
Approximate Shared-Memory Counting Despite a
Strong Adversary

JAMES ASPNES

Department of Computer Science, Yale University

and

KEREN CENSOR

Department of Computer Science, Technion

A new randomized asynchronous shared-memory data structure is given for implementing an
approximate counter that can be incremented once by each of n processes in a model that al-
lows up to n − 1 crash failures. For any fixed ε, the counter achieves a relative error of δ
with high probability, at the cost of O(((1/δ) log n)O(1/ε)) register operations per increment and
O(n4/5+ε((1/δ) log n)O(1/ε)) register operations per read. The counter combines randomized sam-
pling for estimating large values with an expander for estimating small values. This is the first
counter implementation that is sublinear the number of processes and works despite a strong
adversary scheduler that can observe internal states of processes.

An application of the improved counter is an improved protocol for solving randomized shared-
memory consensus, which reduces the best previously known individual work complexity from
O(n log n) to an optimal O(n), resolving one of the last remaining open problems concerning
consensus in this model.

Categories and Subject Descriptors: D.1.3 [Software]: Programming Techniques—Concurrent
programming; F.2.2 [Theory of Computation]: Analysis of Algorithms and Problem Complex-
ity—Nonnumerical Algorithms and Problems; G.3 [Mathematics of Computing]: Probability
and Statistics—Probabilistic algorithms

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Distributed Computing, Approximate Counting, Martingales,
Expanders, Consensus

1. INTRODUCTION

Counting is a fundamental algorithmic task. Unfortunately, in an asynchronous
shared-memory setting using only read/write registers, exact counting appears to
be quite expensive. The main limitation is the need to avoid lost updates, where

A preliminary version of this paper appeared in Proceedings of the 20th Annual Symposium on
Discrete Algorithms (SODA), 2009.
Author’s address: James Aspnes, Department of Computer Science, Yale University, New Haven,
CT 06520-8285, USA. Email: aspnes@cs.yale.edu. Supported in part by NSF grant CNS-
0435201. Keren Censor, Department of Computer Science, Technion, Haifa, Israel. Email:
ckeren@cs.technion.ac.il. Supported in part by the Israel Science Foundation (grant number
953/06), and by the Adams Fellowship Program of the Israel Academy of Sciences and Humanities.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–0??.

2 · J. Aspnes and K. Censor

one incrementer overwrites values left by another. In a model with n incrementers,
the simplest implementation, where each incrementer writes its increment to a
separate location in an array of registers, requires n register operations to perform
a read, since the reader much read every location in the array. Even with more
sophisticated primitives, there are still strong lower bounds on the time- and space-
complexity for exact counting in a distributed system [Fich et al. 2005; Attiya et al.
2006].

This suggests relaxing the requirements and allowing a reader of the counter to
return only an approximate value. There is a substantial literature on probabilistic
approximate counting in a non-adversarial, sequential context. Some early examples
are given in [Morris 1978; Flajolet 1985; Flajolet and Martin 1985], where the space
taken by a counter is reduced by storing only an approximation to the log of the
number of increments. This involves incrementing the stored counter value only
every 2C steps on average, which is accomplished by applying increments only with
probability 2−C . However, in a distributed setting, a strong adversary that can
halt processes after observing their internal states can discard these rare updates,
causing the counter value to appear much smaller than it should. Solving the
approximate counting problem in this model thus requires new techniques.

Formally, we consider the standard model of an asynchronous shared-memory
system, where n processes communicate by reading and writing to shared multi-
writer multi-reader registers. Timing is under the control of a strong adversary,
which can cause up to n−1 undetected crash failures. We assume that each process
can both read and increment the counter, but that increments are one-shot: each
process increments the counter at most once, giving a bound n on the total number
of increments.

Each step consists of some local computation, including an arbitrary number of
local coin-flips (possibly biased) and one shared memory event, which is either a
read or a write to some register. The interleaving of processes’ steps is governed by
a strong adversary that observes the results of the local coin-flips before scheduling
the next process.

A minimal requirement on an exact distributed counter would be that a read
operation always returns a value between k and K, where k is the number of
increment operations that finished before the read operation started, and K is the
number of increment operations that started before the read operation finished.1

For an inexact counter, we can characterize its accuracy by how close it gets to this
ideal:

Definition 1. Let C be a counter supporting the operations CounterRead and
CounterIncrement. A call to CounterRead is δ-accurate if its return value R
satisfies (1 − δ)k ≤ R ≤ (1 + δ)K, where k is the number of CounterIncrement
operations that finish before this call to CounterRead starts, and K is the number of
CounterIncrement operations that start before this call to CounterRead finishes.
Otherwise, this call to CounterRead is δ-inaccurate.

Our paper makes two main contributions: an implementation of an approximate

1This is a weaker condition than, say, linearizability [Herlihy and Wing 1990], because it makes
no consistency guarantees on the values returned by different read operations.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Approximate Shared-Memory Counting Despite a Strong Adversary · 3

counter for a strong-adversary model with one-shot increments that is δ-accurate
with high probability and allows reads with a cost sublinear in the number of incre-
menters, and an application of this counter to obtain a protocol for randomized
consensus with n processes that requires an optimal O(n) operations per process.
This latter protocol completely resolves the question of the complexity of random-
ized consensus in a strong-adversary model, a twenty-year-old open problem.

1.1 Counting

The running time of our counter is O(((1/δ) log n)O(1/ε)) register operations per
increment and O(n4/5+ε((1/δ) log n)O(1/ε)) register operations per read, where ε > 0
is a parameter that can be chosen to trade off the costs of increment and read
operations. The counter is specialized for the case where each process increments
at most once.

A full description of the counter is given in Section 2. The essential idea is that
when many increments have occurred, sampling an array of bits representing incre-
ments works despite a strong adversary as long as both incrementers and readers
choose randomly which array locations they will use. The analysis of this compo-
nent of the counter is complicated both by the possibility that some increments
will collide (write to the same bit) and by the fact that the upper bound on the
estimated counter value depends on the number of increments that start before a
read finishes, a quantity that can be altered by the adversary while the read is still
in progress. Nonetheless we show that this part of the counter works using a com-
bination of Chernoff bounds on the lower-bound side and the method of bounded
differences on the upper-bound side.

This still leaves the problem of what to do when there are few increments. Here
the sampling component breaks down: a small sample from the array is likely to
miss all the increments—thus return 0, much less than (1 − δ)k. Instead, we use
an expander to determine which bits in a second array are set by each increment;
since the sets of bits set by each increment don’t overlap much (this is the expansion
property), we can obtain a good estimate of the number of increments by simply
counting all ones in the array and dividing by the degree of the expander. This
estimate also lets us detect when we have exceeded the useful range of the expander-
based counter and must switch to sampling. The sampling bounds apply if this
occurs because the sampling component is always incremented first, and therefore
a large number of increments to the expander component must be preceded by a
large number of increments to the sampling component.

