of anonymous m-

valued conflict detectors. The first uses O
(

logm
log logm

)
steps for any number of pro-

cesses, while the second uses O(n) steps, for any value of m, where n is an upper
bound on the number of processes. By choosing the first implementation when m

is small and the second when m is large, we obtain a conflict detector that runs

in O
(

min
(

logm
log logm , n

))
steps. We show this bound is optimal in Section 4.

3.1 A permutation-based conflict detector

In the natural algorithm for two values, a process performing check(b), for b ∈
{0, 1}, writes to R[b] and then checks R[1 − b]. Then, whichever of R[0] or R[1] is
written first will later be seen to have a non-⊥ value by any process that writes to
the other register, detecting the conflict.

Algorithm 3 is a generalization of this algorithm from m = 2 values to m = k!
values. Each of the k! possible input values v is mapped to a distinct permutation
πv : {1, . . . , k} → {1, . . . , k}. Then, for any two different input values, there exist
two registers which function as in the natural two-valued algorithm. Algorithm 3
thus implements a deterministic anonymous conflict detector for m ≤ k! values
using at most 2k operations for check(v). As a function of m, this gives a worst-

case individual step complexity of 2 fact−1(m) = O
(

logm
log logm

)
, where fact(k) = k!

is the factorial function.

shared data:
registers R[1..k], initially ⊥.

procedure check(v)1

begin2

for i← 1..k do3

r ← R[πv(i)]4

if r = ⊥ then5

R[πv(i)]← v6

else if r 6= v then7

return true8

end9

end10

return false11

end12

Algorithm 3: Permutation-based conflict detector for m values.

Lemma 3 Algorithm 3 implements a conflict detector.

Proof If all calls to check have the same input value w, then only w will be written
to each register R[i] and no process ever observes any value other than w or ⊥. In
this case, all operations correctly return false.

Now suppose there is an execution E in which two processes, pu and pu′ , with
different input values, u and u′, both return false. Then both processes read from

Tight Bounds for Adopt-Commit Objects 7

all of the registers R[1], . . . , R[k] and the values u and u′ will both be written to
all of the registers. Let j, j′ ∈ {1, . . . , k} be two indexes such that j occurs before
j′ in πu, but j′ occurs before j in πu′ . Without loss of generality, suppose that u
is written to R[j] before u′ is written to R[j′] in E. Then, when pu′ or any other
process with value u′ reads R[j], it will not see ⊥. This is because, before it reads
R[j], it either writes u′ to R[j′] or reads u′ from R[j′]. This implies that no process
writes u′ to R[j], which is a contradiction. ut

3.2 A collect-based conflict detector

Algorithm 4 is another implementation of a conflict detector. It places no limit on
the number of distinct values m, but it works only when an upper bound, n, on
the number of processes is known. The worst-case individual step complexity of a
check(v) operation in Algorithm 4 is 3n+ 1.

shared data:
registers R[1..n], initially ⊥;
1-bit atomic register done, initially false.

procedure check(v)1

begin2

for i← 1..n do3

if done then4

break5

else6

R[i]← v7

end8

end9

done← true10

for i← 1..n do11

if R[i] 6= v then12

return true13

end14

end15

return false16

end17

Algorithm 4: A collect-based conflict detector for n processes.

The essential idea is that once some process finishes the first loop in check(v)
and sets done to true, each of the at most n − 1 other processes can write to at
most one location in R before seeing done = true and leaving the loop. Because
no process executes the collect in the second loop until done = true, any views
obtained by two different processes in this loop can differ in at most n− 1 places.
It follows that no two processes with different inputs can both see their own input
in all n positions during the collect. Therefore, at least one of them will return
true. If all calls to check have the same input, then only this input will appear in
R, so all the calls will return false.

More formally, we have shown:

Lemma 4 Algorithm 4 implements a conflict detector.

8 James Aspnes, Faith Ellen

4 A lower bound on anonymous conflict detectors

In this section, we show that any m-valued conflict detector for n anonymous pro-

cesses has Ω
(

min
(

logm
log logm , n

))
worst-case solo step complexity, which mea-

sures the maximum number of steps taken in any solo execution.
Fix some deterministic anonymous implementation of an m-valued conflict de-

tector. For each input value v, we consider the solo execution Ev in which a process
executes check(v) starting from the initial configuration. Note that, because pro-
cesses are deterministic and anonymous, the sequence of operations in Ev is fully
determined by v.

Let kv be the step complexity of Ev. Let Wv be the set of registers that a
process writes to in Ev and let Xv be the set of registers that it reads from but
does not write to. Let Av be the permutation of Wv ∪Xv arranged in the order in
which the registers in Wv are first written and the registers in Xv are last read in
Ev.

Lemma 5 For all distinct input values u and v, if ku + kv ≤ n, then there exist two

registers Ri, Rj ∈ (Wu ∪Xu)∩ (Wv ∪Xv) that occur in different orders in Au and Av.

Proof Suppose there are two input values u 6= v such that ku + kv ≤ n and all
registers Ri, Rj ∈ (Wu ∪Xu) ∩ (Wv ∪Xv) occur in the same order in Au and Av.
We show that an adversary can construct an execution E involving ku + kv ≤ n

processes that is indistinguishable from Eu to some process pu performing check(u)
and indistinguishable from Ev to some other process pv performing check(v). In
this execution, both pu and pv return false, violating the specification of a conflict
detector.

For each Ri ∈ Wu ∩ (Wv ∪ Xv), let σi,u be the first write to Ri in Eu and,
for each Ri ∈ Xu ∩ (Wv ∪Xv), let σi,u be the last read from Ri in Eu. Let Su =
{σi,u | Ri ∈ (Wu ∪Xu) ∩ (Wv ∪Xv)}. Define σi,v and Sv analogously.

