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The problem comes in three 
avors:1. Find a deterministic rule for orienting the edges and analyze it on the the worst input sequence.2. Suggest a rule and analyze it under some assumption on the distribution of the sequence,in particular that each edge in the sequence is chosen uniformly from all possible edges andindependently of the rest of the sequence.3. Suggest a randomized rule for orienting the edges and analyze its expected performance onthe worst sequence.The greedy algorithm is the one where an edge is oriented from the node with the smaller di�er-ence between the outdegree and indegree to the one with the larger di�erence. In the deterministicversion of the rule ties are broken according to the lexicographic order. In the randomized versionof the rule ties are broken at random.We address the three 
avors of the problem and obtain the following results:1. The optimal worst-case unfairness of a deterministic algorithm is linear. There is a method(the greedy algorithm) that achieves the bound n�12 on unfairness, and for any deterministicrule there is a sequence where a di�erence of 12dn�12 e will occur. (In the broader setting ofthe "carpool" problem, discussed below, a stronger lower bound of n�13 has been provided in[16].) These results are described in Section 2.2. There is a randomized rule (local greedy) with expected unfairness O(pn logn) on any se-quence. The lower bound is 
( 3plog n). These results are described in Section 3.3. The expected unfairness of the greedy algorithm on a uniform distribution on the edges is�(log logn) and we derive a complete description of the process in this case. This is the maintechnical contribution of the paper. These results are described in Section 4.We view the edge orientation problem as a game played between an algorithm that chooses theedge orientations and an adversary that determines the sequence of edges. Each of the above casescorresponds to one of the three main types of adversaries treated in the literature: the adaptive,the oblivious, and the uniformly random, where the distinction is made according to the way theadversary determines which edges appear in the sequence. An adaptive adversary constructs thesequence on the 
y, making decisions that may depend on the whole previous history of the game.An oblivious adversary must �x its sequence before the game starts, though it may choose thissequence based on knowledge of the algorithm. Finally, the uniformly random adversary producesa sequence in which each edge is chosen independently and uniformly at random.In addition, we investigate the relationship between the edge orientation problem and the vectorrounding problem, a very general problem to which many problems in fair scheduling can be reduced.In this problem, we are given a real matrix column by column and should produce an integer matrixso that each column in the output matrix is a rounding of the corresponding column in the inputmatrix that preserves the sum. The goal is to minimize the maximum over all rows of the di�erencebetween the sum of the rows in the integer and real matrix. (A formal de�nition can be found inSection 5.) We show:4. A general transformation from the vector rounding problem to the edge orientation prob-lem, at the price of doubling the expected di�erence. The transformation applies to bothdeterministic and randomized algorithms. It is described in Section 5.2



1.2 MotivationOn-line machine scheduling has been studied extensively (see e.g. [3, 4, 5, 7, 14, 17, 14, 21]), butthe issue of fairness in job allocation has usually not been considered quantitatively (however, see[2, 12, 15, 18, 19]). In a typical on-line scheduling problem, there are n machines and a numberof separate jobs; the jobs arrive one by one, and each job must be assigned to exactly one of themachines, thereby increasing the load on this machine by an amount that depends on both thejob and the machine. The goal of the scheduling problems studied in all the above literature is tominimize the maximum machine load. The situation in which this model seems most applicable is ifall machines have one owner that wishes to optimize their utilization. If the machines have di�erentowners, then fairness in allocation may be an additional, or primary, parameter to be optimized bythe scheduler; for instance the dispatcher for a number of independently owned taxicabs.Assuming that machines (or their owners) are reluctant (or eager) to do the required jobs, a\fair" rule, which takes into account the bene�t to each machine (owner) of performing each task,must be applied. Thus, when faced with such a problem we should de�ne the desired load of amachine (the fair share) and then suggest an algorithm for scheduling the jobs that tries to giveeach machine a number of jobs corresponding to its fair share.An interesting property of the results we obtain in studying \fair" scheduling, is that there arescheduling protocols for which the discrepancy between the loads of the machines can be boundedin terms of functions only of the number of the machines, with no dependence on the elapsed time.1.3 A general view: the Carpool ProblemThe issue of fairness in scheduling was �rst isolated by Fagin and Williams [16], who abstracted itto what they call the carpool problem. A rough quotation from [16]: \Suppose that n people, tiredof spending their time and money in gasoline lines, decide to form a carpool. Each day a subsetof these people will arrive and one of them should drive. A scheduling algorithm is required fordetermining which person should drive on any given day. The algorithm should be perceived asfair by all members so as to encourage their continued participation." The analogy to fair machinescheduling is that the carpool participants correspond to the machines that are available to carryout some task. The driver is the machine to which the task is actually assigned and thus themachine that incurs the cost of executing it.The �rst question is how to de�ne fairness. If the driver were not a member of the group, buta hired driver, then the meaning of fairness would be clear: The professional driver charges a �xedprice for every ride, and each day the people that show up split the price of the driver equallyamong them. When the driver is just one of the set of people that show up, this reasoning leadsimmediately to the following de�nition of fairness given in [16]: If on a certain day, d people showup, each of them owes the driver 1=d of a ride. The unfairness of the algorithm at a certain pointof the execution is de�ned as the maximum number of owed rides that anybody has accumulatedup to that point or that anybody owes the rest of the group at that point. A scheduling algorithmis fair if there is a bound on the unfairness that is a function only of the number of drivers, andnot of the schedule of arrivals (or in particular, the time elapsed). (Assuming an initial conditionin which no one owes or is owed any rides.)In case of random arrivals, we will evaluate algorithms according to the expected value of theirunfairness when computed throughout the execution, and refer to this as expected unfairness.Fagin and Williams proposed a natural algorithm for this problem, which we call the globalgreedy algorithm. When a set of people shows up, the one to drive will be the one that is currentlythe poorest. Ties are broken arbitrarily. A key contribution of their paper was to show that this3



algorithm is fair in the above sense. Namely, for a worst case sequence of requests, they showed thatthe unfairness of this algorithm is bounded above by a number that is exponential in the numberof people, but independent of the number of days, and mentioned that Coppersmith managed toreduce this upper bound to linear (however, this proof is lost [13]). Finally, in collaboration withCoppersmith they showed a linear lower bound on the unfairness in this setting.The edge orientation problem is simply a special case of the carpool problem, restricted to twopeople arriving each day. On the other hand, the general carpool problem is a special case of thevector rounding problem: each participant corresponds to a row, each day corresponds to a column;the ith entry of the jth column is 0 if the ith participant did not show up on the jth day, and is1dj if dj participants, including himself, did show up.Therefore, an immediate byproduct of the results mentioned above on the edge orientationproblem and of the general transformation to the vector rounding problem is that the generalcarpool problem has unfairness of �(n) against an adaptive adversary, and expected unfairness ofO(pn logn) against an oblivious adversary. (In fact, we also show directly that the natural greedyalgorithm for the carpool problem maintains unfairness n against an adaptive adversary). Finally,against a random adversary, our results show that the carpool problem has expected unfairness�(log logn).1.4 Comparison with competitive analysisA popular methodology for evaluating the performance of on-line algorithm is the the competitiveanalysis approach of Sleator and Tarjan [20]: the on-line algorithm is compared with a hypotheticaloptimal o�-line and bounds on the competitive ratio are obtained (for an adaptive, oblivious orrandom adversary). For the carpool problem, if one is given in advance a list specifying for eachof the days which subset arrives on that day, then it is possible to construct a schedule whoseunfairness is bounded by one (see Section 5). Therefore we can treat the results as being aboutthe competitive di�erence of the carpool problem. If, instead, we had analyzed the ratio betweenan evenly distributed load (which is the best an o�-line algorithm could hope to accomplish) andthe actual load, we would have obtained a 1 + o(1) competitive ratio.1.5 Other Related WorkOur problem is related to a chip game analyzed in [1]. In this game chips are placed in stacks onthe integers, and in each round, two chips which are in the same stack may be selected, and one ofthem moved one step to the right while the other is moved one step to the left. This is the samething that happens in the edge orientation game when a pair of vertices with the same indegree-outdegree di�erence is given; the di�erence between the games is that in ours pairs which are notcolocated may also be selected (and moved toward each other). While our game can continue adin�nitum, the game of [1] must terminate, and some of the principal results of that paper concernthe terminating states. In particular it is shown there that from any initial state of chips, there isa unique terminating position; and when n chips start all at the origin, no chip can be brought todistance more than d(n� 1)=2e from the origin.One can obtain an upper bound of d(n � 1)=2e=2 on the maximum unfairness of the greedyalgorithm for the edge orientation problem by a reduction to the case of the game of [1]. Thereduction is to show that for the greedy algorithm, any sequence of requests for pairs of nodes canbe replaced by another sequence, which reaches the same unfairness, but which uses no requestsinvolving non-colocated pairs. (This reduction has also been noted recently by Babu Narayanan.)The worst-case performance of the greedy algorithm for the edge orientation problem is therefore4



exactly d(n� 1)=2e=2. An upper bound of (n� 1)=2 for the more general carpool problem is givenin section 2.1.1.6 Organization of the paperSection 2 gives linear upper and lower bounds on the unfairness of the global greedy algorithm withan adaptive adversary. Section 3 gives upper and lower bounds on the unfairness of the local greedyalgorithm with an oblivious adversary. Section 4 gives a detailed characterization of the behaviorof the global greedy algorithm when given a uniform random sequence of requests. Section 5 givesthe reduction from the vector rounding problem to the two-person carpool game.2 The Global Greedy Algorithm and the Adaptive AdversaryIn this section we describe the behavior of algorithms for the carpool problem in the face of anadaptive adversary. We �rst show (Section 2.1) that the deterministic version of the global greedyalgorithm guarantees an upper bound of n�12 on the maximum unfairness for any sequence ofrequests. This is within a factor of 2 of what is possible against an adaptive adversary; against anyalgorithm an adaptive adversary for edge orientation (2 people per car) can achieve d(n� 1)=2e=2(Section 2.2), while if the adversary can schedule 3 people per car, the lower bound rises to (n�1)=3(see [16]).2.1 The global greedy algorithmAgainst an adaptive adversary it is not much more di�cult to solve the general carpool game thanthe edge orientation game. Thus we concentrate on the more general case here.We consider the following on-line deterministic strategy for the n-participant carpool game. Wemaintain the deviation dj for every j 2 [n]. Initially, dj = 0 for all j 2 [n]. Given a request r (i.e.,a subset of [n] of cardinality 2 or more), the algorithm chooses j 2 r such that dj = mini2r di,breaking ties arbitrarily. The deviations are then updated as follows. dj increases by 1 � 1=jrj.For all other elements i 2 r, i 6= j, di decreases by 1=jrj. Other deviations remain the same. Thisstrategy is the global greedy strategy of [16].We show an upper bound on the unfairness resulting from the deterministic global greedyalgorithm. We note �rst that the deviation dj tracks the cost to each participant in the carpoolgame; thus for any adversary %, the unfairness of global greedy is given by maxj2[n] jdj j, where thevalues of dj are taken at the end of the game.Lemma 2.1 Consider an n-participant carpool game between an adaptive adversary and the globalgreedy algorithm. For every round of the game there exists a weighted directed graph with node set[n], edge set E and weight function w with the following properties.1. 8e 2 E; 1n! � w(e) � 12 :2. 8e 2 E, w(e) = pq , where p; q are integers,and q divides n!. 5