Although our implementation is only mildly more efficient than a linear counter,
having any sublinear counter can be crucial for some applications. This is demon-
strated in an application of the approximate counter in a weak shared coin pro-
tocol used for randomized consensus, which is the second contribution of this
paper.

1.2 Consensus

In the consensus problem, which is a fundamental task in asynchronous systems, n
processes starting with individual inputs are required to arrive at the same decision
value. To prevent trivial solutions, this agreement condition is accompanied by
a validity condition which requires the decision value to be the input of some

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · J. Aspnes and K. Censor

process. A termination condition requires that eventually all processes decide.
It is well known that there is no deterministic consensus protocol in an asyn-

chronous system, if one process may fail [Fischer et al. 1985; Herlihy 1991; Loui
and Abu-Amara 1987]. However, reaching consensus becomes possible using ran-
domization with the termination condition relaxed to hold with probability 1, while
the agreement and validity properties remain the same. The complexity of solving
consensus is measured by the expected number of register operations carried out by
all processes (total work) or by any single process (per-process or individual
work).

Many randomized consensus protocols were designed for the asynchronous model
under a strong adversary, These protocols are all wait-free, which means that ter-
mination occurs even if up to n − 1 of the processes suffer crash failures. The
first of these, due to Abrahamson [Abrahamson 1988], required exponential work.
Subsequent work (e.g., [Aspnes and Herlihy 1990; Aspnes 1993; Saks et al. 1991])
reduced the complexity first to a polynomial number of total operations and fi-
nally to O(n2 log n) operations in the paper of Bracha and Rachman [Bracha and
Rachman 1991]. Further progress in reducing total operations stalled at this point,
although Aspnes and Waarts [Aspnes and Waarts 1996] showed that O(n log2 n)
individual work could be achieved, at the cost of a slight increase in total work.
The subsequent Ω(n2/ log2 n) lower bound on total work of Aspnes [Aspnes 1998]
(which implies an Ω(n/ log2 n) lower bound on individual work) showed that large
further improvements were unlikely, although a polylogarithmic gap between the
known upper and lower bounds remained.

This gap was closed for total work by Attiya and Censor [Attiya and Censor
2007], who presented a protocol with O(n2) total work and a matching Ω(n2) lower
bound. In their protocol, however, a process running alone may have to perform all
this work by itself, meaning that the individual work is also Θ(n2). By combining
techniques from the Attiya-Censor protocol with the older Aspnes-Waarts protocol,
Aspnes et al. [Aspnes et al. 2008] obtained an O(n log n) upper bound on individual
work, but a logarithmic gap still remained between this upper bound and the Ω(n)
lower bound that follows from the Ω(n2) lower bound on total work.

We eliminate this gap by showing that randomized consensus can be solved with
a wait-free protocol using only atomic multi-writer multi-reader registers with O(n)
expected individual work and O(n2) expected total work; both measures are optimal
since they match the lower bound.

The cornerstone of our protocol is a new weak shared coin protocol that re-
quires from each process at most O(n) operations. A weak shared coin with agree-
ment parameter p [Aspnes and Herlihy 1990] is a distributed protocol with the
property that (a) against any adversary strategy, with probability at least p, every
process returns −1, (b) against any adversary strategy, with probability at least p,
every process returns +1. The rest of the time, the the adversary may determine
the outputs of the processes or even arrange for them to disagree.

The reduction in [Aspnes and Herlihy 1990] shows that a weak shared coin pro-
tocol with agreement parameter p, expected individual work complexity I, and ex-
pected total work complexity T , yields a consensus protocol with expected individ-
ual work complexity O((n+I)/p) and expected total work complexity O((n2+T)/p).
ACM Journal Name, Vol. V, No. N, Month 20YY.

Approximate Shared-Memory Counting Despite a Strong Adversary · 5

The essential idea is to solve consensus by executing a sequence of asynchronous
rounds, where in each round early-arriving processes that see only processes with
the same preference keep their common preference, late-arriving processes that see
agreement among these leaders adopt this common preference, and confused pro-
cesses that see more than one preferred value execute the shared coin protocol
(which produces agreement with the other processes and any deterministic lead-
ers with probability at least p). This mechanism reaches agreement after O(1/p)
rounds on average, and the worst-case cost of each round is the sum of the cost of
the shared coin protocol and an O(n) overhead per process to read other processes’
preferences. It follows that to achieve consensus cheaply, we want to construct a
weak shared coin with constant agreement parameter and per-process work as close
as possible to O(n).

Essentially all known shared coins are based on random voting, with some vari-
ation in how votes are collected and how termination is detected. The method
we use appeared first in the O(n2 log n) total work protocol of Bracha and Rach-
man [Bracha and Rachman 1991], where each process generates votes until it ob-
serves that a predetermined threshold is reached, and afterwards collects all the
votes and decides upon the sign of their sum. Typically, n2 votes are needed, so
that the majority value is not overwhelmed by selective withholding of up to n− 1
votes by the adversary.

Detecting that the threshold has been reached is a counting problem: using
a standard counter with O(n)-operation reads means that the threshold can be
checked only occasionally without blowing up the cost. Amazingly, Bracha and
Rachman showed that having each process check only after each Θ(n/ log n) votes—
an amortized cost of O(log n) register operations per vote—was enough to guarantee
a constant agreement parameter, even with no coordination between processes.
This cost was further reduced to O(1) amortized operations per vote by Attiya
and Censor, who added a termination bit that could be used to cut off voting
immediately by any process that detected termination.

A second technique is needed to reduce individual work, as in the standard
voting-style protocol a single process might generate most of the Θ(n2) votes. Our
shared coin is based on the weighted voting approach pioneered in the O(n log2 n)
individual-work protocol of Aspnes and Waarts [Aspnes and Waarts 1996], where
a process that has already cast many votes becomes impatient and starts cast-
ing votes with higher weight. Combined with the termination bit, this gives an
O(n log n) protocol [Aspnes et al. 2008], but it still requires that some processes
execute Θ(log n) counter reads in some executions.

By applying our sublinear counter, we can carry out these Θ(log n) counter reads
within the O(n) time bound. This gives an O(n) weak shared coin protocol, and
thus O(n) consensus. Our protocol is given in Section 3; it is adapted to use a
collection of approximate counters, and also contains some technical improvements
on [Aspnes and Waarts 1996; Aspnes et al. 2008] that simplify the analysis.

We conclude, in Section 4, with a discussion of our results and the problems
that remain open, the main ones being reducing the complexity of the counter and
applying the counter to more tasks.

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · J. Aspnes and K. Censor

2. A SUBLINEAR APPROXIMATE COUNTER

In this section we describe the full approximate counter and prove its complexity
and accuracy. The sampling component appears in Section 2.1 and the expander
component in Section 2.2. In Section 2.3 we show how to combine the two coun-
ters in order to obtain the approximate counter with sublinear work and a high
probability for δ-accurate read operations.