The adversary starts by constructing an interleaving E′ of the operations in
Eu and Ev. The operations in Eu appear in the same order in E′. The adversary
schedules each read operation σi,v ∈ Sv immediately before σi,u and schedules each
write operation σi,v ∈ Sv immediately after σi,u. Note that, by assumption, the
operations in Sv appear in the same order in E′ as they do in Ev, namely, in the
order the registers Ri ∈ (Wu ∪Xu) ∩ (Wv ∪Xv) they access occur in Au and Av.

If no operations in Sv occur between σi,v and σj,v, then, in E′, the adversary
arbitrarily interleaves the operations in Ev that occur strictly between σi,v and
σj,v with the operations in Eu that occur strictly between σi,u and σj,u. Likewise,
the adversary arbitrarily interleaves the operations in Ev that occur before the first
operation in Sv with the operations in Eu that occur before the first operation in
Su and the operations in Ev that occur after the last operation in Sv with the
operations in Eu that occur after the last operation in Su. Hence, the operations
in Ev appear in the same order in E′.

The sequence of operations in E′ is not necessarily a valid execution, because
pu may read a value written by pv or pv may read a value written by pu. To
prevent this, we add clones, as used in [13]. A clone of a process p is a process
with the same input and code as p, which proceeds in lockstep with p, reading and
writing the same values as p, until immediately before some write to a register. The
adversary has the clone perform that write at some later point in the execution

Tight Bounds for Adopt-Commit Objects 9

to ensure that the value p reads from that register is the same as the value p last
wrote there. After performing its delayed write, a clone performs no further steps.

For each register Ri ∈ Wu ∩Wv, the adversary adds one clone of pu to E′ for
each read of Ri by pu after σi,v and one clone of pv to E′ for each read of Ri by pv
after σi,v. Because there are at most ku − 1 such reads by pu and at most kv − 1
such reads by pv, this requires at most ku+kv−2 clones, for a total of ku+kv ≤ n
processes. Let E be the resulting execution.

If Ri ∈ Wu ∩Wv, then, by construction, any read of Ri by pu in E after σi,v
sees the same value it saw in Eu, namely, the value it last wrote to Ri. Any read
of Ri prior to σi,u sees the initial value of Ri, since σi,u and σi,v are, by definition,
the first writes to Ri by pu and pv in E′ and, hence, E.

If Ri ∈ Xu ∩Wv, then all reads of Ri by pu in E occur at or before σi,u and,
hence, see the initial value of Ri, as they do in Eu. This is because, in E, all writes
to Ri by pv occur at or after σi,v, which is after σi,u.

If Ri ∈ (Wu ∪Xu)−Wv, then pv does not write to Ri in E, so all reads of Ri
by pu are the same as in Eu. Finally, if Ri 6∈ Wu ∪Xu, then pu does not read Ri
in E. Thus Eu and E are indistinguishable to pu.

Similarly, Ev and E are indistinguishable to pv. ut

The following combinatorial lemma allows us to bound m as a function of the
step complexities, kv, of the solo executions Ev. The proof is similar to Lubell’s
proof [19] of Sperner’s Lemma.

Lemma 6 Let {A1, . . . , Am} be a set of finite sequences without repetition such that,

for any two sequences Ai and Aj , there exist elements xi,j and yi,j that appear in

different orders in Ai and Aj . Then
∑m
i=1

1
|Ai|! ≤ 1.

Proof Let A =
⋃m
i=1Ai be the set of all elements appearing in any of the sequences

A1, . . . , Am. Choose an ordering of A uniformly at random. Let Xi be the indicator
variable that has value 1, if the ordering of the elements in Ai is consistent with
this ordering, and has value 0, otherwise. Let X =

∑m
i=1Xi.

Note that Xi = 1 implies that Xj = 0 for all j 6= i. This is because xi,j and
yi,j appear in different orders in Ai and Aj . It follows that X ≤ 1.

For each sequence Ai, the probability that it is consistent with the chosen
ordering is exactly 1

|Ai|! , so E[Xi] = 1
|Ai|! . Hence

∑m
i=1

1
|Ai|! =

∑m
i=1 E[Xi] =

E[X] ≤ 1. ut

Theorem 1 The worst-case solo step complexity of any deterministic anonymous im-

plementation of an m-valued conflict detector for n processes is at least min(fact−1(m), n/2),

where fact(`) = `! is the factorial function.

Proof Fix any deterministic anonymous implementation of an m-valued conflict
detector for n processes and let k be its worst-case solo step complexity. Then, for
every input value v, |Av| ≤ kv ≤ k.

If k > n/2, then the claim is true, so suppose that k ≤ n/2. Then, for all
distinct inputs u and v, ku + kv ≤ n and, hence, by Lemma 5, there are two
registers that occur in different orders in Au and Av. It follows from Lemma 6 that∑
v

1
|Av|! ≤ 1. Since there are m different input values,

∑
v

1
|Av|! ≥

∑
v

1
k! = m/k!.

Thus k ≥ fact−1(m). ut

10 James Aspnes, Faith Ellen

Theorem 1 implies that Tch ≥ min
(
fact−1(m), n/2

)
. This matches the upper

bound from Section 3 to within a small constant factor.
From Lemma 1, it follows that Tac ≥ Tch. Thus, we get a lower bound for the

step complexity of adopt-commit objects.

Because the requirements for conflict detectors are safety properties, we can
show that the lower bound applies to randomized anonymous implementations of
conflict detectors, as well.

Corollary 1 Given any randomized anonymous implementation of an m-valued con-

flict detector for n processes, there is an input v such that any solo execution of

check(v) has step complexity at least min(fact−1(m), n/2) with probability 1 against

an oblivious adversary.