3. 8j 2 [n]; dj = Xe2in(j)w(e) � Xe2out(j)w(e)4. The graph contains no anti-parallel edges: at most one of the edges (i; j) or (j; i) is presentin E.where in(j) is the set of incoming edges incident to j and out(j) is the set of outgoing edges incidentto j.Proof: The proof is by induction on the number of rounds. In the basis no rounds have occurred:take an empty graph.For the induction step, assume the claim holds for t � 1 rounds. Let the t-th request of theadversary be Xt = fi1; : : : ; ikg.De�ne w(i; j) to be the weight of the directed edge from i to j, if such exists, or minus theweight of the directed edge from j to i, if such exists, or 0 otherwise.Without loss of generality, assume that the global greedy algorithm selects i = i1. We willmodify the graph in two steps. The �rst modi�cation, described below, maintains the conditionsof the lemma for round t� 1 and in addition establishes that there is no edge to i from any othernode in Xt. The essential idea of this step is that since i is the poorest member of the group, anydebts owed to i (corresponding to an incoming edge) can be redistributed to i's creditors withoutchanging the deviation for any node in the graph. The second step adds an edge with weight 1=kfrom every ij , 2 � j � k to i. This step has the e�ect of adding 1� 1=k to di1 and subtracting 1=kfrom dij . If these new edges create any pairs of anti-parallel edges, we merge each such pair to asingle directed edge. Its weight is the di�erence between the larger and the smaller weight in thepair, and its direction coincides with the larger weighted edge in the pair. (If the two weights areequal, we remove both edges from the graph.)To complete the proof we show how to do the �rst step. Suppose there exists j 2 Xt such thatw(j; i) > 0. From the de�nition of the algorithm we have that after round t � 1, di � dj. Thus,there exists l 2 [n] such that w(l; j) > w(l; i).We execute the following procedure.while w(j; i) > 0 doChoose l 2 [n] such that w(l; j) > w(l; i)if w(l; j) > 0 thenLet w = minf1=2 � w(l; i); w(j; i); w(l; j)g,Increase w(l; i) by w,Decrease w(l; j) and w(j; i) by w each.else (w(l; j) < 0)Let w = minf1=2 � w(j; l); w(j; i); w(i; l)g,Increase w(j; l) by w,Decrease w(j; i) and w(i; l) by w each.stop .Recall that by the inductive hypothesis, at the beginning of round t, w(e) = pq , where p; q areintegers and q divides n!. Clearly, this property is preserved by the above procedure (note thatn � 2). Moreover, it implies that w(e) continues to be � 1=n! unless it becomes 0. Thus in bothcases of the procedure above, in each iteration the sum of the weights over all edges in the graphdecreases by w � 1=n!. Therefore, this process terminates.6



From the above lemma and the observation that unfairness is equal to max dj , it follows that:Theorem 2.2 Against any adversary %, the unfairness of the global greedy algorithm is at mostn�12 .2.2 Lower bound against an adaptive adversaryIn comparison, we note that the results for the chip game given in [1] (described in Section 1.5)provide a lower bound on the performance of any deterministic algorithm for the edge orientationgame, which we can strengthen to apply to any algorithm facing an adaptive adversary. (Since theedge orientation game is a special case of the more general carpool game this lower bound appliesto the carpool game as well.) If we think of a node's location as the di�erence between its indegreeand outdegree, their results show that any sequence of requests which picks only colocated nodeswill eventually result in the nodes occupying the entire interval [�d(n� 1)=2e; d(n� 1)=2e] (exceptthe origin in case n is even). Moreover it is shown there that the number of requests necessary tobring the nodes to this con�guration is n(n+ 1)(n + 2)=24 if n is even, and (n� 1)n(n+ 1)=24 ifn is odd. (We use this bound on the length of the request sequence later on to prove lower boundsfor randomized algorithms.)This result applies immediately to any deterministic algorithm against even an oblivious ad-versary, since the adversary can simulate the algorithm to determine which nodes are colocated.Against a randomized algorithm an adaptive adversary is required, since otherwise it cannot deter-mine which nodes will be colocated. A much weaker lower bound, which applies to a randomizedalgorithm and an oblivious adversary, is given in Section 3.2.We state the following general version of the result for later use:Theorem 2.3 ([1]) For every deterministic edge orientation algorithm f , for every k 2 Z+,k � 12dn�12 e, there exists an oblivious adversary % that gives a sequence of at most k3 requests,pushing the unfairness achieved by f to at least k.3 The Local Greedy Algorithm and the Oblivious AdversaryIn this section we consider the case of a sequence of requests supplied by an oblivious adver-sary. Section 3.1 describes an algorithm, the local greedy algorithm, that gives an upper boundof O(pn logn) on the unfairness in the edge orientation game (the results of Section 5 allow thisupper bound to be applied to the more general carpool game). Section 3.2 shows how an obliviousadversary can guarantee a lower bound of 3plogn, using techniques similar to those used by theadaptive adversary.3.1 The local greedy algorithmFor the upper bound, it is convenient to consider only the edge orientation game described in theintroduction. Through the reduction in section 5, our results apply to the general carpool problemas well.The upper bound is obtained using the following randomized local greedy algorithm. For eachpair of nodes (i; j) the algorithm keeps track of the di�erence �i;j between the number of edges ni;jdirected from i to j and the number of edges nj;i directed from j to i. When a new (undirected)edge fi; jg arrives, it is directed from i to j if �i;j is negative, from j to i if �i;j is positive, and7



in a direction chosen by a fair coin-
ip if �i;j is zero. (Note that this de�nition is symmetric if weswap i and j, since �j;i = ��i;j.)The algorithm is \locally greedy" in the sense that it always tries to minimize the di�erencebetween nodes i and j independently of their relations with other nodes. This guarantees that foreach pair of nodes i and j, j�i;j j is at most one.The following theorem gives an upper bound on the expected unfairness obtained by the ran-domized local greedy algorithm:Theorem 3.1 Against any oblivious adversary, the randomized local greedy algorithm gives anexpected maximum unfairness at any step of O(pn logn).Proof: Fix a time in the execution and consider a particular vertex i. Let Xi be the randomvariable whose value is the di�erence between the indegree and outdegree of j. We can computeXi as the sum of �i;j over all nodes j distinct from i.Now for each such j, if fi; jg was requested an even number of times, then �i;j = 0. If fi; jgwas requested an odd number of times, then �i;j is 1 with probability 12 and �1 with probability12 (the value being determined by the coin-
ip that orients the last fi; jg edge.) Furthermore,the �i;j values are mutually independent for di�erent values of j. By Cherno�'s bound, 8a > 0,Pr[jXij > a] < 2e�a2=2k, where k � n � 1 is the number of nodes i for which fi; jg was requestedan odd number of times. Summing up over all nodes i Pr[9i; jXij > a] � 2ne�a2=2n. Takinga = 2pn lnn gives a probability of 2=n. Since maxj2[n]Xi � n� 1, the theorem follows.3.2 Lower bound against an oblivious adversaryThe upper bound derived in the preceding section can be compared with the following lower boundfor any algorithm facing an oblivious adversary.Theorem 3.2 For any algorithm for the edge orientation problem, there exists an input sequencethat produces an expected maximum unfairness of 
 � 3plogn�.Proof: Rather than showing how to construct such a sequence, we will de�ne a single distribu-tion over input sequences such that for any deterministic algorithm, the lower bound holds. Bythe minimax principle of von Neumann (see [23, 11]), the existence of this \mixed strategy" forthe adversary that works equally well against any deterministic algorithm, implies that for eachrandomized algorithm there is a corresponding \pure strategy" for the adversary that achieves thesame bound.To get the adversary's mixed strategy, we modify the adaptive lower bound of Theorem 2.3.The essential idea is to divide the set [n] of nodes into small disjoint subsets of size k (where k willbe determined later). In each such subset we will run the at most k3-long sequence from Theorem2.3 based on a random \guess" about how the algorithm breaks ties. If we have enough subsets,with high probability one of these guesses will be correct and we will get the desired unfairness.Let us make this informal description more precise. For simplicity, assume that n is divisibleby k and that k is even. Let ` � k3 be the exact length of the sequence produced by Theorem 2.3to achieve unfairness k. For each set we generate a random sequence of ` pairs of nodes whosedistribution is given by following the strategy of Theorem 2.3 against an imaginary algorithm inwhich edges are oriented according to independent random coin 
ips. (The theorem applies sincehaving �xed these ` independent random coin 
ips, the behavior of the algorithm is deterministic.)There are 2` equiprobable sequences of coin 
ips. If the coin 
ips match the decisions made bythe real algorithm within a particular group, then by Theorem 2.3, some node in this group reaches8



unfairness k=2. Let Xi, i = 1; 2; : : : ; n=k, denote the indicator variable for the event that a nodein the i-th set reached unfairness k=2. Then 8i; P rob[Xi = 1] � 2�` � 2�k3 . Since the Xi's areindependent random variables, the probability that any Xi reaches k=2 is at least 1��1� 2�k3�nk .If we take k � 3plog n, this probability is bounded below by a constant.4 The Global Greedy Algorithm and Uniform RequestsIn this section we analyze the behavior of the global greedy algorithm for the edge orientationproblem, in the case where the adversary schedules the edges uniformly at random. The combinationof the adversary and the algorithm is represented as a Markov process. Since requests are uniform,we can forget about the identity of the nodes and describe a single state of the Markov chain by alist consisting of the number of nodes at each position, where the position of a node is given by itsindegree minus its outdegree.When two nodes are paired, they either each move one step away from the other, if they are atthe same position; or each move one step toward the other if they are not. Intuitively, we can thinkof the process as a balance between a \repulsive force" between colocated nodes and an \attractiveforce" between distant ones. To stretch this physical analogy further, we would expect that theattractive force, being stronger in spread-out con�gurations, would tend to gather the nodes intoa tight clump held apart only by pressure from the repulsive force.Our �rst analysis of the system, in Section 4.1, shows that the nodes do in fact clump together,and that in the stationary distribution of the Markov chain the expected maximal unfairness isO(log n). We de�ne a potential function on the states of the system, in which each node contributesan amount that is exponential in its deviation from 0 in that state. Since the Markov chaincorresponding to the system is ergodic when n � 3, we can use the fact that in the stationarydistribution the expected change in the value of the potential function is 0. We show that at anystate where the maximal unfairness exceeds O(log n), the potential function is likely to drop by alarge amount: the expected decrease in the value of the potential function is at least n� 1. On theother hand we show that from any state, the potential function can rise by at most 1. For thesesmall rises to balance out the large drops in the states with unfairness greater than O(log n), theprobability of \high" unfairness can be at most O(1=n); and since (as we show) the unfairness ofany state cannot exceed n, the expected unfairness is just O(logn).However, in our simulations of the process it appeared that the maximum unfairness of theglobal greedy algorithm against a uniform random adversary was much smaller than O(log n). Anapproximation to the process (described in Section 4.2) suggested that the typical maximum unfair-ness was closer to O(log log n). Proving this result without making the unwarranted assumptionsneeded for this approximation turned out to be quite di�cult. However, after examining the processmore closely, we obtained the tight asymptotic bounds of �(log logn) on the expected maximumunfairness described in Sections 4.3 and 4.4. We also show, in Section 4.5, that regardless of whatstate the process starts in, it quickly converges to this bound.As the proofs are rather involved we give a simple overview here. We obtain the O(log logn)upper bound through a sequence of tighter and tighter approximations. To start, we pick a timeinterval of length nlog log n, whose starting point t is any point in the execution. We show thatwith high probability, the maximal unfairness goes below log n by time t + n4, and then staysbelow 2 log n throughout the interval. For the next step we restrict our attention to the subintervalstarting at t+n4. For each � > 0, with high probability we can chop o� a pre�x of this new intervalwhose length is polynomial in n, leaving a su�x in which the unfairness of all but �n nodes is9