2.1 The sampling component

The sampling component of the counter works by having each increment operation
set a bit at a random location in an array a of size N , and having each approximate
read operation sample s locations with replacement, computing an estimate of the
counter value that is (N/s)S where S is the number of one bits seen among these
samples. The accuracy of this estimate will depend on the choice of the parameters
N and s; specific values useful for our application will be given later.

When there are few increments, this estimate will have high relative error; how-
ever, we will show that after enough increments, the resulting value is neither too
high nor too low, despite any strategy the adversary might attempt to bias it. What
makes this difficult is that an adaptive adversary can see the locations of the writes
and reads done by each operation before the actual read or write is performed, and
selectively delay processes in response.

shared data: array a [1..N] of multi-writer bits, initially all 0
Let r be a uniform random index in the range 1..N ;1

a[r] ← 1;2

Procedure SamplingIncrement

S ← 0;1

for i ← 1 to s do2

Let r be a uniform random index in the range 1..N ;3

S ← S + a[r];4

end5

return (N/s) · S6

Procedure SamplingRead

There are two main issues we have to consider in showing that SamplingRead
works:

(1) The sampling procedure may under- or over-represent the number of bits set
in a. Here we need concentration bounds on the sampled value. For the lower
bound, we consider only the contribution to the sample obtained by reading
bits that are set before the start of the call to SamplingRead. This undercounts
the actual number of bits seen, but allows the use of standard Chernoff bounds
since the probability of observing one of these pre-written bits at each sample is
fixed and independent.. For the upper bound, the situation is more complicated,

ACM Journal Name, Vol. V, No. N, Month 20YY.

Approximate Shared-Memory Counting Despite a Strong Adversary · 7

because the adversary may choose to allow fewer or more increments depending
on how the sampling so far has gone. Here we apply a more sophisticated
analysis, showing that the observed sample gives an estimate not much higher
than the number of increments that start before the call to SamplingRead
finishes using the method of bounded differences.

(2) The bits set in a may under-represent the actual number of increments, for
example if many calls to SamplingIncrement write to the same location. This
problem is exacerbated by the adversary’s ability to delay processes between
choosing their location to write (in Line 1) and actually writing the bit (in
Line 2), because the adversary can selectively hold back writes to new locations
while allowing through writes to locations already written. However, it is not
hard to show that the total number of lost writes during an execution with n
increments is

(
n
2

)
/N on average, and a further application of Chernoff bounds

puts the number of lost writes close to this value with high probability. For a
suitable choice of N and sufficiently many completed increments, the relative
error contributed by these lost writes is negligible.

We begin by showing the bound on the number of lost writes. Note that this is
a global bound that applies to an entire execution, so unlike the later bounds on
sampling error, it does not depend on the number of calls to SamplingRead.

Lemma 2. Fix an adversary strategy, and let each of n processes execute
SamplingIncrement at most once. For each t, let at be the state of array a after
t steps and let kt be the number of processes that have executed the write operation
in Line 2 of SamplingIncrement after t steps. Then

Pr

[
∃t :

N∑
r=1

at[r] ≤ kt − n2/N

]
< exp

(
−

(
n

2

)
/3N

)
.

Proof. Order the n increment operations by the step at which each chooses
its location to write in Line 1 of SamplingIncrement. For each i, let Xi be the
indicator variable for the event that the i-th increment chooses a location previously
chosen by some other increment. It is easy to see that Pr[Xi = 1|X1 . . . Xi−1] =
(i−1)−∑i−1

j=1 Xj

N ≤ i−1
N , as the numerator in the middle expression simply counts the

number of previously-chosen locations.
Because the conditional probability of each Xi is bounded, we can construct a

second series of random variables Yi where for each Yi, Xi ≤ Yi, and Pr[Yi =
1|Y1 . . . Yi−1] equals i−1

N exactly. We then have E [
∑n

i=1 Yi] =
∑n

i=1
i−1
N =

(
n
2

)
/N .

Since the probability of each Yi doesn’t depend on the outcome of its predecessors,
we also have that the Yi are independent. So standard Chernoff bounds apply (see,
e.g., [Mitzenmacher and Upfal 2005, Theorem 4.4, case 2]), and for any 0 ≤ δ ≤ 1,

Pr

[
n∑

i=1

Yi ≥ (1 + δ)
(

n

2

)
/N

]
≤ exp

(
−δ2

(
n

2

)
/3N

)
.

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · J. Aspnes and K. Censor

For convenience, we set δ = 1 and use 2
(
n
2

)
< n2 to simplify this to

Pr

[
n∑

i=1

Yi ≥ n2/N

]
≤ exp

(
−

(
n

2

)
/3N

)
,

and the same bound immediately applies to
∑n

i=1 Xi ≤
∑n

i=1 Yi.
To complete the proof, we must show that the bound also applies to the difference

between kt and
∑

at[r] for each step t. Here we observe that no two increments i and
j with i < j and Xi = Xj = 0 both write to the same location (otherwise Xj would
be 1). After kt completed increments, at least kt−

∑n
i=1 Xi of these increments thus

write to different locations, giving
∑N

r=1 at[r] ≥ kt −
∑n

i=1 Xi ≥ kt −
∑n

i=1 Yi.

The next lemma bounds the probability that a value R returned from
SamplingRead is too small compared to the number of bits that are set in the
array. Combining it with the previous lemma will later allow us to bound the prob-
ability that a value R returned from SamplingRead is too small compared to the
number of SamplingIncrement operations.

Lemma 3. Fix an adversary strategy, and consider an execution of
SamplingRead. Let A be the set of indices r in a such that a[r] = 1 at the
start of this execution. Let R be the random variable equal to the value returned by
SamplingRead. Then for any 0 ≤ δ ≤ 1,

Pr [R ≤ (1− δ) · |A|] ≤ exp
(
−δ2(s/N) · |A|

2

)
.

Proof. Observe that the process increments its count S each time it reads a
location i in A, which occurs with independent probability (1/N) · |A| per sample.
Thus the final value of S is bounded below by a sum of independent random vari-
ables with total expectation (s/N) · |A|; the probability that this sum is less than or
equal to (1− δ)(s/N) · |A| is less than exp

(−δ2(s/N)|A|/2
)

from Chernoff bounds.
But then the same bound holds for the probability that R = (N/s)S is less than
or equal to (N/s)(1− δ)(s/N)|A| = (1− δ)|A|.

We now bound the probability that a value R returned by a call to SamplingRead
is too high.

Lemma 4. Fix an adversary strategy, and consider an execution of SamplingRead
as part of a global execution that includes at most n ≤ N SamplingIncrement op-
erations. Let K be the number of SamplingIncrement operations that start before
this execution of SamplingRead finishes. Let R be the random variable equal to the
value returned by SamplingRead. Then for every δ,

Pr [R ≥ (1 + δ)K] ≤ exp
(
− (δK)2s

2N2

)
.