Proof Suppose not. Then, for each input v, there is some sequence of coin-flip
outcomes that causes a process pv with input v to complete a solo execution of
check(v) in less than min(fact−1(m), n/2) steps. Let Ev be the solo execution of
the deterministic protocol obtained by fixing the coin-flips to have these outcomes.
The proof of Theorem 1 constructs a combined execution E in which two processes
pu and pv with different inputs both return false. Such an execution occurs with
nonzero probability in the randomized algorithm, because pu, pv, and all of their
respective clones can generate these fixed sequences of coin-flip outcomes. This
violates the correctness of the implementation. ut

The corresponding lower bound also holds for randomized anonymous imple-
mentations of adopt-commit objects.

5 Extension to non-anonymous algorithms

In Section 5.1, we show how the lower bound of Theorem 1 for anonymous adopt-
commit implementations can be extended to deterministic non-anonymous imple-
mentations, at the cost of greatly reducing the part of the bound that depends on
n. Some of this reduction is necessary: In Section 5.2, we show that, if processes
have identities, it is possible to construct a conflict detector for arbitrarily many
values with O(log n) worst-case step complexity, which is substantially smaller
than the Ω(n) lower bound for anonymous conflict detectors.

5.1 A lower bound for non-anonymous conflict detectors

In the anonymous lower bound, once the process in a solo execution Ev writes to a
register, we can use delayed writes by clones of that process to ensure that, when
Ev is interleaved with any other solo execution Eu, it will not see a value written
to that register at a later step in Eu. Without anonymity, we no longer have clones
to use for this purpose.

Instead, we can use different processes with the same input value, if enough
of them write to the same location. However, if the number of shared registers is
very large or unbounded, the processes may spread out too much for this to work.
If this occurs, we adopt a different strategy and crash all processes that write to a

Tight Bounds for Adopt-Commit Objects 11

register visible in some other execution Eu; this is organized by reserving a small
fraction of the registers for each input value and only allowing processes with that
input value to access (read or write) those registers. The vast majority of registers
remain unreserved.

As in the anonymous case, we construct an execution Ev, for each input value
v, that is organized into t rounds. Each round may consist of many operations on
many different registers, with at most one operation by each process. We preserve
the basic structure of the anonymous lower bound: in each round we allow at most
one more unreserved register to be accessed by processes in Ev, but only if enough
processes access it simultaneously. We can think of this construction as a form of
layered execution in the sense of Moses and Rajsbaum [20], where those processes
that do not crash or suffer delays execute approximately synchronously.

Enforcing the restrictions on which registers are accessed depends on the adver-
sary’s ability to crash processes that want to violate them. In fact, our construction
crashes almost all remaining processes in each round.

It may also delay writes by some processes to cover registers that may be
accessed in later rounds. As in other covering arguments, these delayed write
operations may be used to erase evidence of any other execution Ev′ that might
be interleaved with Ev by overwriting registers shared between the two executions
in later rounds.

This leaves a small number of active processes, which have not crashed and
have not been delayed. Each of these take a step in the round. Careful management
of the number of active processes is a central part of the adversary’s strategy. This
also requires a very large initial supply of processes, exponential in the number of
rounds, t.

To make the adversary’s strategy work, it is necessary to have a good par-
tition of the registers between those which are unreserved and those which are
reserved for each input value. Computing such a partition explicitly appears to be
difficult. Instead, we apply the probabilistic method and show that, if an adver-
sary chooses the partition from an appropriate probability distribution, there is a
nonzero probability enough processes remain active after each round.

A complication in this approach is that a particularly perverse algorithm might
exploit knowledge of the register partition to force too many processes to be
crashed. To limit the algorithm’s ability to determine information about the par-
tition, even attempts by processes with input value v to read a register that is
reserved for value v result in crashes most of the time, if that register has not been
previously accessed. Then the fact that some process crashed after attempting to
access a register gives only limited information about the part of the partition to
which it belongs. We make this observation rigorous using conditional probabili-
ties. (See Lemma 8).

The construction of the executions Ev, for input values v. is given in the proof
of Lemma 7, which is presented in Section 5.1.1.

Lemma 7 For any deterministic implementation of an m-valued conflict detector for

n processes with m ≥ 150, t > 0, and n ≥ 8tm3t+1t3t+1, there is a partition of the

registers, which reserves one part for each possible input value and leaves one part

unreserved, and, for each input value v, there is a t round execution Ev by processes

with input value v, at least one of which is never crashed or delayed, such that, in each

round:

12 James Aspnes, Faith Ellen

1. Every process that has not crashed or been delayed to cover some register takes one

step.

2. No process accesses a register reserved for an input value other than v.

3. If one or more processes read an unreserved register that was written to in an earlier

round of Ev, then these reads are immediately preceded by a delayed write to that

register by a process that then crashes.

4. At most one unreserved register is accessed that has not been accessed in an earlier

round of Ev. If there is such a register, either all operations that access this register

are reads or the first operation that accesses this register is a write. In the second

case, enough additional write operations to this register are delayed so that one can

be used in every subsequent round.

5.1.1 Proof of Lemma 7

Initially, the adversary randomly labels each register with an input value, indi-
cating that it is reserved for that value, or with the value ∗, indicating that it
is unreserved. Massive slaughter of processes at each round is used to eliminate
processes that are about to access the wrong registers. During the construction,
the adversary uses more randomness to make it difficult for the processes to iden-
tify which registers have been labeled with which values, by randomly crashing
many processes that would otherwise be accessing a register labeled by their in-
put value. We show that this procedure produces a family of executions with the
desired properties with nonzero probability. It follows that such a family exists.

The labels of the registers are chosen independently. Let `(r) = ∗ with proba-
bility 1− 1

2tm . For each input value v, let `(r) = v with probability 1
2tm2 .

Having fixed a labeling, each Ev is constructed separately, round-by-round. In
order to avoid crashing too many processes, the adversary budgets for at least
si = (8t3m3)t−it active processes at the end of each round i. This requires s0 =
8tm3tt3t+1 processes initially in each of the m different executions Ev, or n =
s0m = 8tm3t+1t3t+1 processes in total.