bounded by a constant k. For any such interval we show that with high probability, we can chop o�a second pre�x, whose length depends polynomially on n but not at all on k or �, to leave a su�xin which at most �2n nodes are above k + 2. Repeating this operation log logn times gives us aninterval whose length is only polynomially less than the interval we originally started with, and inwhich the maximal unfairness is at most O(log log n) (with high probability). Since for su�cientlylarge n the low-unfairness interval is much longer than the high-unfairness interval, it dominatesthe average and thus gives an O(log log n) upper bound on the expected unfairness.This analysis is tight: by time t+n5, the unfairness is at least log log n and stays above log lognfor at least nlogn additional steps. The proof of this lower bound mirrors the proof of the upperbound. We show that with high probability, any su�ciently long interval throughout which theunfairness of at least �n nodes is at least k contains a su�x, whose starting point is polynomiallyshifted, in which the unfairness of at least c�2n nodes is at least k + 1; after log log n iterations ofthis process we are left with an interval whose length is close to the length of the original interval wepicked, such that with high probability, throughout this resulting interval, the maximal unfairnessis at least log logn.4.1 A simple O(logn) upper boundThis section describes a simple O(log n) upper bound on the maximal fairness. This upper bound isthe starting point of the sequence of approximations used to get the O(log logn) bound in Section4.3. The de�nitions given here of the behavior of the global greedy algorithm and of the state spacewill also be used in subsequent sections.4.1.1 The Markov chainWe maintain a position dj for each node j in [n]. Initially, dj = 0 for all j. Given a request fora pair of nodes, the algorithm increases by one the position of the node whose current position isthe smallest among the two, and decreases by one the position of the other particle in the pair.If two particles in the same position are requested, we 
ip an unbiased coin to determine whichgoes up and which goes down. Other positions remain the same. This is a randomized version ofthe global greedy strategy of [16]. We assume that the sequence generated is very long. The exactmeaning of \very long" will be explained shortly. (We note that randomization of the on-line playeris not essential to the analysis since, against the uniformly random adversary, the nodes may beconsidered unlabeled.)Given such random input, the behavior of the global greedy algorithm can be represented as aMarkov chain. By our analysis of the deterministic global greedy performance in Section 2.1, weknow that jdj j � d(n� 1)=2e for all j 2 [n]. Thus, if the nodes are labeled, then the state space isf�d(n � 1)=2e; : : : ; d(n � 1)=2egn. The i-th coordinate of a state s, denoted si, is the position ofthe i-th node on the line. We now de�ne the transitions and their probabilities. Let s be a stateand fi; jg a possible request. Without loss of generality, assume si � sj. If si < sj, then withprobability �n2��1 there is a transition to s0 with s0i = si + 1, s0j = sj � 1 and for all k 62 fi; jg,s0k = sk. If si = sj, then with probability �n2��1=2 there is a transition to s0 as above, and withthe same probability there is a transition to s00 with s00i = si � 1, s00j = sj + 1 and for all k 62 fi; jg,s00k = sk. For n � 3 it is easy to see that limited to the set of states reachable from the initialstate of the all-zero vector, this Markov chain is ergodic and therefore converges to a stationarydistribution. We are interested in the long-term behavior of the chain and therefore assume thatthe adversary sequence is long enough for the stationary behavior to be dominant.10



If the nodes are unlabeled, which we can assume since we are considering the uniformly randomadversary, then e�ectively we are interested in a smaller Markov chain. This smaller chain is acoarsening of the above chain in which each state is simply a count of the nodes lying at eachposition: thus, the state is represented by a vector n�d(n�1)=2e; : : : ; nd(n�1)=2e where each ni is thenumber of particles at position i. Let pj = nj=n. Note that if s is a state reachable from the all0's vector, then Pi ini = 0.4.1.2 The potential functionHere we de�ne the potential function that we will use to show that the expected maximum unfairnessis O(log n). Let � = 32 and let the potential function�(s) = d(n�1)=2eXj=�d(n�1)=2enj � �jjj:Let ��(s) = Es0 [�(s0)]��(s), where s0 denotes the (random) state reached from s in one stepof the Markov chain.We wish to estimate ��(s). The following fact is easily veri�ed:Fact 4.1 If s0 is any outcome of requesting two nodes occupying the same position, then �(s0) ��(s) > 0. If s0 is the outcome of requesting two nodes that are at distance 1 apart, then �(s0) ��(s) = 0. Otherwise, �(s0)� �(s) < 0.Estimating ��(s) is done by estimating the contribution of each position separately, and addingup those contributions. The idea is to show that for any j 6= 0, the positive contribution due to twonodes in j being requested is overwhelmed by the negative contribution due to a node in j and anode on the other side of 0 being requested. We will ignore other requests. They can only increasethe negative contribution. In order to do this correctly, we need to consider disjoint events, so, toevaluate the contribution of position j, we will consider ordered pairs, where the �rst of the two isfrom j. The following fact is also easily veri�ed:Fact 4.2 Under a uniform distribution over pairs of nodes,Prob[j; j] = Prob[ordered j; j] � p2j ;and 12Prob[i; j; i 6= j] = Prob[ordered i; j]= Prob[ordered j; i] � pipj :These relations are inequalities (rather than equalities) because we draw each pair without replace-ment; this makes it slightly less likely that we will draw two nodes at the same location.Let Aj be the event that the �rst node in a pair is j (given that we are at con�guration s).Formally, the contribution of position j to ��(s) is pjE[�(s0)� �(s)jAj]. We now show:Lemma 4.3 For j, 1 � jjj � d(n � 1)=2e, the contribution of position j to ��(s) is at most�16p2j�jjj. 11



Proof: Let j > 0. The argument for j < 0 is symmetric. If the pair j; j is chosen, the increasein the potential function is �j+1 + �j�1 � 2�j . On the other hand, if the (ordered) pair chosen isj; i (i < 0), the decrease in the potential function is �j + �i � �j�1 � �i+1. We need an estimateon the distribution of nodes on the negative side. Since the sum of the positions of the nodes is 0,the nj nodes at j must be balanced by nodes in negative positions. Hence:Xi<0(�i)ni � j � nj:It is not di�cult to see that the worst case (the least decrease in �) is when equality holds andwhen all the negative side nodes are in one position �x. Notice that we might need to consider anon-integral x. So, we get xn�x � jnj, or p�x � jxpj. The total decrease in the potential functiondue to position j is at least:p2j � jx ��j + �x � �j�1 � �x�1� � �j+1 � �j�1 + 2�j� ;for x minimizing this expression. Observe that this decrease is essentially the sum of two �rstderivatives of �j , minus its second derivative. The basis of our lower bound on this expression isthat for � below some threshold, the increase due to the �rst derivative (representing the choice ofnodes at two di�erent locations) dominates the decrease due to the second derivative (representingthe choice of colocated nodes).We show that for j > 0 the decrease is at least p2j�j=6, i.e. that for all j � 1 and x > 0,j ��j + �x � �j�1 � �x�1�> x��j+1 + �j�1 � 2�j + 16�j� ;or j �1� ��1���j + �x� > x��+ ��1 � 116 ��j :Recalling that � = 32 we want to prove that13j ��j + �x� > 13x�j :If x � j this is trivial. If x > j write r = x � j > 0. We wish to show that j�r > r, and sincej � 1 it su�ces to show that �r > r for all r > 0. Let � = minr �r � r. Some calculus shows that �is achieved at r = � log log�log� ; and moreover that � varies monotonically in �. Thus we can solve for� = 0, �nding that this is achieved for � = e1=e � 1:4447, and conclude that � > 0 for all � > e1=eand in particular for the chosen � = 32 .For j = 0 we cannot guarantee a negative contribution. However, we can upper bound theconditional positive contribution by 2��2 = 1, since the probability of choosing a pair in positions(0; 0) is at most 1 and the total increase due to these positions is at most 1.Concluding the above discussion: the contribution of position 0 is at most +1. The contributionof position j, jjj � 1 is at most �16p2j (32)jjj.Let T = 3 log 32 n + log 32 6 and assume n � 3. Then, if s has a node whose distance from 0 ismore than T , then ��(s) � �n+ 1 (note that if this node's position is j, then pj � 1n).Now, partition the state space into two subsets: A contains those states that do not contain anode beyond T ; B contains the other states. We have12



Fact 4.4 8a 2 A, ��(a) � 1. 8b 2 B, ��(b) � �n+ 1.Since the total expected change in �, under the stationary distribution, must be 0, it must holdthat under the stationary distribution, Prob[B] � 1n . It follows that:Theorem 4.5 For n � 3, in the stationary distribution, the probability that any node is beyonddistance T = 3 log 32 n+log 32 6 from the origin is at most 1=n. Thus the expectation of the maximumdistance of a node from the origin is � T + 1 = O(log n).4.2 An approximation suggesting the O(log logn) boundsThis section describes an approximation by a dynamical system to the Markov chain described inthe previous section. This approximation justi�es the intuition that the \attractive force" operatingbetween nodes (which we will think of as \particles") at all distances is likely to overwhelm the\repulsive force" operating on colocated nodes. However, it requires some assumptions that arenot necessarily warranted in the edge orientation game, and thus must be taken only as a hint ofthe actual state of a�airs. The true bounds are shown in Section 4.3 and 4.4.Focus on a single particle. At each step, we pair our particle with another random particle,which we will call the second particle of the step. We can view our particle as making a randomwalk along the fairness axis. The probability that the unfairness of our particle will increase byone at a certain step equals (the probability that the step's second particle has higher unfairness)plus (half the probability that the step's second particle has the same unfairness). In other words,the dynamical system below describes our system under two assumptions:1. We assume that the random walk of a single particle converges to a stationary distribution.2. We assume that the probability of the second particle to have unfairness � j is independenton whether our particle is at j.Neither of these assumptions are necessarily true for the edge orientation process; however,making these assumptions appears to give a good approximation of the process when n is large.We thus consider the following dynamical system:8j; �m � j � m; pj = rj�1pj�1 + `j+1pj+1;p�m�1 = pm+1 = 0;where 8j; �m < j < m; 1� rj = `j = j�1Xi=�m pi + 12pj;and `�m = rm = 0:Lemma 4.6 There exists a (symmetric around 0) stationary distribution of this dynamical systemsuch that1. p0 � 16 ;2. 8j 6= 0, pj � (35 )jjj�1. 13



Proof: Fold the dynamical system as follows. Letqj = ( p0 j = 0pj + p�j j > 0:By symmetry, 8j 6= 0, qj = 2pj . Also,Pr[right move from j] = 8><>: 1 j = 00 j = mrj otherwise:The following is a stationary distribution of the folded system.qj = r1r2 � � � rj�1`1`2 � � � `j q0:Since 0 � rj�1 � rj�2 � � � � � r1 = 1� p0 � p12 � 12 � 1 + p0 + p12 = `1 � `2 � � � � � `j � 1;we have that q1 = q0`1q0 � q0`1 � 2q0qj � �r1`1�j�1 2q0:Let t = r1=`1. We have thatt = 1� p0 � p11 + p0 + p1 � 1� 32q01 + 32q0 = 1� 3q01 + 32q0 :Since 3x=(1+3x=2) is monotonically increasing, we have that if q0 � � then t � 1�3�=(1+3�=2).We have that1 = mXj=0 qj � q00@1 + 2 mXj=1 tj�11A � q0 �1 + 21� t� � q0 1 + 2(1 + 32q0)3q0 ! ;where the last inequality follows from the assumption that q0 < 2=3, justi�ed by t > 0. We getthat q0 + 2=3 + q0 � 1, or q0 � 1=6. We also get t � 3=5, which completes the proof.Corollary 4.7 q10 � 13 .Lemma 4.8 Using the above notation, 8j � 10, qj � pqj+1.Proof: We prove by induction on i that qm�i � pqm�i+1.Basis: i = 0. Trivial, since qm+1 = 0.Inductive step: Assume correctness for j = m� i and higher indices. We have thatqj = qj�1 rj�1`j ;14