Proof. Let Si be the value of S after i iterations of the loop of the SamplingRead
operation, and let Ki be the number of increment operations that start before the
read operation in Line 4 in the i-th iteration of the loop. Let Xi = Si−

∑i
j=1 Kj/N .

ACM Journal Name, Vol. V, No. N, Month 20YY.

Approximate Shared-Memory Counting Despite a Strong Adversary · 9

We will apply the method of bounded increments to show that Xs is small with
high probability.

Observe that Xi+1−Xi = (Si+1−Si)−Ki+1/N . From the fact that Si ≤ Si+1 ≤
Si +1 and 0 ≤ Ki+1 ≤ n ≤ N , it follows that |Xi+1−Xi| ≤ 1. We show in addition
the supermartingale property E[Xi+1|X1 . . . Xi] ≤ Xi, which allows us to apply the
supermartingale version of Azuma’s inequality [Wormald 1999, Lemma 4.2] to get
the desired bound.

Condition on all events prior to the i-th read, and consider what happens with
the (i + 1)-th read. The Si+1 component of Xi+1 rises if and only if the reader
observes a 1 in its chosen location a[r]. Assume that r is chosen immediately
after the previous read (there is no payoff to the adversary for waiting); then the
probability that a[r] either already contains a 1 or is covered by a pending write is
at most Ki/N . The adversary can schedule additional increments after r is chosen
but before a[r] is read; each of these adds at most a 1/N probability of placing
a 1 in a[r], but also increases the number of started increments by 1. Summing
all probabilities thus gives a bound of Ki/N + (Ki+1 −Ki)/N = Ki+1/N on the
probability that Si+1 − Si = 1. This is precisely the net change in

∑i+1
j=1 Kj/N . It

follows that E[Xi+1 −Xi|X1 . . . Xi] ≤ 0 and thus E[Xi+1|X1 . . . Xi] ≤ Xi.
We now apply Azuma’s inequality. For any α > 0, we have

Pr[Xs ≥ α] ≤ exp
(−α2/2s

)
.

The definition of Xs implies Xs = Ss −
∑s

j=1 Kj/N , and since Kj is an in-
creasing function of j we have Ss ≤ Xs + (s/N)Ks. The value returned by
SamplingIncrement is R = (N/s)Ss and therefore Pr[R ≥ α(N/s)+Ks] ≤ Pr[Ss ≥
α + (s/N)Ks] ≤ Pr[Xs ≥ α] ≤ exp

(−α2/2s
)
.

Finally, choose α = (s/N)δK and recall that K = Ks; then α(N/s) = δK and
hence

Pr[R ≥ (1 + δ)K] ≤ exp
(
− (δK)2s

2N2

)
.

We are now ready to prove that there is high probability for a call to
SamplingIncrement to be δ-accurate. The choice of the parameters N and s com-
bines two conflicting considerations. On one hand, we would like s to be as small
as possible, as it determines the cost of SamplingRead. At the same time we would
like the probability of error to be exponentially small, which requires s to be large
(otherwise we get a small error probability only for large numbers of increment
operations, which will require the expander component to work for larger numbers
of increment operations).

Theorem 5. Let 0 < ε < 2/5 and 2n−ε/4 ≤ δ ≤ 1/2. Fix an adversary strategy,
and consider an execution of a single sampling counter with s = n4/5+ε and N =
n6/5+ε/4 that includes at most n calls to SamplingIncrement. Consider a call to
SamplingRead that starts after at least n4/5/δ calls to SamplingIncrement finish.
Then the probability that this call is δ-inaccurate is at most exp

(−δ2nε/2/2
)
(1 +

o(1)).

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · J. Aspnes and K. Censor

Proof. We will consider three sources of error, then show that the last one
dominates the total error probability.

From Lemma 2, the probability that more than n2/N = n4/5−ε/4 writes are lost is
at most exp

(−(
n
2

)
/3N

) ≤ exp
(−(

n
2

)
/3n6/5+ε/4

) ≤ exp
(−n4/5−ε

)
, for sufficiently

large n.
If not more than n2/N = n4/5−ε/4 writes are lost, then for any call to SamplingRead

starting after k ≥ n4/5/δ > n4/5 completed increments, we have |A| ≥ k −
n4/5−ε/4 ≥ k(1 − n−ε/4) ≥ k(1 − δ/2), where A is the set of indices r in a such
that a[r] = 1. In this case we have (1 − δ)k ≤ (1 − δ/2)2k ≤ (1 − δ/2)|A|, hence
the probability that R ≤ (1− δ)k is at most the probability that R ≤ (1− δ/2)|A|,
which from Lemma 3 is at most

exp
(
− (δ/2)2(s/N) · |A|

2

)
≤ exp

(
−1

2
(δ/2)2n−2/5+(3/4)ε(1− δ/2)n4/5

)

≤ exp
(
−1

2
(2n−ε/4)2(1− 1

4
)n2/5+(3/4)ε

)
≤ exp

(
−3

2
n2/5+(1/4)ε

)

≤ exp(−n2/5),

again for sufficiently large n.
Finally, we consider the possibility that some call to SamplingRead returns a

value that is too high. The number K of calls to SamplingIncrement that start
before the call to SamplingRead finishes is at least k, which is at least n4/5. Apply
Lemma 4 to get, for a single call to SamplingRead,

Pr[R ≥ (1+δ)K] ≤ exp
(
− (δK)2s

2N2

)
≤ exp

(
− (δn4/5)2n4/5+ε

2(n6/5+ε/4)2

)
= exp

(
−δ2nε/2/2

)
.

Summing the three probabilities gives a total error probability of

exp
(
−n4/5−ε

)
+ exp(−n2/5) + exp

(
−δ2nε/2/2

)
.

For ε < 2/5 and δ ≤ 1/2 the last term is at least exp
(−n1/5/8

)
, which easily

dominates the others.

Note that while the theorem bounds the probability of failure of each call to
SamplingRead, these probabilities are not independent: there is a small but nonzero
chance that the bound in Lemma 2 will fail, causing all reads to return values that
are too low.

2.2 The expander component

We augment the sampling counter with a second data structure that returns ac-
curate values for small values of k; in particular, for k ≤ Kmax = n4/5+ε/4. Like
the sampling counter, this data structure also uses an array of multi-writer bits.
Each increment operation sets a subset of D bits in the array. These subsets will
be chosen so that for any k ≤ Kmax increments, the number of bits set in the array
will be at least (1− δ)Dk.