The adversary is successful in round i for input value v, if it has constructed
an i round execution satisfying the requirements of Lemma 7 and, at the end of
which, there are at least si active processes.

Conversely, the goal of the algorithm is to force the adversary to crash as
many processes as possible. To simplify the proof, we imagine that the algorithm
is capable of perfectly coordinating the active processes with input value v, so it
can deploy active processes to whatever registers it likes at each round. We will
also imagine that it learns the label of any register read or written by any process.
Note that, as long as requirement 2 of Lemma 7 holds, these labels can only be v
or ∗. We call a register’s label known whenever the register has previously been
accessed.

We will say that a process that is active at the beginning of round i survives

round i if it is still active at the end of the round. Specifically, this means that
the process is not crashed or delayed in round i and, thus, takes one step during
the round. In each round i of Ev, all active processes with pending operations on
registers with known label v survive. All active processes with pending reads on
registers with known label ∗ also survive, as do all active processes with pending
writes on registers with known label ∗ to which a write has occurred in a previous
round of Ev.

Tight Bounds for Adopt-Commit Objects 13

Consider each register r with known label ∗, to which no writes have occurred
in Ev prior to round i. If there are at least t− i+ 1 active processes with input v
and pending writes to r, delay t − i of these writes and let the remaining active
processes with input v and pending writes to r register survive. (They perform
their writes before the processes that read from r.) Otherwise, crash all active
processes with pending writes to r. Let s′i denote the number of surviving active
processes with pending accesses to registers with known labels.

If s′i ≥ si, then all other active processes are crashed. Otherwise, the adversary
will attempt to obtain at least si − s′i additional survivors from among active
processes with pending accesses to registers with unknown labels.

First, suppose there is some register with an unknown label to which at least
si − s′i active processes have pending reads or to which at least si − s′i + t− i+ 1
processes have pending accesses. Let r be the register with smallest index with
this property. Note that this choice of register does not depend on the register
labeling, so the algorithm learns nothing about the labels of registers that are not
chosen. If r is reserved for v, let all the active processes with pending operations on
r survive and crash all active processes with pending accesses on other registers
with unknown labels. If r is reserved for a value other than v, we declare the
adversary’s strategy to have failed. We bound the probability that this bad event
occurs below.

If r is unreserved, then all active processes with pending accesses on other reg-
isters with unknown labels are crashed. If there are at least si−s′i active processes
with pending reads from r, then also crash all processes with pending writes to
r. Otherwise, there are at least si − s′i + t− i+ 1 processes with pending accesses
to r, of which at least t − i + 1 are writes. Delay t − i of the writes and schedule
the remaining writes to r before the reads from r. In either case, requirement 4 of
Lemma 7 is satisfied.

If none of the previous cases apply, we crash all active processes with pending
accesses on registers with unknown label other than v. For each register r with
unknown label v, with probability 1 − 1/t, we crash every process that attempts
to access r in this round and, with probability 1/t, we allow all processes to suc-
cessfully perform their accesses on r. If there are fewer than si − s′i processes that
successfully access registers with unknown label v, the adversary’s strategy also
fails.

To summarize, the adversary has three ways to retain si active processes at
the end of round i while maintaining the constraints of Lemma 7:

1. It can keep s′i processes that carry out operations on processes with known
labels, either (a) reading or writing a register with known label v; (b) reading
a register with known label ∗; or (c) writing a register r with known label ∗,
provided t−i processes writing to r can be delayed so that their write operations
can be used in later rounds to overwrite values that might be written during
some other execution Ev′ .

2. If this does not leave enough active processes, but there is a register r with
unknown label that is accessed by sufficiently many processes, attempt to access
the first such r. This succeeds if it turns out that `(r) = ∗ or v.

3. Alternatively, if there is no such register r, attempt to assemble sufficiently
many additional processes from among those accessing registers with unknown

14 James Aspnes, Faith Ellen

label v, permitting each register to be used with probability 1/t. This succeeds
if the total number of processes that access permitted registers is high enough.

The intuition is that if the first branch of the adversary’s strategy doesn’t
work, then the remaining processes are either tightly concentrated on one register
(making the second branch likely to work) or spread out among many registers
(making the third branch likely to work). Which branch applies is entirely con-
trolled by where the algorithm chooses to place pending operations by the active
processes. These choices in turn depend on the outcome of previous rounds. For
a fixed algorithm, we can think of the execution Ev as a random variable that
depends only on the labels of the registers and the random choices made in the
third branch (whether or not to permit access to registers with unknown label v).
Let Eiv denote the first i rounds of Ev. This is also a random variable.

A maximally perverse algorithm will mostly avoid having processes access reg-
isters with known labels. This reduces the analysis to two cases, depending on
whether the algorithm sends sufficiently many active processes to a single register
with an unknown label. In both cases, success depends on the labels of the un-
known registers. Because the algorithm can use information from previous rounds,
the distribution of these labels conditioned on the algorithm’s knowledge is not
the same as the original distribution. We begin by showing that it does change by
much.

Lemma 8 Let E be any specific i-round partial execution after which register r has

an unknown label. Then:

Pr[`(r) = ∗ | Eiv = E] ≥ 1− 1

2tm
and

Pr[`(r) = v | Eiv = E] ≥ 1

8tm2
.

Proof First observe that, as the labels of the registers are independent, any event
in E that does not involve r has no effect on the conditional distribution of `(r).
Similarly, any event involving r whose outcome does not depend on `(r) also has
no effect. This includes attempts to access r by processes that are crashed when
there are sufficiently many processes accessing registers with known labels and in
the case that there are sufficiently many processes accessing the same register with
unknown label. This leaves only the third branch, in which the choice of whether
or not to crash a process that attempts to access r depends on whether `(r) = v.