or qj�1rj�1 = qj`j:Now, rj = 14qj + 12 mXk=j+1 qk;and `j = 1� rj:So, qj�1 2414qj�1 + 12 mXk=j qk35 = qj 241� 14qj � 12 mXk=j+1 qk35 : (1)Using the inductive hypothesis,mXk=j qk � qj + q2j + q4j + q8j + � � � � 53qj � qj�1;where the second inequality can be shown using Corollary 4.7 and the third inequality follows fromthe proof of Lemma 4.6. Similarly, we get from the inductive hypothesismXk=j+1 qk � qj:Plugging these inequalities into 1 gives34q2j�1 � qj�1 2414qj�1 + 12 mXk=j qk35 = qj 241� 14qj � 12 mXk=j+1 qk35 � 34qj ;where the last inequality assumes qj � 13 .Lemma 4.8 and Corollary 4.7 guarantee a double exponential decline of the distribution, thusproviding an O(log logm) bound on the expected deviation from 0.4.3 Expected maximal unfairness is O(log logn)This section gives the proof for the upper bound of O(log log n) for the expected maximal un-fairness of the greedy algorithm running against the uniform random adversary. The argument isbased on a chain of implications of a special form described in Section 4.3.1. The argument usesseveral corollaries of Hoe�ding's inequality for martingales (also known as Azuma's inequality); thestatement and proof of these lemmas can be found in Appendix A. The argument itself appears inSection 4.3.2.Since the argument is rather involved, we give here a road map to its intricacies. Lemma4.11 shows that if we �x an interval [t1; t1 + n�] by choosing t1 uniformly at random from thesteps of a su�ciently long execution, then with high probability the maximal unfairness is O(log n)during that interval. Using a potential function argument (Lemmas 4.12 through 4.16) we showthat this implies (with high probability, in the sense described in Section 4.3.1) that for all but apolynomially-sized pre�x of the interval at most �n of the particles have an unfairness above someconstant (Corollary 4.17). The next step is to show that if at most �n particles have an unfairness15



above k throughout some interval then (with high probability) at most O(�2)n are above k + 2beyond a polynomially-sized pre�x of this interval (Lemma 4.18). To apply this fact repeatedly weneed to prove a uniformity condition on the probabilities that the implication fails (Lemmas 4.19and 4.20). Iterating it (Lemma 4.24) shows that, with high probability, at most n9=10 particles goabove some constant unfairness throughout a su�x of the original interval, which implies (fromLemmas 4.21 and 4.22) that with high probability no particle rises above this constant level plusO(log logn) during yet another su�x of the original interval. Since this statement is highly quali�edboth in terms of its probability of occurrence and the interval during which it is likely to hold, asmall amount of additional work is required to show that, for a time chosen uniformly from a largeenough interval, the expected unfairness at that time is O(log logn). This last step is the proof ofTheorem 4.25.The proof in this section does not address the issue of the rate of convergence to low maximalunfairness starting from an arbitrary state. In Section 4.5 we provide an analysis that, whencombined with the analysis in this section, will provide the speed of convergence.4.3.1 Probabilistic Delayed ImplicationThe proof of the upper bound of O(log log n) for the expected maximal unfairness of the greedyalgorithm works by analyzing the Markov process generated by the interaction between the de-terministic global greedy algorithm and the uniform random adversary. In the end, it is shownthat with high probability, for most of any su�ciently long execution the maximal unfairness isO(log logn). This fact is the consequence of a chain of intermediate facts that characterize thebehavior of the process over large intervals of the execution. For example, we will show that anyexecution is likely to contain long intervals during which the maximal unfairness is O(log n); usingthis fact we can then show that the process will tend to a situation where all but a constant frac-tion of the particles have at most a constant unfairness; and �nally to one in which the expectedmaximal unfairness is O(log log n) and remains so over a long interval.Knowing only that some condition � (e.g., maximal unfairness is O(log n) holds throughout aninterval will often not be enough to guarantee that some other condition � (e.g., maximal unfairnessis O(log logn)) holds throughout the same interval, even though � describes conditions under which� is likely to become true. The reason for this is two-fold. Because the system consists of manysmall components, it may take time for the e�ect of � to propagate through the system and cause� to become true. And because the system is a random process, we will not be able to completelyexclude the possibility that � does not happen or does not persist despite good conditions for itsoccurrence. Instead, the most we can say is that it is likely that if � holds throughout an interval,then � holds throughout a su�x of that interval.We will express such statements as probabilistic delayed implications. Formally, suppose thatfor each n, �n and �n are unary relations de�ned on the set of all possible unfairness functions (forn people). If at time t the unfairness function satis�es �n (alternatively, �n) then we will say that�n(t) (�n(t)) holds. If t1; �; � are positive real numbers we will denote by W (�n;�n; t1; �; �) thefollowing statement:(8t 2 [t1; t1 + n�];�n(t))! (8t 2 [t1 + n�; t1 + n�];�n(t))This says that if �n holds throughout the interval [t1; t1+n�], then �n holds throughout a su�xof that interval consisting of all but the �rst n� steps. Such a statement is a delayed implication.What turns it into a probabilistic delayed implication is its placement in the following context,which forms the basic structure of several of our lemmas:16



8� > 0;9� > 0;8� > 0, if n is su�ciently large then for all positive integers t1 we havePr [W (�n;�n; t1; �; �)] � 1� n��:If this statement holds then we will write � � � or � pd-implies �. Since all of the variables inthe statement except � and � are bound by the quanti�ers this relation is well-de�ned. It is notdi�cult to see that if �1 � �2 � �3 then �1 � �3.Remark 4.9 It will be important for our arguments that the entire implication is used to de�nethe event whose probability is being measured. This makes it possible to estimate the probability inquestion by considering a collection of independent random events. If we put the premise outside,or equivalently if we use the probability of the consequence conditioned on the truth of the premise,then we will lose the independence of these events.Because the transitivity of � depends on being able to change the exponent �, it only works ifwe use it a constant number of times. However, the proof depends on being able to apply a chainof probabilistic delayed implications whose length is a function of n. To do so, we must �rst applya uniformity condition. Given, for each n, an index set In and a set of pairs f��n;��nj� 2 Ing ofunary relations on the set of unfairness functions for n people, we will say that �� � �� uniformlyin � if the following holds:8� > 0;9� > 0;8� > 0 if n is su�ciently large then for all positive integer t1 and for all � 2 Inwe have Pr [W (��n;��n; t1; �; �)] � 1� n��:Uniformity gives us a stronger version of transitivity. Intuitively, if we have a chain of n uniformpd-implications, we can combine them so that the �rst relation in each chain pd-implies the lastrelation. Because the de�nition of uniform pd-implication is rather complicated this intuitivestatement must be expanded on a bit:Lemma 4.10 Let that In = f1; : : : ; rng where rn � n, and for each n, let �in, i = 1; : : : ; rn; rn + 1be a sequence of unary relations on the set of unfairness functions for n people. For each � 2 In let��n = ��n, ��n = ��+1n . Finally let ��n = �1n, ��n = �rn+1n . If ��n � ��n uniformly in � then �� � ��.Proof: Suppose that � > 0. We apply the de�nition of �� � �� uniformly in �, with � replacedby �0 = �+1. Let � > 0 be the number whose existence is guaranteed by the de�nition. We claimthat for any t1 and � > 0 Pr[W (��n; ��n; t1; �+ 1; �)] � 1� n��The proof is by bounding the probability that W (��n; ��n; t1; � + 1; �) does not hold. If it doesnot hold, there is a positive integer j, 1 � j < n so that it is not true that(8t 2 [t1 + (j � 1)n�; t1 + n�];�jn(t))! 8t 2 [t1 + jn�; t1 + n�];�j+1n (t),For any �xed j 2 f1; : : : ; n� 1g the assumption that �� � �� implies that the probability of theabove event is at most n��0 = n���1. Since there are at most n choices for j, the probability thatW (��n; ��n; t1; �+ 1; �) fails is thus at most n��.
17



4.3.2 The ProofWe denote by s(t) the state of our Markov chain at time t. We now de�ne several random variableson s(t). We abuse notation and de�ne s(i; t) as the position of particle i at time t. (Using this,s(t) = f(i; s(i; t)) j i 2 [n]g.) N=k(t) denotes the cardinality of the set fi j js(i; t)j = kg. Similarly,N�k(t) denotes the cardinality of the set fi j js(i; t)j � kg. Since the behavior of the system dependson the position of uniformly-chosen participants, it will be convenient to normalize these quantitiesby dividing by n; accordingly, let �=k(t) = N=k(t)=n and ��k(t) = N�k(t)=n. The quantity max(t)denotes the maximum k for which N=k(t) > 0. For every � in the range 1 < � < 2, we de�ne apotential function �� over the state space of the Markov chain:��(s(t)) = Xi2[n]�js(i;t)j:In addition, we de�ne,���(s(t)) = E[��(s(t+ 1))� ��(s(t)) j s(t)]:(In other words, ���(s(t)) is just the expected change in �� in the next step of the process startingfrom s(t).)Let Ej(t) be the event that the �rst particle in the pair chosen at time t is j. The contributionof position j to ���(s(t)) is �j(t)E[��(s(t+ 1)) j s(t) ^Ej(t)]���(s(t)). Recall that Lemma 4.3says that the contribution of position j is at most �16p2j�jjj when jjj � 1.Let T be an extremely large integer. We bound E[max(t)] on an interval whose starting pointis chosen uniformly at random in [T ], and whose length is su�ciently long and �xed in advance.Let t1 2U [T ], and let n� be the length of the interval we choose. From now on our goal is to boundE[max(t)] for t 2 [t1; t1 + n�].Let � = 32 . The next lemma constitutes the �rst step in our proof.Lemma 4.11 Denote � = log2 12log2 n . Let t1 2U [T ]. Let � > 0, c > 2+ �+�, � < c� 2� �� �. Then,if n � 3, Pr[8t 2 [t1; t1 + n�]; max(t) � c log� n] > 1� n��:Proof: Lemma 4.3 of Section 4.1 states that the contribution of position j, jjj � 1 to ���(s(t))is at most �16p2j�jjj. If n � 2, c � 1, clearly c log� n � 1. Thus, for every c � 1, the contributionof position �c log� n (if there are any particles there) is at most �nc�2=6.Partition the state space into two subsets: A contains those states that contain a particle i whoseabsolute position is at least c log� n, which by the above discussion contribute at most �nc�2=6each; and B contains the other states. We thus have8a 2 A;���(a) � �nc�2=6; 8b 2 B;���(b) � 1:The total expected change in �, under the stationary distribution, must be 0. Since withhigh probability t1 occurs after we have come arbitrarily near to the stationary distribution, wehave that for each t 2 [t1; t1 + n�], the absolute expected change in �(s(t)) is at most 1. Hence,Pr[s(t) 2 A] � 12n2�c. Thus,Pr[9t 2 (t1; t1 + n�];max(t) > c log� n] � n�12n2�c = n2+��c+� < n��:Here n� substitutes for the constant 12, which would otherwise add clutter to the n�� bound.18