The value of the this component is computed by collecting every bit in the second
array and returning the number of ones observed divided by D. For a small number
of increments this will give a value between (1− δ)k and K.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Approximate Shared-Memory Counting Despite a Strong Adversary · 11

The property that each set of k ≤ Kmax increments sets of (1 − δ)Dk bits is
precisely the defining property of an expander. We use a recent explicit expander
construction of [Guruswami et al. 2007] to get good performance out of the expander
component of the counter. Concurrency between increment and read operations
raises some additional complications; these are handled by providing separate lower
and upper bounds on the return value of the counter that may diverge in the
presence of concurrency.

Expanders have a long history in combinatorics, with many variants and applica-
tions; see [Hoory et al. 2006] for a recent survey. We use an explicit construction of
an unbalanced bipartite expander of Guruswami et al. [Guruswami et al. 2007].
In their notation, a bipartite multigraph has a set of left-vertices [N] = {1 . . . N},
a set of right-vertices [M] = {1 . . . M}, and a function Γ : [N] × [D] → [M] that
specifies for each left-vertex and each index i in [D] = {1 . . . D} a correspond-
ing right-vertex. Such a multigraph is a (≤ Kmax, A)-expander if every set S of
K ≤ Kmax left-vertices has |Γ(S)| ≥ A · |S|. Intuitively, the right-hand neighbors of
any small set of left-hand nodes don’t overlap much. The main result of [Guruswami
et al. 2007] is the following theorem:

Theorem 6 [Guruswami et al. 2007]. For every constant α > 0, every N ∈
N, Kmax ≤ N , and δ > 0, there is an explicit (≤ Kmax, (1 − δ)D)-expander Γ :
[N]×[D] → [M] with degree D = O((log N)(log Kmax)/δ)1+1/α and M ≤ D2·K1+α

max .
Moreover, D is a power of 2.

Given an expander of this form, we represent the counter as an array correspond-
ing to the right-hand side. An increment for process pid consists of setting all bits
in Γ(pid), and requires D register write operations. A read operation collects the
entire array of M bits, taking M register read operations, and returns the number
of one bits seen divided by D. The expansion property guarantees that for small
enough numbers of increments, this quantity will not be too much less than the
correct value.

shared data: array b[1..M] of multi-writer bits
for i ← 1 to D do1

b[Γ(pid, i)] ← 12

end3

Procedure ExpanderIncrement.

return 1
D

∑M
i=1 b[i]1

Procedure ExpanderRead

It remains to choose the parameters of the expander. The value δ we will use
in the expander is the same δ used for the sampling counter. We assume as in
Theorem 5 that δ ≤ 1/2, while allowing for the possibility that δ depends on n. We
also use the parameter ε from the exponent of the run-time of the sampling counter,
with the assumption that ε does not exceed 2/5. Our goal is to arrange for the cost

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · J. Aspnes and K. Censor

of reading the entire right-hand side of the expander to be asymptotically no higher
than the n4/5+ε cost of SamplingRead, ignoring log terms and terms depending on
δ. At the same time we want to set Kmax higher than the minimum accurate count
n4/5+ε/4 for the sampling counter. We accomplish these goals by choosing α so that
(4/5 + ε/4)(1 + α) = 4/5 + ε.

N = n

Kmax = n4/5+ε/4

α =
15ε

16 + 5ε
which implies that 1 + α =

16 + 20ε

16 + 5ε
and 1 + 1/α =

16 + 20ε

15ε

D = O ((log N) (log Kmax) /δ)1+1/α = O
((

log2 n
)
/δ

)1+1/α

= O
((

log2 n
)
/δ

) 16+20ε
15ε

≤ O
((

log2 n
)
/δ

) 16+20·(2/5)
15ε

= O
(
(log n)

16
5ε /δ

8
5ε

)

M ≤ D2 ·K1+α
max = O

(
n(4/5+ε/4)((16+20ε)/(16+5ε)) (log n)32/(5ε) (1/δ)16/(5ε)

)

= O
(
n4/5+ε (log n)32/(5ε) (1/δ)16/(5ε)

)

The cost of an increment operation is D = O
(
((1/δ) log n)O(1/ε)

)
. The cost of a

read is M = O
(
n4/5+ε ((1/δ) log n)O(1/ε)

)
. We now show that the expander-based

counter works as advertised:

Lemma 7. Let R be the value returned by an execution of ExpanderRead that
starts after k calls to ExpanderIncrement have finished and ends after K calls to
ExpanderIncrement have started. Then R satisfies

(1− δ)min(k, n4/5+ε/4) ≤ R ≤ K.

Proof. Recall that Kmax = n4/5+ε/4. From the expansion property, we have
that a set S0 of at least (1 − δ)min(k, Kmax)D bits in b are set at the start of
the ExpanderRead operation. It is also the case that a set S1 of at most KD
bits are set when it completes, since each ExpanderIncrement operation sets at
most D bits. Because bits are never unset once their value is 1, the set S of
bits i for which b[i] = 1 which is included in the sum in ExpanderRead satisfies
S0 ⊆ S ⊆ S1 and thus (1− δ)min(k,Kmax)D ≤ |S0| ≤ |S| ≤ |S1| ≤ KD. But then
(1− δ) min(k, Kmax) ≤ 1

D |S| ≤ K

2.3 The complete counter

The complete counter is obtained by combining the expander and sampling compo-
nents into one approximate counter as described in the introduction, in a technique
that ensures high probability for having a δ-accurate read.

The following theorem combines the bounds of Theorem 5 and Lemma 7.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Approximate Shared-Memory Counting Despite a Strong Adversary · 13

SamplingIncrement();1

ExpanderIncrement();2

Procedure ApproxIncrement.

S ← ExpanderRead();1

if S < (1− δ)n4/5+ε/4 then2

return S;3

else4

return SamplingRead();5

end6

Procedure ApproxRead

Theorem 8. Let n be the maximum number of calls to ApproxIncrement. Let
0 < ε < 2/5 be a constant and 2n−ε/4 ≤ δ ≤ 1/2, as in Theorem 5. Then
ApproxIncrement and ApproxRead together implement an approximate counter
where the cost of ApproxIncrement is O

(
((1/δ) log n)O(1/ε)

)
, the cost of ApproxRead

is O
(
n4/5+ε ((1/δ) log n)O(1/ε)

)
, and for each call to to ApproxRead, the probability

that it is δ-inaccurate is at most exp
(−δ2nε/2/2

)
(1 + o(1)).

Proof. The time bounds follow from summing the time bounds of the appro-
priate operations of the sampling and expander counters.

For the error bound, for each call to ApproxRead, there are two cases, depending
on whether its return value is supplied by ExpanderRead or SamplingRead.

The first case occurs if ExpanderRead returns a value S < (1− δ)n4/5+ε/4. Then
from Lemma 7 we have that (1 − δ)min(k, n4/5+ε/4) ≤ S ≤ K (since k acts as
a lower bound on the number of calls to ExpanderIncrement that finish before
the call to ExpanderRead starts and K similarly acts as an upper bound in the
other direction). We immediately get R = S ≤ K ≤ (1 + δ)K. On the other side,
expanding the min gives that either (1 − δ)k ≤ S or (1 − δ)n4/5+ε/4 ≤ S; but the
latter case contradicts the assumption on S, so the former case holds. It follows
that this call to ApproxRead is δ-accurate with probability 1.