To formalize this intuition, let A be the event that all of the following are
consistent with Eiv = E: (a) the labels of all registers other than r; (b) in each of
the first i rounds, whether the third branch of the adversary’s strategy is applied;
and (c) in rounds where the third branch is applied, which registers r′ 6= r cause
processes accessing them to crash. Note that `(r) is independent of A.

In the following, we assume i ≥ 1. If not, Eiv is empty and conditioning on it
has no effect.

Let C be the event that every attempt in Eiv to access r fails, or, equivalently,
that register r has an unknown label at the end of Eiv. Hence, the event Eiv = E is
the intersection of the events A and C. This implies that conditioning on Eiv = E

is equivalent to conditioning on both A and C. Note that Pr[C | A∩(`(r) = ∗)] = 1
and Pr[C | A ∩ (`(r) = v)] = (1− 1/t)j ≥ (1− 1/t)t ≥ (1− 1/2)2 = 1/4, where j is
the number of rounds of E in which the third branch of the adversary’s strategy is

Tight Bounds for Adopt-Commit Objects 15

applied and at least one process attempts to access register r. The last inequality
holds because (1− 1/t)t is increasing in t for t ≥ 1.

Let x be either ∗ or v. Let L be the event `(r) = x, so Pr[L | A] = Pr[L].
Applying the definition of conditional probability, we have:

Pr[L | C ∩A] =
Pr[C | L ∩A] · Pr[L|A]

Pr[C | A]
≥ Pr[C | L ∩A] · Pr[L].

Replacing x by ∗ or v gives Pr[`(r) = ∗ | C ∩ A] ≥ Pr[`(r) = ∗] = 1 − 1
2tm and

Pr[`(r) = v | C ∩A] ≥ Pr[`(r) = v]/4 = 1
8tm2 . ut

Corollary 2 Suppose that, in round i, after Ei−1
v , the algorithm forces the second

branch of the adversary’s strategy (in which there are sufficiently many processes ac-

cessing the same register with unknown label). Then the probability that the adversary

strategy fails in round i conditioned on this event is less than 1
2tm .

Proof The probability of failure is just the conditional probability that `(r) is
neither v nor ∗ for the chosen register r. ut

We can assume that the algorithm will avoid allowing any processes to survive
by having them access registers with known labels. The algorithm can force the
adversary to crash up to t − i processes for each register with known label ∗, to
which no process has written during Ei−1

v . There are at most i− 1 such registers,
since at most one addtional unreserved register is made known each round. This
causes at most (t − i)(i − 1) < t2 processes to crash. Thus, there are more than
si−1−t2 active processes that will have pending accesses to registers with unknown
labels at the end of round i− 1.

If the algorithm forces the third branch of the adversary’s strategy in round i,
then there are at most si − t − i processes with pending accesses to each register
r with unknown label. These processes survive only if `(r) = v and the biased
coin-flip for register r permits it to be accessed, which has probability 1/t. From
Lemma 8, the probability that `(r) = v (conditioned on Ei−1

v) is at least 1
8tm2 ,

giving a conditional probability of at least 1
8t2m2 that the processes accessing some

register r survive.

Translating this into a bound on the number of survivors requires a slight
variant on standard Chernoff bounds, which we state and prove below.

Lemma 9 Let Xi, for i = 1, . . . , k, be independent 0–1 random variables, each with

expectation p, and let S =
∑k
i=1 wiXi, where 0 ≤ wi ≤M . Let µ = E[S] = p

∑k
i=1 wi.

Let 0 ≤ δ ≤ 1. Then

Pr [S ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)(1−δ)

)µ/M
.

16 James Aspnes, Faith Ellen

Proof The proof follows the standard Chernoff bound proof, augmented with an
appeal to convexity. Compute

E
[
eαS

]
=

k∏
i=1

E
[
eαwiXi

]
=

k∏
i=1

((1− p) + peαwi) =
k∏
i=1

(1 + p (eαwi − 1))

≤
k∏
i=1

exp (p (eαwi − 1)) = exp

(
p

k∑
i=1

(eαwi − 1)

)

≤ exp

(
p

k∑
i=1

(
(1− wi/M)

(
eα·0 − 1

)
+ (wi/M)

(
eαM − 1

)))

= exp

(
p

(
k∑
i=1

wi/M

)(
eαM − 1

))
= exp

(
(µ/M)

(
eαM − 1

))
.

The first inequality uses the fact that 1 + x ≤ exp(x) and the second inequality
uses the convexity of the function exp(αx)− 1.

When α < 0, Markov’s inequality implies that

Pr [S ≤ (1− δ)µ] = Pr
[
eαS ≥ eα(1−δ)µ)

]
≤

E
[
eαS

]
eα(1−δ)µ

= exp
(

(µ/M)
(
eαM − 1

)
− α(1− δ)µ

)
.

In particular, when α = ln(1− δ)/M , we get

Pr [S ≤ (1− δ)µ] ≤ exp ((µ/M) ((1− δ)− 1)− (µ/M)(1− δ) ln(1− δ))

=

(
e−δ

(1− δ)(1−δ)

)µ/M
as claimed. ut

We use Lemma 9 to obtain the next result.

Lemma 10 Let m ≥ 150 and 1 ≤ i ≤ t. Suppose that there are at least si−1 active

processes at the end of Ei−1
v and, after Ei−1

v , the algorithm forces the third branch

of the adversary strategy in round i. Then the probability that there are fewer than si
active processes after Ei−1

v , conditioned on Ei−1
v , is strictly less than 1

2tm .

Proof First let us compute a lower bound on the expected number of active pro-
cesses.

As argued previously, at least si−1 − t2 processes attempt to access registers
with unknown labels in round i. The probability that each such process survives
is at least 1

8t2m2 , by Lemma 8 and the fact that the processes accessing a register
with label v survive with probability 1/t.

Tight Bounds for Adopt-Commit Objects 17

Let S be the random variable counting the number of processes that survive
round i. Then

µ = E[S]

≥ 1

8t2m2

(
si−1 − t2

)
=

8sit
3m3 − t2

8t2m2

= sitm−
1

8m2

≥ sitm/2
≥ 2si.