We will need the following technical lemma:Lemma 4.12 Let 1 < � < 4140 . Let � = � � 1. Let d > 4�3=�2 . Let n be su�ciently large. If��(s(t)) � dnthen ���(s(t)) � � �40n��(s(t));where � = �� �2 � ��2 > 0:Proof: Let Ci be the expected change in � conditioned upon i being the �rst element of the pairthat marks the time t transition. We prove that for any �xed i we haveCi < � �40�js(i;t)j:Since the expected change in ��(s(t)) is 1nPi Ci this implies the lemma.Suppose that i is �xed and let j = s(i; t). Without loss of generality, assume that j � 0. Let i0denote the other particle that is hit at time t. We distinguish between three cases according to thevalue of j. We use the following:�j+1 � �j = ��j ;�j � �j�1 = ��j�1 = �1+��j � (�� �2)�j , provided that j > 0.Case 1. j < 3�2 . If s(i0; t) = j, then � increases by�j+1 + �j�1 � 2�j � ��j < �(1 + �)3=�2 :In all other cases, � either stays the same or decreases. If s(i0; t) > 3�2 , � must decrease, so webound the expected decrease by considering particles from the range above 3�2 only. Let Ni denotethe expectation of the change in � conditioned on i being the �rst element in the pair and theother element in the pair being in position other than j. We getNi � � 1n Xi0;js(i0;t)j> 3�2 h(�� �2)�s(i0;t) � ��ji� � �n Xi0;js(i0;t)j> 3�2 �s(i0;t):Since ��(s(t)) > dn and d > 2�3=�2 , Pi0;js(i0;t)j>3=�2 �s(i0;t) > dn=2. Therefore, Ni < � �d2 . Thus,Ci < �(1 + �)3=�2 +Ni� ��d4� ���j:Case 2. j � 3�2 and Pj02[�j; 1� j] pj0 � 910 .The positive contribution to the change in � (due to the case s(i; t) = j) at most pj((�j��j�1)+(�j � �j+1)) � pj(���j + (�2 � �)�j) = pj�2�j . In order to estimate the negative contribution,19



we ignore particles whose position is in the range [�j; 1� j]. They can only decrease the negativecontribution. Therefore, the negative contribution is bounded above by� 1n Xi0;s(i0;t)> 1� j ���s(i0;t)�1 � �j�� 1n Xi0;0�s(i0;t)<�j ���j�1 � �s(i0;t)�� 1n Xi0;s(i0;t)<0 ��j�1:Recall that � < 32 . We use that for j � 3�2 , j0 � 1� j, � � 3=2, it holds that�j0 � �j > 12�j ;since (1 + �)3(1��)=�3 � 23(1��)=�2 > 32 . Also, for j; � as above, 0 � j0 < �j, we have�j�1 � �j0 > 12�j ;since 12� + ��3(1��)=�2 < 34 + 14 = 1:Obviously, �j�1 > 12�j:We conclude that Ni < � Xi0;s(i0;t)=2[�j; 1� j] �2n�j :Since Pj02[�j; 1� j] pj0 � 9=10, we get Ni < � 120��j, and therefore, since � � 140 , which gives pj�2�j �140��j , we get Ci < � 140��j:Case 3. j � 3�2 and Pj02[�j; 1� j] pj0 > 910 .The positive contribution to Ci is again at most pj�2�j . In order to get an upper bound on thenegative contribution we consider two subcases:Case 3.a. Pi0;s(i0;t)2[�j; 1� j] s(i0; t) � 2nj10 .According to the assumption Pj02[�j; 1� j] pj0 > 910 , so the set Y = fi0js(i0; t) 2 [�j; j=�]g hasat least 910n elements. Since the sum of the values of the function s on this set is at most 210njthere must be a Y 0 � Y , jY 0j � 410n so that for all i0 2 Y 0 we have s(i0; t) � j2 . We consider thecontribution due to elements of Y 0 only.The contribution of a pair i; i0 where i0 2 Y 0 is at most ��(�j�1��s(i0;t)). Since s(i0; t) � j2 andj � 3=�2 We have that �s(i0;t) � 12�j�1 (using �j=2�1 > 2). Since �j�1 > 23�j , we conclude thatthe contribution of the pair i; i0 is at most �13��j. Since Y 0 has at least 410n elements we get thatNi < � 430��j < � 120��j. We conclude as in case 2 thatCi < � 140��j:Case 3.b. Pi0;s(i0;t)2[�j;j=�] s(i0; t) > 2nj10 . 20



The negative contribution is at most� 1n Xi0;s(i0;t)<0 �(�j + �js(i0;t)j):Since Pi0 s(i0; t) = 0, the assumption of case 3.b. implies thatK = Xi0;s(i0;t)<0 js(i0; t)j � Xi0;s(i0;t)2[�j;j=�] s(i0; t) > 2nj10 :We will use the following fact.Fact 4.13 If H is a �nite set with at most u elements and h is a nonnegative function on H and
 > 1, K > 0 and 
K=u > 3, then Px2H 
h(x) has its minimum over all nonnegative functions hand sets H with the conditions Px2H h(x) = K, jHj � u if h is a constant and jHj = u.Observe that since Pj02[�j; 1� j] pj0 > 910 , the set Y = fi0js(i0; t) < 0g has at most 110n elements.Thus, we apply the above fact with H := fi0js(i0; t) < 0g, u := dn=10e and 
 := �. (Notice that�K=u � �2j � �6=�2 > 3.) Since j � 3�2 , we get that the negative contribution is at most� 110n 1n��2j � � 110��j;and hence Ci < � 140��j:Next we can show:Lemma 4.14 Let c > 0 such that � = �1=8c < 4140 . (Notice that since � = 32 > 1 we have � > 1.)Let d > 8�3=(��1)2 . Let � > 0 and n su�ciently large. ThenPr " (8t 2 [t1; t1 + n3]; max(t) � c log� n)!(9t 2 [t1; t1 + n3]; ��(s(t)) � dn2 ) # � 1� n�2�:Proof: For all t, let Xt = ��(s(t+ t1)). Let Yt be the indicator ofmax(t+ t1) � c log� n and Xt > dn=2:We de�ne random variables Zt recursively as follows. For t = 0, let Z0 = minfX0; n2g. Noticethat if Y0 = 1 then Z0 = X0. For t > 0, if Yj = 1 for each j � t, then Zt = Xt; otherwise,Zt = Zt�1 � 1= log n. In e�ect, Zt tracks Xt until the condition above is violated, after which itdecays at the rate �1= log n.For su�ciently large n, the Z's satisfy the conditions of Corollary A.2 withA = n2, B = O(n1=8),and C = �1= log n. (Notice that if n is su�ciently large, �1= log n is larger than the negative driftguaranteed by Lemma 4.12 in the case Xt > dn=2.) Take � = p4� lnn. From Corollary A.2 we getPr[Zn3 < 0] > 1� n�2�:(We can use here n= log n > 1 + 4p� lnn.) By Fact A.3 we may conclude thatPr[9t 2 [t1; t1 + n3]; (max(t) > c log� n) _ (��(s(t)) � dn=2)] � 1� n�2�:21



Lemma 4.15 Let c; d; � be as in the previous lemma and n su�ciently large. ThenPr264 [(8t 2 [t1; t1 + n�]; max(t) � c log� n)^(9t 2 [t1; t1 + n3]; ��(s(t)) � dn2 )]!8t 2 [t1 + n3; t1 + n�]; ��(s(t)) � dn 375 � 1� n�2�:Proof: Let t2 be the smallest t 2 [t1; t1 + n3] such that ��(s(t)) � dn=2. If no such t exists, lett2 =1. (Notice that t2 is a random variable.) We show thatPr" ((t2 <1) ^ (8t 2 [t2; t1 + n�];max(t) � c log� n))!(8t 2 [t2; t1 + n�]; ��(s(t)) � dn) # � 1� n�2�: (2)Let Xt = ��(s(t+ t2)). Let Yt be the indicator oft2 <1 and max(t+ t2) � c log� n:De�ne random variables Zt as follows. If t2 < 1, then Z0 = X0; otherwise Z0 = dn=2. For allt > 0, if 8j � t, Yj = 1, then Zt = Xt; otherwise Zt = Zt�1 � 1= log n. The Z's satisfy theconditions of Lemma A.5 with � := 2(�+ �), A;D := dn=2, B := n1=8, C := 1= log n. (We can usehere n3=4=(log n) � 8(�+ �)=d.) Therefore, we get thatPr[8t 2 [0; n�]; Zt � dn] > 1� n�2�:Using Fact A.4, inequality 2 follows.Lemma 4.16 Let c > 0 such that � = �1=8c < 4140 . Let d > 8�3=(��1)2 . Let�n(t) � max(t) � c log� n;�n(t) � ��(s(t)) � dn:Then �n � �n.Proof: Suppose that � > 0 is given. Let � = 3 and let � > 0 be arbitrary. We show that forevery su�ciently large n and for every �xed t1,Pr " (8t 2 [t1; t1 + n�]; max(t) � c log� n)!(8t 2 [t1 + n�; t1 + n�]; ��(s(t)) � dn) # � 1� n��:This bound follows fromPr" (8t 2 [t1; t1 + n�]; max(t) � c log� n)!(8t 2 [t1 + n3; t1 + n�]; ��(s(t)) � dn) #
� Pr26666664  (8t 2 [t1; t1 + n�]; max(t) � c log� n)!(9t 2 [t1; t1 + n3]; ��(s(t)) � dn2 ) !^0B@ ((8t 2 [t1; t1 + n�]; max(t) � c log� n)^(9t 2 [t1; t1 + n3]; ��(s(t)) � dn2 ))!(8t 2 [t1 + n3; t1 + n�]; ��(s(t)) � dn) 1CA 37777775� 1� 2n�2�� 1� n�� (we use here that n2� > 2n�);where the inequality before the last follows from Lemmas 4.14 and 4.15.22



Corollary 4.17 Let c > 0 such that � = �1=8c < 4140 . Let �; cinit > 0 such that d = ��cinit >8�3=(��1)2 . Let �n(t) � max(t) � c log� n;�n(t) � N�cinit(t) � �nthen � � �.Proof: Suppose that � > 0 is given. Let � = 3 and let � > 0. Then for every su�ciently large nand for each �xed t1, we have to show thatPr " (8t 2 [t1; t1 + n�]; max(t) � c log� n)!(8t 2 [t1 + n�; t1 + n�]; N�cinit(t) � �n) # � 1� n��:Let d = ��cinit = ��cinit=8c. By Lemma 4.16,Pr " (8t 2 [t1; t1 + n�]; max(t) � c log� n)!(8t 2 [t1 + n�; t1 + n�]; ��(s(t)) � dn) # � 1� n��:Now, if �� � dn, then there are at most �n particles whose absolute position is � cinit.Corollary 4.17 completes the second step of our proof. We now proceed to the third step.Lemma 4.18 Let � < 12 , t1 2 Z+. For every su�ciently large n, for every positive integer k,Pr" 8t 2 [t1; t1 + n5]; N�k(t) � �n!9t 2 [t1; t1 + n5]; N�k+2(t) � 100�2n # � 1� 2�n+2:Proof: Let U(t) = Xi;js(i;t)j�k+2(js(i; t)j � k � 1):Let �U(t) = U(t + 1) � U(t). Notice that �U(t) 2 f�1; 0;+1g and that �U(t) = 1 if and onlyif the time t transition is marked by a pair of particles in the same position k + 1 or �k � 1;�U(t) = �1 if and only if the time t transition is marked by a pair of particles such that one is inposition � k+2 and the other in position � k or one in position � �k�2 and the other in position� �k; �U(t) = 0 in all other cases. If N�k(t) � �n and N�k+2(t) > 100�2n then Pr[�U(t) = 1] ��=k+1(t)��k+1(t) � �2; and Pr[�U(t) = �1] � ��k+2(t) (1� ��k+1) � 100�2(1� �) � 50�2.Let W be the set of all t > t1 with �U(t) 6= 0 and let w1 < w2 < � � � be an enumeration ofW in increasing order. (Notice that the w's are random variables.) De�ne a sequence of randomvariables Xi = �U(wi). Notice that 8i, Pj�iXj � �n2, since 8t, 0 � U(t) � n2. Let Yi be theindicator of 8t 2 [t1; t1 + n5]; N�k(t) � �n and N�k+2(wi) > 100�2n:De�ne a sequence of random variables Zi as follows. If 8j � i, Yj = 1, then Zi = Xi. Otherwise,Zi 2 f�1;+1g is distributed independently of other Z's with Pr[Zi = 1] = 1=50.The Z's satisfy the conditions of Lemma A.6. Therefore,Pr[10n2Xj=1 Zj > �5n2] � 2�2450� 52n2 < 2�n:23