The second case occurs if ExpanderRead returns a value S ≥ (1 − δ)n4/5+ε/4.
Now ApproxRead returns the value obtained by SamplingRead. Because
ApproxIncrement calls SamplingIncrement before ExpanderIncrement, the num-
ber of started calls to ExpanderIncrement is a lower bound on the number
of finished calls to SamplingIncrement. So from the fact that the number of
started calls to ExpanderIncrement before the end of the call to ExpanderRead
is at least S ≥ (1 − δ)n4/5+ε/4, we have that the number of completed calls
to SamplingIncrement before the start of the call to SamplingRead is at least
(1−δ)n4/5+ε/4. Under the assumption that 2n−ε/4 ≤ δ ≤ 1/2, we have (1−δ) ≥ 1/2
and nε/4 ≥ 2/δ; it follows that (1− δ)n4/5+ε/4 ≥ n4/5/δ, the condition under which
Theorem 5 applies. This gives the probability bound claimed in the theorem.

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · J. Aspnes and K. Censor

3. APPLICATION: CONSENSUS WITH OPTIMAL INDIVIDUAL WORK

In this section we describe an application of our counting protocol: a protocol for
solving randomized consensus with optimal O(n) work per process. This improves
the best previously known bound of O(n log n) of Aspnes et al. [Aspnes et al. 2008]
to match the Ω(n) lower bound of Attiya and Censor [Attiya and Censor 2007].
While the Attiya-Censor results showed a tight bound of Θ(n2) on the total number
of operations carried out by all processes, our is the first protocol that guarantees
that this work is in fact evenly distributed among all the processes.

As described previously, we use a standard reduction [Aspnes and Herlihy 1990]
of randomized consensus to the problem of implementing a weak shared coin.
The code for each process’s actions in the shared coin implementation is given as
Procedure SharedCoin, in which each process outputs either +1 or -1.

shared data: array c[0..(2 log n)] of approximate counters with parameters
δ = 1/2 and ε = 1/10, array votes[1..n] of single-writer
registers, multi-writer bit done

i ← 0;1

v0 ← 0;2

varianceWritten ← 0;3

while vi < 1 and not done do4

i ← i + 1;5

wi = min (max(vi−1, 1/n), 1/
√

n);6

vi = vi−1 + w2
i ;7

vote = LocalCoin() · wi;8

votes[pid] ← votes[pid] + vote;9

if vi ≥ 2varianceWritten/n2 then10

ApproxIncrement(c[varianceWritten]);11

varianceWritten ← varianceWritten + 1;12

if
∑2 log n

k=0

(
2k · ApproxRead(c[k])

) ≥ 3n2 then13

break;14

end15

end16

end17

done ← true;18

return sgn(
∑

p votes[p]);19

Procedure SharedCoin

We now give a high-level description of the shared coin algorithm, which will be
followed by a formal proof. Each process generates votes whose sum is recorded
in an array of n single-writer registers, and whose variance is recorded in 2 log n
approximate counters. A process terminates and outputs the majority of votes when
the total variance of the votes reaches a certain threshold, which is small enough to
guarantee the claimed step complexity, and at the same time large enough to have
a good probability for the votes to have a distinct majority.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Approximate Shared-Memory Counting Despite a Strong Adversary · 15

In order to reduce the individual step complexity, the votes generated by a process
have increasing weights. This allows fast processes running alone to cast heavier
votes and reach the variance threshold after generating fewer votes.

The weight wi of the i-th vote is a function of the total variance vi−1 of all
previous votes, as computed in Line 6; we discuss the choice of this formula in more
detail in Section 3.1.1. The voting operation consists of lines 6 through 9; each
time the process votes, it computes the weight wi of the next vote, updates the
total variance vi, generates a random vote with value ±wi with equal probability,
and adds this vote to the pool votes[pid], where pid is the current process id.

Termination can occur in one of three ways:

(1) The process by itself produces enough variance to cross the threshold (first
clause of while loop test in Line 4).

(2) All processes collectively produce enough variance for the threshold test to
succeed in (Line 13).

(3) The process observes that some other process has written done (second clause
of while loop test in Line 4). This last case can only occur if some other process
previously observed sufficient total variance to finish.

We use 2 log n counters, since our counters can be incremented at most once
by each process. Having approximate sublinear counters allows incrementing and
reading them not very frequently, namely, only when increasing amounts of variance
are generated by the process, which gives the linear complexity.

We show that the counters give a good approximation of the total variance, which
when large enough has constant probability for the votes having a distinct majority,
even in spite of small differences between the votes that different processes read,
which may be caused by the asynchrony of the system.

3.1 Analysis

The proof of correctness for the shared coin protocol proceeds in several steps. In
Section 3.1.1 we prove some properties of the weight function. These will allow us
to bound the expected individual work of each process, and later will also be used to
analyze the agreement parameter. In Section 3.1.2 we bound the individual work
(Lemma 11), and prove bounds on the probabilities of terminating with a total
variance of votes which is too low or too high. Finally, in Section 3.1.3 we analyze
the sums of votes in different phases of Procedure 7, which allows us to prove
in Theorem 18 that it implements a weak shared coin with a constant agreement
parameter.

3.1.1 Properties of the weight function. The weight of the i-th vote is given by
the formula wi = min (max(vi−1, 1/n), 1/

√
n), where vi−1 =

∑i−1
j=1 w2

j is the total
variance contributed by all previous votes.

The cap of 1/
√

n keeps any single vote from being too large, which will help
us show in Section 3.1.3 that the core votes are normally distributed in the limit.
The use of max(vi−1, 1/n) bounds the weight of all unwritten votes in any state
by the total variance of all written votes, plus a small constant corresponding to
those processes that are still casting the minimum votes of weight 1/n. This gives

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · J. Aspnes and K. Censor

a bound on the bias that the adversary can create by selectively stopping a process
after it generates its i-th vote in Line 8 but before it writes it in Line 9.

Lemma 9. For any values ij ≥ 0, we have
∑n

j=1 wij ≤ 1 +
∑n

j=1 vij−1.

Proof. Sum wij ≤ max(vij−1, 1/n) ≤ (
vij−1 + 1/n

)
over all j.

Despite wanting to keep wi small relative to vi, we still want to generate variance
quickly. The following lemma states that any single process can generate a total
variance vi ≥ 1 after only i = 4n votes. It follows immediately that the loop in
Procedure 7 is executed at most 4n times.

Lemma 10. All of the following conditions hold:

(1) v1 = 1/n2

(2) vi+1 ≤ 2vi [i ≥ 1]
(3) v4n ≥ 1.