The last inequality uses the fact that tm ≥ 4.
Because at most si + t− i process attempt to access any one register r, we can

let M = 2si > si + t− i and get µ/M ≥ sitm/2
2si

= tm/4. Now fix δ = 1/2 and apply
Lemma 9 to get

Pr [S ≤ si] ≤ Pr

[
S ≤ 1

2
si(tm/2)

]
≤ Pr [S ≤ (1− δ)µ]

≤
(

e−δ

(1− δ)(1−δ)

)µ/M
≤ (
√

2/e)tm/4.

Because (
√

2/e)tm/4 drops exponentially fast, it is less than 1
2tm when tm is

sufficiently large. A numerical calculation shows that tm ≥ 150 is enough. ut

To complete the proof of Lemma 7, observe that the m executions E1, . . . , Em
include mt rounds between them. In each of these rounds, the probability that
the adversary strategy fails is at most 1

2tm , by either Corollary 2 or Lemma 10,
depending on whether the algorithm forces the first or third branch of the ad-
versary’s strategy. Summing these probabilities over all mt rounds gives a total
probability of failure at most 1/2. It follows that the adversary strategy succeeds
with nonzero probability and that a set of executions as described in Lemma 7
exists.

5.1.2 Interleaving the executions

The next step is to show how these executions can be interleaved to violate the
requirements of a conflict detector if t is too small.

Given an execution Ev of many copies of check(v) as constructed in Lemma 7,
let Wv be the set of unreserved registers r that processes in Ev write to, and let
Xv be the set of unreserved registers that processes in Ev read from but do not
write to. Let Av be the permutation of Wv ∪ Xv arranged in the order in which
registers in Wv are first written and the registers in Xv are last read in Ev.

The following is analogous to Lemma 5 for the anonymous case.

18 James Aspnes, Faith Ellen

Lemma 11 For all distinct input values u and v, if Eu and Ev each include a process

that returns false, then there exist two registers Ri, Rj ∈ (Wu ∪Xu)∩ (Wv ∪Xv) that

occur in different orders in Au and Av.

Proof Suppose otherwise. We construct an execution E that interleaves Eu and Ev
and which is indistinguishable from Eu and Ev by the processes in each of these
executions.

The interleaving is done round-by-round. Consider each register r that occurs
in both Au and Av. If r ∈ Wu ∩Wv, the rounds in which it is first written are
scheduled together. If r ∈ Xu∩Xv, the rounds in which it is last read are scheduled
together. Otherwise, the round in which r is first written is scheduled just after
the round in the other execution in which r is last read. Remaining rounds are
interleaved arbitrarily. This interleaving is feasible since the orderings Au and Av
are consistent.

With this interleaving, in any round where a register r in Au ∩ Av is read by
a process with input u, it observes either the initial value of register r, a value
written to r in the same round of Eu, or a value written to r by a write delayed
from a previous round of Eu. Any read of a register that is in Au, but not Av,
returns only its initial value or a value written by a process with input u. In each
case, E is indistinguishable from Eu to processes with input u. The same argument
holds for v.

Since Eu and Ev each include a process that returns false, the same occurs in
E, violating the specification of a conflict detector. ut

5.1.3 Proof of the lower bound

It follows that when m and n are large enough to apply Lemma 7, we can apply
Lemma 6 to get t! ≥ m, where t is the minimum length of any execution of check.

When n is unbounded, this gives t = Ω
(

logm
log logm

)
as in the anonymous case.

For bounded n, we need 8tm3t+1t3t+1 ≤ n to apply Lemma 7, which is equiv-
alent to t log 8 + (3t + 1) logm + (3t + 1) log t ≤ log n. Setting m =

√
log n and

t = fact−1(m) = Θ
(√

logn
log logn

)
satisfies this bound for sufficiently large m, giving a

combined bound of:

Theorem 2 In any deterministic implementation of a conflict detector for n process

with m input values, there is an execution in which some process takes

Ω

(
min

(
logm

log logm
,

√
log n

log logn

))

steps.

The main differences between this bound and the anonymous bound are the
assumption that the algorithm is deterministic and a much stronger dependence
on n. We can show that at least part of this second difference is necessary, by
showing that removing anonymity allows for a more efficient conflict detector for
bounded n and unbounded m.

Tight Bounds for Adopt-Commit Objects 19

5.2 An improved upper bound for non-anonymous conflict detectors

For anonymous adopt-commit objects, the best bound we can get on the running
time as a function of n alone is O(n). This is not the case when processes have
identities. In this case, we can build a conflict detector that supports arbitrarily
many values by placing the processes at the leaves of a strict binary tree T with n

nodes, O(log n) height, and a 2-valued conflict detector at each internal node. This
is analogous to the classic tournament algorithm for mutual exclusion of Peterson
and Fischer [22]. The conflict detector used at each internal node is the conflict
detector described at the beginning of Section 3. It is implemented by a pair of
registers, one at each of its two children.

Pseudocode is given in Algorithm 5. A conflict is detected at an internal node
if distinct values have been written to the registers at its two children. A process
detects no conflict if it detects no conflict at any level on the path from its leaf to
the root.

To show this works, we first prove a simple fact.

procedure check(v) for process with id i:1

begin2

x← i’th leaf of T3

while x 6= T.root do4

x.register← v5

if x.sibling.register 6∈ {v,⊥} then6

return true7

end8

x← x.parent9

end10

return false11

end12

Algorithm 5: Tree-based conflict detector

Lemma 12 All values written to the register at any particular node during an execu-

tion of Algorithm 5 are the same.

Proof By induction. Fix any execution of the algorithm. Only process i writes to
the register at the i’th leaf of T and it writes there at most once. Thus the claim
is true for the leaves of T .