By Fact A.3,Pr[(9t 2 [t1; t1 + n5]; N�k(t) > �n) _ (9i 2 [1; 10n2]; N�k+2(wi) � 100�2n)] > 1� 2�n:Since Pr[w10n2 � n5] > 1�2�n, the event in the lemma fails to hold with probability at most 3 �2�nand the lemma follows.Lemma 4.19 Let c > 0 such that � = �1=8c < 2. Let � > 0 such that �(1 � �) > 1 and 700� � 2.Let t1 2 Z+, n su�ciently large, n�1=10 < � < �(1��)�13�(��1) , � > 0, k 2 Z+, � > 0. ThenPr264 (8t 2 [t1; t1 + n�]; max(t) � c log� n ^N�k(t) � �n)^(9t 2 [t1; t1 + n5]; N�k+2(t) � 100�2n)!(8t 2 [t1 + n5; t1 + n�]; N�k+2(t) � 1000�2n) 375 > 1� n�2�:Proof: Let t2 be the smallest t 2 [t1; t1 + n5] such that N�k+2(t) � 100�2n, or 1, if no such texists. (t2 is a random variable.) We show thatPr26664 (t2 <1)^(8t 2 [t1; t1 + n�]; max(t) � c log� n)^(8t 2 [t1; t1 + n�]; N�k(t) � �n)!8t 2 [t2; t1 + n�]; N�k+2(t) � 1000�2n 37775 > 1� n�2�; (3)which proves the lemma.In order to show inequality 3, consider the following potential function:	(t) = Xi;js(i;t2)j<k+2^js(i;t)j�k+2�(js(i;t)j�k�2): (4)Notice that 	(t2) = 0. Since N�k+2(t2) � 100�2n, we have that if N�k+2(t) > 1000�2n, then	(t) > 900�2n, so we would like to bound the probability that such an increase in 	 occurs. Weshall use the notation �	(t) = 	(t+ 1)�	(t).Suppose that at time t, max(t) � c log� n and N�k(t) � �n and 	(t) � 700�2n. Clearly,�	(t) � n1=8. We need to estimate E[�	(t)] in this case. 	 may increase by 1 if a particle iwith js(i; t)j = k + 1 moves away from 0. Under our assumptions, this happens with probabilityno greater than �2. Other contributions to the expected change in 	 come from particles i thatparticipate in the sum in equation 4. Consider such a particle i. The probability that it movesaway from 0 is bounded above by 2�=n. The probability that it moves towards 0 is bounded belowby (1� �)=n. The expected change due to this particle is therefore bounded above by�js(i;t)j �2�n (� � 1)� 1� �n �1� 1��� � ��js(i;t)j �n: (5)Since we are guaranteed that 	(t) � 700�2n, therefore if we sum up the bound in 5 for all i thatcontribute to 	 we get that the expected change due to these particles is at most �700��2 � �2�2.Thus, we may conclude that E[�	(t)] � �2�2 + �2 � �n�1=5.Now, de�ne random variables Xt = 	(t+ t2). Let Yt be the indicator oft2 <1 and max(t+ t2) � c log� n and N�k(t+ t2) � �n.De�ne a sequence of random variables Z0; Z1; : : : as follows. Z0 = X0. For t > 0, if 8j � t, Yj = 1,then Zt = Xt; otherwise, Zt = Zt�1 � n�1=5. The Z's satisfy the conditions of Lemma A.5 with� := 2(� + �), A := 700�2n, B := n1=8, C := n�1=5, D := 200�2n. Therefore, Pr[9t 2 [n�]; Zt >900�2n] < 1� n�2�. Fact A.4 gives the required inequality 3.24



Lemma 4.20 For each positive integer n, let In be the set of all pairs hk; �i, where k is a positiveinteger and � is as in the previous lemma. Let�hk;�in (t) � N�k(t) � �n;�hk;�in (t) � N�k+2(t) � 1000�2n;for all hk; �i 2 In: Then ��n � ��n uniformly in �Proof: Take � = 5 and use Lemmas 4.18 and 4.19Lemma 4.21 Let j be an arbitrary particle. Let t1 2 Z+. Let n be su�ciently large and k apositive integer. ThenPr " (8t 2 [t1; t1 + n4]; N�k(t) � n9=10)!(9t 2 [t1; t1 + n4]; js(j; t)j � k) # > 1� 2�n=2:Proof: Let �(t) = js(j; t+ 1)j � js(j; t)j. �(t) 2 f�1; 0;+1g. Let W be the set of all t � t1 suchthat �(t) 6= 0 and let w1 < w2 < � � � be an enumeration of W in increasing order. Let Xi = �(wi).If wi � n4 and js(j; wi)j > k, then Pr[Xi = 1] � n�1=10, because the pair fj; j0g that marks thetime wi transition must have js(j0; wi)j � k. Notice also that for all i, Pi0�iXi0 � �n, becausejs(j; w1)j = js(j; t1)j � n and js(j; wi+1)j � 0. Let Yi be the indicator of8t 2 [t1; t1 + n4]; N�k(t) � n9=10 and js(j; wi)j > kDe�ne a sequence of random variables Z1; Z2; : : : as follows. If 8i0 � i, Yi0 = 1, then Zi = Xi;otherwise Zi 2 f�1;+1g is distributed independently of other Z's with Pr[Zi = 1] = n�1=10. TheZ`s satisfy the conditions of Lemma A.6 with p := n�1=10. We get thatPr[10nXi=1Zi > �5n] < 2(24n�1=10) 52n < 2�n:By Fact A.3,Pr[(9t 2 [t1; t1 + n4]; N�k(t) > n9=10) _ (9i 2 [1; 10n]; js(j; wi)j � k)] > 1� 2�n:Since Pr[w10n � n4] > 1� 2�n, the lemma follows.Lemma 4.22 Let j be an arbitrary particle. Let t1 2 Z+. Let n be su�ciently large and k apositive integer. Let � > 0. ThenPr264 (8t 2 [t1; t1 + n�]; N�k(t) � n9=10)^(9t 2 [t1; t1 + n4]; js(j; t)j � k)!(8t 2 [t1 + n4; t1 + n�]; js(j; t)j � k + log logn) 375 > 1� n� 1100 log log n:Proof: Let t2 be the smallest t 2 [t1; t1 +n4] such that js(j; t)j � k, or 1, if no such t exists. Weshow that Pr264 (t2 <1)^(8t 2 [t1; t1 + n�]; N�k(t) � n9=10)!8t 2 [t2; t1 + n�]; js(j; t)j � k + log logn 375 > 1� n� 1100 log log n; (6)25



which proves the lemma.In order to prove inequality 6, we apply an argument similar to that used in the proof ofLemma A.5 of considering at most n2� pairs t3; t4 and showing the following bound:Pr26664 (t2 <1)^(8t 2 [t1; t1 + n�]; N�k(t) � n9=10)^(js(j; t3)j � k)^(8t 2 (t3; t4]; js(j; t)j > k)! js(j; t4)j > k + log log n 37775 < n� 1100 log log n�2� (7)Using the same notation as in the previous lemma, letW be the set of t � t3 such that �(t) 6= 0.Let w1 < w2 < � � � be an enumeration of W in increasing order. De�ne Xi = �(wi). If wi � t1+n�and 8t 2 [t1; t1 + n�], N�k(t) � n9=10, then Pr[Xi = 1] � n�1=10. Let Yi be the indicator oft2 <1 and 8t 2 [t1; t1 + n�]; N�k(t) � n9=10 andjs(j; t3)j � k and 8t 2 (t3; t4]; js(j; t)j > k and wi � t4:De�ne a sequence of random variables Z1; Z2; : : : as follows. If 8i0 � i, Yi0 = 1, then Zi = Xi;otherwise, Zi 2 f�1;+1g is distributed independently of the other Z's with Pr[Zi = 1] = n�1=10.Let i be the largest such that wi � t4. If i � log logn, thenPr24Xi0�iZi0 > log log n35 = 0:If i > log log n, we use Lemma A.6 with p := n�1=10 to getPr24Xi0�iZi0 > log log n35 < 2 �24n�1=10�i=4 < n� 1100 log log n�2�:(we use here that n is su�ciently large.)The use of Fact A.4 completes the proof.Lemma 4.23 Suppose that for every positive integer n, kn is a positive integer and�n(t) � N�kn(t) � n9=10;�n(t) � max(t) � kn + log lognthen �n � �n.Proof: We use the same arguments that were used in the proofs of Lemmas 4.16 and 4.20. Fix� > 0. Take � = 4. The probabilities of the bad events are given by Lemmas 4.21 and 4.22. Noticethat these lemmas consider a single particle, whereas here we have to consider all n particles (weassume the worst case, that the bad events for the individual particles are mutually disjoint) Weget that Pr" (8t 2 [t1; t1 + n�]; N�k(t) � n9=10)!(8t 2 [t1 + n4; t1 + n�]; max(t) � kn + log log n) #> 1� n�2�n=2 + n� 1100 log log n�> 1� n��: 26



Lemma 4.24 Let cinit = 2� 105. Let t1 2U [0; T ]. Then,Pr h8t 2 [t1 + n6; t1 + n7]; max(t) � cinit + 3 log log ni > 1� n�1:Proof: Let c = 12, � = 10�4. Let j be the largest such that (1000�)2(j�1)=1000 � n�1=10. Noticethat j < log log n. Let �0n(t) � max(t) � c log� n;�0n(t) = �1n(t) � N�cinit(t) � �n;�1n(t) = �2n(t) � N�cinit+2(t) � 1000�2n;�2n(t) = �3n(t) � N�cinit+4(t) � (1000)3�4n;...�j�1n (t) = �jn(t) � N�cinit+2(j�1)(t) � (1000�)2(j�1)n=1000;�jn(t) � max(t) � cinit + 2(j � 1) + log log nThen, for � 2 f0; 1; : : : ; jg, ��n � ��n uniformly in � with � = 5. (This follows by applyingLemma 4.20 for each step in the chain but the last, which instead follows from Lemma 4.22 andthe choice of j.) Therefore, by Lemma 4.10, �0n � �jn with � = 6. Therefore, for su�ciently largen, Pr " (8t 2 [t1; t1 + n7]; max(t) � c log� n)!(8t 2 [t1 + n6; t1 + n7]; max(t) � cinit + 2(j � 1) + log log n) # > 1� n�2: (8)Let � = 7, � = 2. �, �, c satisfy the conditions of Lemma 4.11. Therefore,Pr h8t 2 [t1; t1 + n7]; max(t) � c log� ni > 1� n�2: (9)Combining inequalities 8 and 9 givesPr h8t 2 [t1 + n6; t1 + n7]; max(t) � cinit + 2(j � 1) + log log ni > 1� 2n�2 > 1� n�1:Since 2(j � 1) + log log n < 3 log log n, the lemma follows.Theorem 4.25 For su�ciently large n,E[max(t)] < 4 log logn:Proof: Denote by Ea;b the expectation of max(t) when t 2U [a; b]. We bound Et1;t1+n7 for t1 2U[0; T ]. Using Lemma 4.24, Et1;t1+n7 � n�1Et1;t1+n6 +(1�n�1)Et1+n6;t1+n7 . Clearly, Et1;t1+n6 � n.Moreover, from Lemma 4.24 we deduce that for su�ciently large n, Et1+n6;t1+n7 � 4 log log n� 1,which proves the claim.4.4 Expected Maximal Unfairness is 
(log logn)The proof of the log log n lower bound mirrors the proof of the log logn upper bound. Pick a timeinterval whose length is �xed in advance and is polynomial in n, and whose starting point is anypoint in the execution. Clearly, the number of people with unfairness� 0 throughout this interval isn. Next we show that with high probability, for each k; � , any su�ciently long interval throughoutwhich the unfairness of at least �n people is at least k, contains an interval whose starting point is27



polynomially shifted by a polynomial with a smaller exponent that the original interval, and whoseending point is the same as that of the original interval, and so that throughout the containedinterval the unfairness of at least �2n people is at least k + 1. The shift does not depend on k; � .Thus, after log log n steps we are left with an interval whose length is close to the length of theoriginal interval we picked, and so that with high probability, throughout this resulting interval,the maximal unfairness is at least log logn.We proceed with the actual proof.Lemma 4.26 Let � > n�1=4, t1 2 Z+, � > 0. For every su�ciently large n, for every positiveinteger k, Pr " 8t 2 [t1; t1 + n4]; N�k(t) � �n!9t 2 [t1; t1 + n4]; N�k+1(t) � 116�2n # � 1� n�2�:Proof: Let Xi = N�k+1(t1 + i). We wish to compute a lower bound on E[XijXi�1]. Let us �rstconsider the contribution to the expected change due to decreases in N�k+1. This value can droponly if one or both of the particles chosen is at �(k + 1). The probability that the �rst particle isat �(k+1) is at most �=k+1(t1 + i� 1) and similarly the probability that the second particle is at�(k + 1) is also at most �=k+1(t1 + i� 1). So the expected decrease due to particles moving from�(k + 1) is bounded by 2�=k+1(t1 + i� 1). Next let us consider the contribution to the expectedchange due to increase in N�k+1. One of position k or �k contains at least 12N=k(t1 + i � 1)particles. Thus two of these particles are paired with probability at least 12N=k(t1 + i� 1)2 != n2!which is bounded below by ��=k(t1 + i� 1)2 �2 � 14(n� 1) :Thus we haveE[XijXi�1] � Xi�1 � 2�=k+1(t1 + i� 1) + ��=k(t1 + i� 1)2 �2 � 14(n� 1) :If N�k(t1 + i� 1) � �n and Xi�1 < �2n=16, we have that�=k(t1 + i� 1) = N=k(t1 + i� 1)n= N�k(t1 + i� 1)�N�k+1(t1 + i� 1)n= ��k(t1 + i� 1)� ��k+1(t1 + i� 1)� � � 18�2� 78�;�=k+1(t1 + i� 1) � ��k+1(t1 + i� 1) < 116�2;and since � > n�1=4, 14(n� 1) � 12n � 1256pn � 1256�228