Proof. We observe that the following recurrence holds for vi:

vi = vi−1 + w2
i = vi−1 +

(
min(max(vi−1, 1/n), 1/

√
n)

)2
,

with a base case of v0 = 0. We can immediately compute v1 = 1/n2, giving (1).
It also follows that vi ≥ v1 = 1/n2 for all i ≥ 1. Let i ≥ 1 and consider the

possible values of vi−1. If vi−1 ≤ 1/n then w2
i = 1/n2, therefore vi = vi−1 +

1/n2 ≤ 2vi−1. Otherwise, if 1/n ≤ vi−1 < 1/
√

n then w2
i = v2

i−1 < 1/n, therefore
vi ≤ vi−1 + 1/n ≤ 2vi−1. Finally, if vi−1 ≥ 1/

√
n then w2

i = 1/n and we have
vi = vi−1 + 1/n ≤ 2vi−1. So (2) holds for all i ≥ 1.

To prove (3), we consider three phases of the increase in vi, depending on whether
wi = 1/n, wi = vi−1 ≥ 1/n, or wi = 1/

√
n.

In the first phase, we have that for any i > 0, vi ≥ vi−1+1/n2, and thus vi ≥ i/n2.
In particular, for i = n we have vi ≥ 1/n.

For the second phase, suppose that vi−1 ≤ 1/
√

n. We then have vi ≥ vi−1 +v2
i−1.

If this holds, and there is some x ≥ 1 such that vi ≥ 1/x, then

vi+1 ≥ vi + v2
i ≥

1
x

+ 1/x2 =
x + 1
x2

=
(x + 1)(x− 1/2)

x2(x− 1/2)

=
x2 + x/2− 1/2

x2(x− 1/2)
=

1 + 1/(2x)− 1/(2x2)
x− 1/2

≥ 1
x− 1/2

.

By iterating this calculation, we obtain that vi+t ≥ 1
x−t/2 , so long as vi+t−1 ≤

1/
√

n. Starting with vn ≥ 1/n, we thus get vn+t ≥ 1/(n − t/2), which gives
vi ≥ 1/

√
n for some i ≤ (n + (2n−√n)) ≤ 3n.

At this point, wi is capped by 1/
√

n; the increment to vi is thus w2
i = 1/n, so

after a further (n − √n) ≤ n votes, we have vi ≥ 1. The total number of votes is
bounded by 4n, as claimed.

3.1.2 Termination. We begin analyzing the situation of termination, i.e., when
no more votes are generated, by bounding the running time of the protocol.

Lemma 11. Procedure SharedCoin executes O(n) local coin-flips and O(n) reg-
ister operations, including those incurred by O(log2 n) ApproxRead operations on
approximate counters.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Approximate Shared-Memory Counting Despite a Strong Adversary · 17

Proof. Lemma 10 implies that each process terminates after casting at most
4n votes. This gives an O(n) bound on the number of iterations of the main loop.
Each iteration requires one call to LocalCoin and two register operations (the
read of done in Line 4 and the write to votes[pid] in Line 9, assuming the previ-
ous value of votes[pid] is cached in an internal variable), plus whatever operations
are needed to execute the threshold test in Lines 11 through 13. These lines are
executed at most 1 + 2 log n times (since varianceWritten rises by 1 for each exe-
cution), and their cost is dominated by the 1 + 2 log n calls to ApproxRead at a
cost of O

(
n4/5+ε ((1/δ) log n)O(1/ε)

)
each, where ε = 1/10 and δ = 1/2 are both

constants. The cost of the at most (1 + 2 log n)2 total calls to ApproxRead is thus
O

(
n9/10 logO(1) n

)
= O(n).

Consider the sequence of votes generated by all processes, ordered by the inter-
leaving of execution of the LocalCoin procedure. Write Xt for the random variable
representing the value of the t-th such vote (or 0 if there are fewer than t total
votes); we thus have a sequence of votes X1, X2,

We wish to bound any sum computed in Line 13 according to the total variance
of the votes that have been generated, where for a given number of votes t their
total variance is

∑t
i=1 X2

i .
For a given t, consider the state of the counters when the t-th vote is generated.

For each process j, let kt
j be the maximum index of any counter in c for which j

has completed an ApproxIncrement operation, and let `t
j be the maximum index

of any counter for which j has started an ApproxIncrement operation. If there is
no such index, set kt

j or `t
j to −1. Let itj be the total number of votes generated by

process j among the first t votes, i.e.,
∑t

i=1 X2
i =

∑n
j=1 vit

j
. We first bound kt

j and
`t
j in terms of vit

j
.

Lemma 12. For every t, we have 2`t
j ≤ vit

j
n2 + 1/2 and 2kt

j+1 ≥ vit
j
n2.

Proof. We begin with an upper bound on 2`t
j . Observe that the test in Line 10

means that ApproxIncrement(c[k]) can have started only if vit
j
≥ 2k/n2; it follows

that either `t
j = −1 or 2`t

j ≤ vit
j
n2; in either case we have

2`t
j ≤ vit

j
n2 + 1/2.

Getting a lower bound on 2kt
j is slightly harder, since we can’t rely solely on the

test in Line 10 succeeding but must also show that varianceWritten is large enough
that 2varianceWritten is in fact close to v2

i . We do so by proving, by induction on
i, that at the end of each iteration of the main loop in Procedure SharedCoin,
vi ≤ 2varianceWritten/n2. To avoid ambiguity (and excessive text), we will write Wi

for the value of varianceWritten at the end of the i-th iteration.
The base case is i = 1, where inspection of the code reveals v1 = 1/n2 and

W1 = 1; in this case v1 ≤ 2W1/n2 = 2/n2. For larger i, suppose that it holds
that vi−1 ≤ 2Wi−1/n2. Then vi ≤ 2vi−1 ≤ 2Wi−1+1/n2 (the first inequality follows
from (2) of Lemma 10). It is possible that vi is much smaller than this bound,
indeed, small enough that vi < 2Wi−1/n2; in this case Wi = Wi−1 and the invariant

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · J. Aspnes and K. Censor

continues to hold. If not, Line 12 is executed, and so we have Wi = Wi−1 + 1. But
then vi ≤ 2Wi−1+1/n2 = 2Wi/n2, so the invariant holds here as well.

In bounding 2kt
j , the worst case (for kt

j ≥ 0) is when kt
j = Wit

j−1, the value of
varianceWritten at the end of the previous iteration of the loop. In this case we
have vit

j
≤ 2vit

j−1 ≤ 2 · 2kt
j /n2 = 2kt

j+1/n2. For kt
j = −1, we have itj ≤ 1, so

vit
j
≤ 1/n2 = 2−1+1/n2 = 2kt

j+1/n2. In either case we get

2kt
j+1 ≥ vit

j
n2.

We now consider the interaction between ApproxIncrement and ApproxRead
operations in order to bound any sum computed in Line 13. The next lemma
shows a small upper bound on the probability that the sum is too large.