Now consider any internal node x and assume the claim is true for both children
of x. Suppose that process p writes v to x.register and p′ writes v′ to x.register.
Because the loop in Algorithm 5 proceeds from a leaf to the root, a process only
writes to the register at an internal node after it has written the same value to
the register at one of its children. Therefore, if p and p′ previously wrote to the
register at the same child of x, then v = v′ by the induction hypothesis.

Otherwise, p wrote v to the register at node y and p′ wrote v′ to the to the
register at node y′, where y and y′ are the two children of node x. Suppose p

wrote to y.register first. Then p′ cannot read ⊥ from y.register, so, by the induction
hypothesis, it read value v. This implies that v′ = v; otherwise p′ returns true

before writing to x.register. ut

20 James Aspnes, Faith Ellen

Theorem 3 Algorithm 5 implements a conflict detector with O(log n) worst-case step

complexity.

Proof If two processes have different inputs, they can’t both write to the register
at the same child of the root. If they write to different children of the root, both
can’t read ⊥ from the other child of the root, so at least one returns true.

If all processes have the same input v, no value other than v is written to any
register, so no process reads a value other than v or ⊥. In this case, no process
returns true.

The step complexity of the algorithm is proportional to the height of T , which
is O(log n). ut

There is still a substantial gap between the O(log n) upper bound in Theorem 3

and the Ω
(√

logn
log logn

)
lower bound in Theorem 2. We conjecture that O(log n) is

closer to the correct value.

5.3 A lower bound for randomized non-anonymous implementations

In the anonymous case, the lower bound on a deterministic m-valued conflict
detector translates directly into a lower bound on the fastest possible solo execution
of a randomized implementation against an oblivious adversary (Corollary 1). This
result depends on cloning and does not apply in the non-anonymous case. However,
we can say something about the expected worst-case running time.

Theorem 4 In any randomized implementation of a conflict detector for n processes

and m input values, there is an input v and an oblivious adversary that uses n/m

processes with input v, so that, with probability 1, there is at least one process that

takes

Ω

(
min

(
logm

log logm
,

√
log n

log logn

))
steps.

Proof Let Ev(r) denote the execution constructed in the proof of Lemma 7 when
the random bits provided to the processes are fixed to the sequence r (thus making

the algorithm deterministic). Suppose there exists t ∈ o
(

min((logm)/ log logm,
√

log n/ log logn)
)

and a sequence r0 of random bits, which occurs with probability Pr[r = r0] > 0,
such that, for all inputs v, execution Ev(r0) finishes in at most t steps. Then the
proof of Theorem 2 implies that there is an interleaving of two of these executions
in which processes from both executions return false. An oblivious adversary can
cause this interleaving, producing an incorrect execution with non-zero probability.
ut

This is a much weaker result than Corollary 1. In the anonymous case, we
could guarantee that no process beat the lower bound. Here, we can only say that
some process doesn’t, but it may be that almost all processes finish in O(1) time
and that any particular process finishes in O(1) expected time. Whether or not
this is actually possible remains open.

Tight Bounds for Adopt-Commit Objects 21

6 Consequences for consensus

Now, we consider the effect of our improved bounds for adopt-commit objects
on the consensus problem. In the consensus problem, n processes must agree on a
value, which must be equal to the input of some process. A protocol is randomized

wait-free if every process completes its execution in a finite expected number of
steps, regardless of the scheduling of the other processes or the occurrence up to
n− 1 crash failures.

The cost of consensus depends strongly on the power of the adversary that
controls scheduling and process failures and, to a lesser extent, on the number of
possible values. For an adaptive adversary, which can observe the internal states
of the processes, there is a tight bound of Θ(n) on the individual step complexity
of binary (two-valued) consensus [4, 6]. The high cost of consensus in this model
has led to examination of models with weaker adversaries, particularly adversaries
that are prevented from changing the schedule based on coin-flip values known
only to one process.

One approach is to limit the adversary’s ability to observe the state of the
system. A value-oblivious adversary [8–10] cannot observe the internal states
of processes, the contents of registers, or pending operations. It bases its choice
of schedule only on the history of which operations the processes have applied
to which registers. The best currently known protocol in this model, due to Au-
mann [8], achieves consensus with O(log n) expected individual step complexity
for any number of input values.

An alternative is to give extra power to the algorithm by allowing probabilistic

writes [1,11,12], where a process can flip a coin and choose to execute a write oper-
ation or not based on the outcome of the coin-flip, without affecting the scheduling
done by the adversary. In this model, a protocol of Aspnes [3], based on combining
adopt-commit objects and a class of randomized objects called conciliators, gives
an anonymous protocol for m-valued consensus with expected O(logm + log n)
individual step complexity, where O(logm) is the cost of the adopt-commit and
O(log n) is the cost of the conciliator using implementations given in [3].

An oblivious adversary that must fix the schedule in advance, without see-
ing the actions of the processes, gives an even stronger model than both the
value-oblivious and probabilistic-write models. (As observed in [3], a process in
an oblivious-adversary model can simulate a probabilistic write by choosing ran-
domly between carrying out a write and a dummy operation.) In this model, Attiya
and Censor-Hillel [7] have shown that any protocol with two input values runs for
at least k steps with probability c−k for some constant c, a bound that translates
into constant expected individual step complexity.

Our results improve the previous upper bound for the probabilistic-write model
and give a non-trivial lower bound on expected individual step complexity for the
oblivious-adversary model when the number of input values m is ω(1). For the
probabilistic-write model, substituting our improved adopt-commit implementa-
tions for the adopt-commit object in [3] reduces the expected individual step

complexity from O(logm + log n) to O
(

min
(

logm
log logm , n

)
+ log n

)
in the anony-

mous case and O(log n) in the non-anonymous case. For the oblivious-adversary
model, our lower bound on anonymous adopt-commit objects gives an immediate

Ω
(

min
(

logm
log logm , n

))
lower bound with probability 1 on the worst-case individ-

22 James Aspnes, Faith Ellen

ual step complexity of anonymous m-valued consensus implementations, because
consensus objects satisfy the specification of adopt-commit objects. This is the
first lower bound for consensus for which the number of values m is significant.