(assuming n is su�ciently large.)Therefore, E[Xi �Xi�1 j Xi�1] � 116�2:Let Yi be the indicator of N�k(t1 + i) � �n and Xi < �2n=16:De�ne a sequence of random variables Zi as follows. If 8j < i, Yj = 1, then Zi = Xi. Otherwise,Zi = Zi�1 + �2=16. The Z's satisfy the conditions of Corollary A.7 with A := X0, B := 1,C := �2=16. Therefore, taking � := 2p� lnn,Pr[Zn4 < X0 + 116n4�2 � 4n2p� lnn] < n�2�:Since X0 � 0 and Xn4 � n, the lemma follows from Fact A.3.Lemma 4.27 Let t1 2 Z+, n su�ciently large, � > n�1=5, � > 0, k 2 Z+, � > 0. ThenPr264 (8t 2 [t1; t1 + n�]; N�k(t) � �n)^(9t 2 [t1; t1 + n4]; N�k+1(t) � 116�2n)!(8t 2 [t1 + n4; t1 + n�]; N�k+1(t) � 132�2n) 375 > 1� n�2�:Proof: Let t2 be the smallest t 2 [t1; t1 + n4] such that N�k+1(t) � �2n=16, or 1, if no such texists. We show thatPr264 (t2 <1)^(8t 2 [t1; t1 + n�]; N�k(t) � �n)!8t 2 [t2; t1 + n�]; N�k+1(t) � 132�2n 375 > 1� n�2�; (10)which proves the lemma.In order to show inequality 10, de�ne random variables Xi = N�k+1(t2+ i). As in the previouslemma, if N�k(t2 + i� 1) � �n and Xi�1 � �2n=16, we have thatE[Xi �Xi�1 j Xi�1] � 116�2:Let Yi be the indicator of t2 <1 and and N�k(t2 + i) � �n.De�ne a sequence of random variables Z0; Z1; : : : as follows. Z0 = X0. For i > 0, if 8j < i, Yj = 1,then Zi = Xi; otherwise, Zi = Zi�1+�2=16. The Z's satisfy the conditions of Lemma A.8 with � :=2(�+�), A := �2n=16, B := 1, C := �2=16, D := �2n=32. (we may use here 5pn � 2048(�+�) lnn.)Therefore, Pr[9i 2 [n�]; Zi < �2n=32] < n�2�. Fact A.4 gives the required inequality 10.Lemma 4.28 For each positive integer n, let In be the set of all pairs hk; �i, where k is a positiveinteger and � > n�1=5. Let �hk;�in (t) � N�k(t) � �n;�hk;�in (t) � N�k+1(t) � 132�2n;for all hk; �i 2 In: Then ��n � ��n uniformly in �29



Proof: Take � = 4 and use Lemmas 4.26 and 4.27.Theorem 4.29 E[max(t)] > log logn�K, where K is an absolute constant.Proof: Let j be the largest such that 32�2j+1 > n�1=5. Notice that j � blog log nc � 5. Let�0n(t) � N�0(t) � n;�0n(t) = �1n(t) � N�1(t) � 32�1n;�1n(t) = �2n(t) � N�2(t) � 32�3n;�2n(t) = �3n(t) � N�3(t) � 32�7n;...�j�1n (t) = �jn(t) � N�j(t) � 32�2j+1n;Using Lemma 4.10, we conclude from Lemma 4.28 that �0n � �jn with � = 5. Since N�0(t) is alwaysn, and since N�j(t) � 32�2j+1n implies that N�j(t) > 0, we conclude that for every �; � > 0, forevery t1 2 Z+, for every su�ciently large n,Pr h8t 2 [t1 + n5; t1 + n�]; N�blog log nc�5(t) > 0i � 1� n��;which proves the theorem.4.5 Convergence to Low Maximal UnfairnessIn the previous sections we showed that at a randomly-chosen time in a su�ciently long executionthe expected maximal unfairness is small. In this section we consider the question of how quicklythe process will converge to low maximal unfairness starting from an arbitrary con�guration (withthe constraint that this con�guration must be reachable from the initial state.) We show thatstarting at any reachable con�guration at time t1, with high probability the maximal unfairnessgoes below logn by time t1 + n4, and then stays below 2 log n for an interval of length at leastnlogn. (This result in fact implies that the system will quickly converge to a maximum unfairnessof O(log log n), using the proof of Theorem 4.25 starting with Corollary 4.17.)The basic idea of the proof is to show that the value of our usual potential function �� is likelyto drop when it is too large. We do this in the following technical lemma:Lemma 4.30 For all su�ciently small � > 0, there exists a constant c > 0 such that for allsu�ciently large n and � = 1 + �, if �� = Pi �js(i)j > cn then the expected value of the change inlog �� is smaller than ��, where � is a constant greater than zero.Proof: Observe thatlog�(s(t+ 1)) � log �(s(t)) = log �(s(t+ 1))�(s(t)) = log(1 + �(s(t+ 1))� �(s(t))�(s(t)) ):Thus, the proof of the lemma follows from Lemma 4.12 and the fact that ln(1 + z) < z for0 < jzj < 1. 30



Theorem 4.31 For all � > 0, there exists � > 0 such that for all su�ciently small �, all su�cientlylarge n, and any point t1 in the execution, we havePr(8t 2 [t1 + n4; t1 + n� log n];��(s(t)) =Xi �js(i;t)j � cn) > 1� n��:where � = 1 + � and c is a constant independent of n.Proof: Let c be twice the constant from Lemma 4.30. We'll show that �� drops below cn=2 withhigh probability by some t < t1+n4 and that once below cn=2 it is unlikely to rise above cn for anadditional n� log n steps.Lemma 4.30 implies that until �� is below cn=2, the expected change in log�� is less than ��.Note that 2 is an upper bound on the change of log�. Since 0 < log �(s(t)) � n2, applyingCorollary A.2 we get that with probability at least 1 � n�2�, there is some t < t1 + n4, so that��(s(t)) � cn=2.Let t2 be the smallest t with this property.For any �xed t we will denote the event \��(s(t)) � cn=2 and ��(s(t)) < cn" by Q(t). It isenough to show that for any �xed t3; t4 2 [t2; t1 + n� log n] we have:Pr((��(s(t3)) = cn2 ^ 8t 2 [t3; t4); Q(t)) ! (��(s(t4)) < cn)) > 1� n�2��2� log n: (11)If t4 � t3+n3=2, it follows from Corollary A.2 that ��(s(t4)) is below 34cn with high probability.Thus to complete the proof it is enough to consider only the case t4 > t3 + n3=2.We will prove (11) in two steps. In the �rst step we show:Pr((8t 2 [t3; t4); Q(t)) ! (8t 2 [t3 + n3=2; t4];maxi js(i; t)j < 2 log2 n)) > 1� n�4��4� log n: (12)This will mean that on [t3; t4] we have a good upper bound on the changes of ��. In the secondstep we use use this fact to prove (11) by another application of Corollary A.2.The proof of (12) is similar to the proof of Lemma 4.22 in that we consider the behavior of eachparticle individually. First we prove that for each �xed i, with a probability of at least 1� n�n1=4 ,s(i) drops from log�(cn) = �c log n at t3 to log n in less than n3=2 time units. The reason is that inan interval of this length, i will be paired at least n1=4 times with exponentially high probability.As long as s(i) > logn, �� < cn implies that the number of people with unfairness at least logncan be at most cn�log2 n = n1�c3 , where c3 > 0 depends only on c and �. Therefore the change ofs(i) will be �1 with a probability of at least 1� n�c3. Applying Lemma A.6 we get that s(i) goesdown to log n.Let t5 be the �rst time where particle a goes below log n. We now show that it it is likely toremain below 2 log n. Speci�cally:Pr((s(i; t5) = logn ^ 8t 2 [t3; t1 + n� log n); Q(t)) ! (8t 2 [t5; t1 + n� log n]; js(i; t)j < 2 log n))� 1� n�4��4� log n�1:Let �t = js(i; t)j� js(i; t� 1)j. The value of �t can be �1; 0 or 1. Let W be the set of all t > t1with �t 6= 0 and let wj be the j-th element of W so that w1 < w2 < � � � are all of the elements of Win increasing order. Let Xk = �wk . Xk is a random variable which takes only the values �1; 1. Wede�ne a random variable Zk in the following way. If Q(wk � 1) holds then Zk = Xk; if Q(wk � 1)does not hold then the value of Zk is chosen at the wk-th step of the randomization independentlyof earlier steps and Zk = 1 with a probability of n�c3 , and Zk = �1 with probability 1� n�c3 .31



Given k, We apply Lemma A.6 to the random variables Z1; : : : ; Zk with p = n�c3. The factthat p1 � 1� n�c3 and the de�nition of each Zj implies that the conditions of the lemma are metwith p = n�c3 .Clearly, if k < logn then P (Pkj=1 Zj > log n) = 0. If k > logn, then applying Lemma A.6 asbefore we get that P ( kXj=1Zj > log n) < 2(24n�c3)i=4 � 2(24n�c3) log n4 :Therefore P (9k; kXj=1Zj > log n) < n� log n2(24n�c3)k=4 � n� log nn�c0 log n � n�4� log n�4��1:Expanding out the de�nition of Zk and Q, this implies (12).Corollary 4.32 There exists a constant a such that for all � > 0, there exists � > 0 such that forall su�ciently large n, and any point t1 in the execution,Pr(8t 2 [t1 + n4; t1 + n� log n];max(t) � a log n) > 1� n��:Proof: Immediate from the de�nition of ��.5 Reducing Vector Rounding to the 2-Person Carpool GameIn this section we show that the general carpool problem can be reduced to one where each dayonly two people arrive, or, equivalently, to the edge orientation game. This is done by a reductionfrom the still more general vector rounding problem. The n-dimensional vector rounding problemis this: the input is a list of vectors (V1; V2; : : :), where each Vt = (v1t ; v2t ; : : : vnt ) is a vector of lengthn over the reals. The output is a list of integer vectors (Z1; Z2; : : :) where Zt = (z1t ; z2t ; : : : znt ) is arounding of Vt that preserves the sum, i.e. for all 1 � i � n we have that zit 2 fbvitc; dviteg and thatnXi=1 zit 2 fb nXi=1 vitc; d nXi=1 vitegThe goal is to make the accumulated di�erence in each entry as small as possible, i.e. for every twe want max1�i�n jPtj=1 zij �Ptj=1 vijj to be as small as possible. For input vectors (V1; V2; : : :)and output vectors (Z1; Z2; : : :) the associated cost at time t ismax1�i�n j tXj=1 zij � tXj=1 vijj:As before, we can consider the o�-line problem where we are given the vectors (V1; V2; : : :) aheadof time and the on-line problem where we are given the vectors (V1; V2; : : :) one at a time and haveto decide on the corresponding (Z1; Z2; : : :). As in the carpool problem, in the on-line version weconsider deterministic algorithms as well as randomized algorithms against the oblivious adversary.Tijdeman [22] has considered the vector rounding problem and has shown that the o�-lineversion has a solution of di�erence 1, i.e. for every sequence of real vectors (V1; V2; : : :) there existinteger (Z1; Z2; : : :) such that for all t � 1 we have max1�i�n jPtj=1 zij �Ptj=1 vij j � 1.32