7 Conclusions

We have shown how to reduce adopt-commit objects to and from conflict detec-
tors, which are simpler, and used these reductions to get tight bounds on the
individual step complexity of anonymous m-valued adopt-commit objects. These
bounds also translate into improved bounds on anonymous m-valued consensus.
We have also shown bounds for the deterministic non-anonymous case, which give
an exponential separation between the anonymous and non-anonymous cases as a
function of n.

The natural questions are to determine tight bounds for non-anonymous im-
plementations and whether randomization could allow further improvements. A
lower bound on the space complexity of m-valued conflict detectors would also be
interesting.

8 Acknowledgments

James Aspnes was supported in part by National Science Foundation grant CCF-
0916389. Faith Ellen was supported in part by the Natural Science and Engineering
Research Council of Canada.

References

1. Abrahamson, K.: On achieving consensus using a shared memory. In: Proceedings of
the 7th Annual ACM Symposium on Principles of Distributed Computing (PODC), pp.
291–302 (1988)

2. Alistarh, D., Gilbert, S., Guerraoui, R., Travers, C.: Of choices, failures and asynchrony:
The many faces of set agreement. In: Y. Dong, D.Z. Du, O.H. Ibarra (eds.) ISAAC, Lecture
Notes in Computer Science, vol. 5878, pp. 943–953. Springer (2009)

3. Aspnes, J.: A modular approach to shared-memory consensus, with applications to the
probabilistic-write model. In: Proceedings of the Twenty-Ninth Annual ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing, pp. 460–467 (2010)

4. Aspnes, J., Censor, K.: Approximate shared-memory counting despite a strong adversary.
In: C. Mathieu (ed.) Proceedings of the Twentieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2009, New York, NY, USA, January 4-6, 2009, pp. 441–450.
SIAM (2009)

5. Aspnes, J., Fich, F.E., Ruppert, E.: Relationships between broadcast and shared memory
in reliable anonymous distributed systems. Distributed Computing 18(3), 209–219 (2006)

6. Attiya, H., Censor, K.: Tight bounds for asynchronous randomized consensus. J. ACM
55(5), 20 (2008)

7. Attiya, H., Censor-Hillel, K.: Lower bounds for randomized consensus under a weak ad-
versary. SIAM J. Comput. 39(8), 3885–3904 (2010)

8. Aumann, Y.: Efficient asynchronous consensus with the weak adversary scheduler. In:
PODC ’97: Proceedings of the Sixteenth Annual ACM Symposium on Principles of
Distributed Computing, pp. 209–218. ACM, New York, NY, USA (1997). DOI
http://doi.acm.org/10.1145/259380.259441

9. Aumann, Y., Bender, M.A.: Efficient low-contention asynchronous consensus with the
value-oblivious adversary scheduler. Distributed Computing 17(3), 191–207 (2005). DOI
http://dx.doi.org/10.1007/s00446-004-0113-4

Tight Bounds for Adopt-Commit Objects 23

10. Chandra, T.D.: Polylog randomized wait-free consensus. In: Proceedings of the Fifteenth
Annual ACM Symposium on Principles of Distributed Computing, pp. 166–175. Philadel-
phia, Pennsylvania, USA (1996)

11. Cheung, L.: Randomized wait-free consensus using an atomicity assumption. In: Principles
of Distributed Systems, 9th International Conference, OPODIS 2005, Pisa, Italy, December
12-14, 2005, Revised Selected Papers, Lecture Notes in Computer Science, vol. 3974, pp.
47–60. Springer (2006)

12. Chor, B., Israeli, A., Li, M.: Wait-free consensus using asynchronous hardware. SIAM J.
Comput. 23(4), 701–712 (1994)

13. Fich, F., Herlihy, M., Shavit, N.: On the space complexity of randomized synchroniza-
tion. J. ACM 45, 843–862 (1998). DOI http://doi.acm.org/10.1145/290179.290183. URL
http://doi.acm.org/10.1145/290179.290183

14. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with
one faulty process. J. ACM 32(2), 374–382 (1985). DOI 10.1145/3149.214121. URL
http://portal.acm.org/citation.cfm?id=214121

15. Gafni, E.: Round-by-round fault detectors: Unifying synchrony and asynchrony (extended
abstract). In: Proceedings of the Seventeenth Annual ACM Symposium on Principles of
Distributed Computing, pp. 143–152 (1998)

16. Herlihy, M.: Wait-free synchronization. ACM Trans. Progr. Lang. Syst. 13(1), 124–149
(1991)

17. Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent objects.
ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

18. Loui, M.C., Abu-Amara, H.H.: Memory requirements for agreement among unreliable
asynchronous processes. Advances in Computing Research pp. 163–183 (1987)

19. Lubell, D.A.: A short proof of Sperner’s lemma. Journal of Combinatorial Theory A 1(2),
402 (1966)

20. Moses, Y., Rajsbaum, S.: A layered analysis of consensus. SIAM J. Comput. 31(4), 989–
1021 (2002)

21. Mostefaoui, A., Rajsbaum, S., Raynal, M., Travers, C.: The combined power of conditions
and information on failures to solve asynchronous set agreement. SIAM J. Comput. 38(4),
1574–1601 (2008)

22. Peterson, G.L., Fischer, M.J.: Economical solutions for the critical section problem in a
distributed system (extended abstract). In: J.E. Hopcroft, E.P. Friedman, M.A. Harrison
(eds.) Proceedings of the 9th Annual ACM Symposium on Theory of Computing, May
4-6, 1977, Boulder, Colorado, USA, pp. 91–97. ACM (1977)