One can cast the carpool problem as a vector rounding problem: for a sequence (X1;X2; : : :)create the vectors (V1; V2; : : :) where for all t � 1 and all 1 � i � n we havevit = ( 1=jXtj if i 2 Xt0 if i 62 Xt.Therefore if we can connect the performance of the 2-person carpool problem to the vectorrounding problem then we will have reduced the general carpool problem to the 2-person problem.Before we show the reduction we will make some simplifying assumptions, which can be easilyjusti�ed: We assume that for every t and 1 � i � n, vit is non-negative (since we can add theabsolute value of dvite and then subtract it from zit) and that Pni=1 vit is an integer (if not, then wecan add a "dummy" entry to the vector in order to make the sum an integer; this increases n ton+1). Furthermore we assume an a priori bound T on the number of vectors, i.e. t < T (otherwisewe will increase T as we go along in multiples of 2).Our reduction is applicable to both deterministic and randomized algorithms.Theorem 5.1 The statement of the result di�ers slightly depending on the nature of the algorithmused for the two-person carpool problem:� Deterministic Algorithms: Suppose that we have a deterministic algorithm f for the n-participant carpool problem where every day two people show up that maintains unfairness atmost �(n), then we can construct a deterministic algorithm f 0 to the vector rounding problemthat maintains an accumulated di�erence of at most 2�(n) for every sequence ' = (V1; V2; : : :).� Randomized algorithms against the oblivious adversary: Suppose that we have a randomizedalgorithm ~f for the n-participant carpool problem where every day two people show up thatmaintains unfairness �(n), then we can construct a randomized algorithm ~f 0 for the vec-tor rounding problem that maintains an accumulated di�erence of at most 2�(n), for everysequence ' = (V1; V2; : : :).Proof: The reduction is made by a \scaling" argument, similar in 
avor to the bit-by-bit roundingof Beck and Fiala [9, 8]. The constructions of the deterministic and randomized algorithms for thevector rounding problem from the corresponding algorithms for the 2-person carpool problem aresimilar, only the analysis is a bit di�erent. Consider the binary representation of the vit's. We willmake it only ` = 2 log T bits long by ignoring the rest of the bits and adjusting one of the vit. Thiscan hardly a�ect the outcome (by a 1T additive term only, and this can be made arbitrarily smallby making ` larger). Run ` carpool instances simultaneously, one corresponding to each of the `bit positions. For each instance apply the strategy for the carpool problem (f or ~f depending onthe case). Each problem has n participants and the accounting and decisions (but not the inputs!)of each instance are done independently.We start by describing how the `-th instance is de�ned and then how the rest of the instancesfollow. Consider the `-th bits of the entries of Vt. SincePi vit 2 Z+, there must be an even numberof i's such that the `-th bit of vit is 1. Partition them into pairs arbitrarily and schedule thosepairs as requests. If vit and vjt are paired, request fi; jg. Those i's that were chosen to drive bythe carpool strategy f or ~f are rounded up, i.e. we add 2�l to vit. Those i's that were not chosenas drivers are rounded down, i.e. we simply throw away (that is, replace with a 0) the `-th bit ofvit. It is easy to verify that this procedure preserves the sum of entries (i.e. Pni=1 vit) and that themodi�ed Vt requires only `� 1 bits for its representation. The procedure is repeated now with the33



` � 1st instance and so on. After we do that for all the ` carpool instances we are left with aninteger Vt which is our Zt.How good is this reduction? Let C(t; j; i; V1; V2; : : : Vt) denote the unfairness of the i-th partici-pant at the j-th instance de�ned by inputs V1; V2; : : : Vt. Let D(t; i; V1; V2; : : : Vt) be Ptk=1(zik � vik)on input V1; V2; : : : Vt. We claim thatD(t; i; V1; V2; : : : Vt)= X̀j=1 12j�1C(t; j; i; V1; V2; : : : Vt)This can be shown by induction on `. The contribution of the `-th instance is multiplied by1=2`�1, since we have scaled the `-th instance by 2`�1.We now turn to the analysis. In the deterministic case we know by assumption on f thatjC(t; j; i; V1; V2; : : : Vt)j is bounded by �(n). Therefore,jD(t; i; V1; V2; : : : Vt)j� X̀j=1 12j�1 jC(t; j; i; V1; V2; : : : Vt)j � 2�(n)and therefore max1�i�n jD(t; i; V1; V2; : : : Vt)j � 2�(n)For the case of a randomized algorithm, we should �rst be convinced that the adversary's poweris no stronger than that of an oblivious adversary in each of the carpool instances that we havede�ned. Observe that the inputs to the j instance are determined by (V1; V2; : : :) and the decisionsmade by the carpool solver on instances j + 1 through `. The decisions made in instance k, for1 � k � j at any point in time do not e�ect the inputs to instance j. Therefore, for instance j,the adversary chooses a distribution on (V1; V2; : : :) and can even be given the power to make allthe decisions in instances j + 1 through ` and yet all that it would be doing cannot depend on thedecision at the j-th instance. Given that we know thatmax1�i�n jD(t; i; V1; V2; : : : Vt)j� X̀j=1 12j�1 max1�k�n jC(t; j; k; V1; V2; : : : Vt)jand the expectation of max1�k�n jC(t; j; k; V1; V2; : : : Vt)jis bounded by �(n), we get that the expectation of max1�i�n jD(t; i; V1; V2; : : : Vt)j is at most 2�(n).AcknowledgmentsWe are grateful to Noga Alon, Ron Fagin, Tom�as Feder, Alan Frieze, Anna Karlin, NimrodMegiddo,Babu Narayanan, Gerald Schedler and Joel Spencer for many helpful discussions and remarks.
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andE[Yi j Y0; :::; Yi�1] = E[(Yi � Yi�1) + Yi�1 j Y0; :::; Yi�1]= Yi�1 +E[(Xi �Ri �Xi�1 +Ri�1) j Y0; :::; Yi�1]= Yi�1 +E[Xi �Xi�1 j Y0; :::; Yi�1]�E[E[Xi �Xi�1 j Yi�1] j Y0; :::; Yi�1]= Yi�1:Now de�ne Z0; Z1; : : : ; Zm as follows. 8i 2 f0g [ [m], Zi = (Yi � Y0)=2B. It is easy to verify thatthe Z's are a martingale that satisfy the conditions of Azuma's inequality. Therefore, 8i 2 [m],Pr[Zi > �pi] < e� �22 :Now, Xi > A� iC + 2B�pi! Yi > A+ 2B�pi! Zi > �pi.We will use the following proof paradigms. Let X0;X1; : : : ;Xm be nonnegative real valuedrandom variables. Let Y0; Y1; : : : ; Ym be indicator variables. Let Z0; Z1; : : : ; Zm be real valuedrandom variables such that if 8j � i Yj = 1, then Zi = Xi. Then, the following facts are trivial:Fact A.3 For every predicate P , if not P (X0; : : : ;Xm) and if Pr[P (Z0; : : : ; Zm)] > p, thenPr[9j �m; Yj = 0] > p:Fact A.4 For every predicate P , if Pr[P (Z0; : : : ; Zm)] > p then,Pr[(8j � m; Yj = 1)! P (X0; : : : ;Xm)] > p:We will also make use of the following consequence of Corollary A.2Lemma A.5 Let �; � > 0. Let A;B;C;D > 0 such that 2�B2 lnn=C � D. Let X0;X1; : : : ;Xn�be a sequence of random variables with the following properties:1. X0 � A.2. 8i 2 [n�], jXi �Xi�1j � B.3. If Xi�1 � A then E[Xi �Xi�1 j X0; :::;Xi�1] � �C.Then, Pr[9i 2 [n�];Xi > A+D] < n��+2�:Proof: Consider i; j, 0 < i < j � n�. We show thatPr[(Xi � A ^ 8k 2 (i; j);Xk � A)! (Xj � A+D)] > 1� n�� : (13)This proves the lemma, since (Xt > A+D)! (9i; j; 0 � i < j � t; Xi � A ^ Xj > A+D ^ 8k 2(i; j);Xk � A), and there are at most n2� pairs i; j that might satisfy this condition for any t 2 [n�].In order to prove inequality 13, let Yt be the indicator of the eventXi+t � A:37



De�ne a sequence of random variables Z0; Z1; : : : ; Zj�i as follows. Z0 = Xi. Let t 2 [1; j � i]. If9` 2 [0; t], Y` = 0, then set Zt = Zt�1�C. Otherwise, set Zt = Xi+t. The Z's satisfy the conditionsof Corollary A.2 with A := Xi, B := B, C := C. Therefore, we get, for � = p2� lnn,Pr[Zj�i < Xi � (j � i)C + 2B�pj � i] > 1� n�� :Since Xi � A, we have thatXi � (j � i)C + 2B�pj � i � A� (j � i)C + 2Bp2� lnnpj � i:The function f(t) = 2Bp2� lnnpt� Ct achieves its maximum in the range [0;1) either at t = 0or at t = 2�B2 lnn=C2, which gives f(t) � D (using the condition stated in the lemma). Thisproves inequality 13 because of Fact A.4.We also use the following bound on large deviations.Lemma A.6 Assume that i is su�ciently large, p � 1=50, Z1, . . . ,Zi are random variables withvalues �1; 1 only, and for all j 2 f1; : : : ; ig [ f�1; : : : ; �j�1g we have Pr[Zj = 1jZ1 = �1; : : : ; Zj�1 =�j�1] � p. Then Pr[( iXj=1Zj) > �i=2] � 2(24p)i=4Proof: It is enough to prove the lemma in the case when Z1; :::; Zi are independent randomvariables and Pr[Zj = 1] = p for j = 1; : : : ; i. If Pij=1 Zj > �i=2 then among the variablesZ1; : : : ; Zi at least i=4 takes the value 1. Let pr be the probability that exactly r of them takes thevalue 1. pr = pr(1� p)i�r ir! � pr ir!:However, �ir� < ir=r!, therefore using the assumption r > i=4 and the Stirling formula (if r issu�ciently large) we get ir! � ir=((1=r)(r=e)r) � ir=((r=2e)r) � (2ei=r)r � 24r:That is, pr � (24p)r. The probability in question isiXr=i=4 pr � 1Xr=i=4(24p)r � 2(24p)i=4:By symmetry we have the following reverse versions of Corollary A.2 and Lemma A.5:Corollary A.7 Let X0;X1; : : : ;Xm be a sequence of random variables that has the following prop-erties:1. X0 � A.2. 8t 2 [m], jXt �Xt�1j � B. 38



3. 8t 2 [m], E[Xt �Xt�1 j Xt�1] � C.Let � > 0. Then, for all i 2 [m],Pr[Xi < A+ iC � 2B�pi] < e� �22 :Lemma A.8 Let �; � > 0. Let A;B;C;D > 0 such that 2�B2 lnn=C � D. Let X0;X1; : : : ;Xn�be a sequence of random variables with the following properties:1. X0 � A.2. 8i 2 [n�], jXi �Xi�1j � B.3. If Xi�1 � A then E[Xi �Xi�1 j Xi�1] � C.Then, Pr[9i 2 [n�];Xi < A�D] < n��+2�:
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