Lemma 13. If S is a sum computed in Line 13, where the first ApproxRead
operation is started after t total votes are generated, then

Pr

[
S ≤ 1

2
n2

t∑

i=1

X2
i − n/2

]
≤ (2 log n + 1)

(
exp

(
−n1/20/8

)
(1 + o(1))

)
.

Proof. For each k let r[k] be the value returned by the ApproxRead(c[k]) opera-
tion included in the sum, and let c[k] be the number of calls to ApproxIncrement(c[k])
that have finished before the summation starts. Applying Theorem 8 with ε = 1/10
and δ = 1/2 gives

Pr
[
r[k] ≤ 1

2
c[k]

]
≤ exp

(
−n1/20/8

)
(1 + o(1)),

This implies that with probability at least 1−(2 log n+1)·(exp
(−n1/20/8

)
(1 + o(1))

)
we have r[k] > 1

2c[k] for every k. In this case

S =
2 log n∑

k=0

2kr[k] >
1
2

2 log n∑

k=0

2kc[k] =
1
2

n∑

j=1

kt
j∑

m=0

2m =
1
2

n∑

j=1

(
2kt

j+1 − 1
)

≥ 1
2

n∑

j=1

vit
j
n2 − n/2 =

1
2
n2

t∑

i=1

X2
i − n/2,

where the fourth inequality follows from Lemma 12. This completes the proof.

Similarly, the next lemma shows a small upper bound on the probability that the
sum is too small.

Lemma 14. If S′ is a sum computed in Line 13, where the last ApproxRead
operation is completed before t′ total votes are generated, then

Pr

S′ ≥ 3n2

t′∑

i=1

X2
i

 ≤ (2 log n + 1) exp

(
−n1/20/8

)
(1 + o(1)).

ACM Journal Name, Vol. V, No. N, Month 20YY.

Approximate Shared-Memory Counting Despite a Strong Adversary · 19

Proof. For each k let r′[k] be the value returned by the ApproxRead(c[k]) op-
eration included in the sum, and let c′[k] be the number that start before the
summation finishes. Applying Theorem 8 with ε = 1/10 and δ = 1/2 gives

Pr
[
r′[k] ≥ 3

2
c′[k]

]
≤ exp

(
−n1/20/8

)
(1 + o(1)).

This implies that with probability at least 1−(2 log n+1)·(exp
(−n1/20/8

)
(1 + o(1))

)
we have r′[k] < 3

2c′[k] for every k. In this case

S′ =
2 log n∑

k=0

2kr′[k] <
3
2

2 log n∑

k=0

2kc′[k] =
3
2

n∑

j=1

`t′
j∑

m=0

2m =
3
2

n∑

j=1

(
2`t′

j +1 − 1
)

≤ 3
2

n∑

j=1

(
2

(
vit′

j
n2 + 1/2

)
− 1

)
= 3

n∑

j=1

vit′
j
n2 = 3n2

t′∑

i=1

X2
i .

where the fourth inequality follows from Lemma 12. This completes the proof.

Using the two previous lemmas, we now prove upper and lower bounds on the
total variance of all the generated votes.

Lemma 15. Let T be the total number of votes generated by all processes during
an execution of the shared coin protocol, and let V =

∑T
i=1 X2

i be the total variance
of these votes. Then we have

(1) Pr[V < 1] ≤ n(2 log n + 1)2 exp
(−n1/20/8

)
(1 + o(1)),

(2) Pr
[
V > 13 + 4

n

] ≤ n(2 log n + 1) exp
(−n1/20/8

)
(1 + o(1)).

Proof. Termination with V < 1 cannot occur as the result of some process
failing the main loop test vi < 1, as if this test fails, that process alone gives
V ≥ 1. So the only possibility is that the threshold test in Line 13 succeeds
for some process despite the low total variance. But since the total variance of
all votes is less than 1, for any particular sum of observed counter values S′ we
have from Lemma 14 that Pr[S′ ≥ 3n2] ≤ (2 log n + 1) exp

(−n1/20/8
)
(1 + o(1)),

from which it follows, by summing over the at most n(2 log n + 1) executions of
Line 13 by all processes, that the probability of premature termination is at most
n(2 log n + 1)2 exp

(−n1/20/8
)
(1 + o(1)).

For (2), suppose that after t1 votes we have
∑t1

i=1 X2
i ≥ 6 + 1/n. If there is no

such t1, then V < 13+ 4
n ; otherwise, let t1 be the smallest value with this property.

Because t1 is least, we have
∑t1

i=1 X2
i < 6 + 1/n + X2

t1 ≤ 6 + 2/n.
From Lemma 13 we have that, for any execution of Line 13 that starts after these

t1 votes, the return value S satisfies Pr
[
S ≤ 1

2n2(6 + 1/n)− n/2
]

= Pr[S ≤ 3n2] ≤
(2 log n+1) exp

(−n1/20/8
)
(1+o(1)). The probability that there exists any process

j for which the first execution of the threshold test (if any) starting after the t1-th
vote returns a value less than or equal to 3n2 is at most n times this bound, or
n(2 log n + 1) exp

(−n1/20/8
)
(1 + o(1)).

Assuming this improbably event does not hold, every process that executes the
threshold test after t1 total votes will succeed, and as a result will cast no more
votes. So we must bound the amount of additional variance each process can add

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 · J. Aspnes and K. Censor

before it reaches this point. Recall that it1j is the number of votes cast by process
j among the first t1 votes, and let i′j be the total number of votes cast by process
j before termination. Then under the assumption that j’s next threshold test
succeeds, we have vi′j < 2v

i
t1
j

+ 1/n, as j can at most double its variance and cast

one additional vote before seeing vi ≥ 2varianceWritten. So now we have

V =
T∑

i=1

X2
i =

n∑

j=1

vi′j <

n∑

j=1

(2v
i
t1
j

+ 1/n) = 1 + 2
n∑

j=1

v
i
t1
j

= 1 + 2
t1∑

i=1

X2
i < 1 + 2(6 + 2/n) = 13 +

4
n

.

Thus (2) holds.

3.1.3 Core votes and extra votes. We will assume for convenience that the ad-
versary scheduler is deterministic, in particular that the choice of which process
generates vote Xt is completely determined by the outcomes of votes X1 through
Xt−1; this assumption does not constrain the adversary’s behavior, because any
randomized adversary strategy can be expressed as a weighted average of deter-
ministic strategies. Under this assumption, we have that the weight |Xt| of Xt

is a constant conditioned on X1 . . . Xt−1, but because the adversary cannot pre-
dict the outcome of LocalCoin, the expectation of Xt is zero even conditioning
on the previous votes. That E[Xt = 0|X1, . . . Xt−1] is the defining property of a
class of stochastic processes known as martingales (see [Grimmet and Stirzaker
1992; Alon and Spencer 1992; Hall and Heyde 1980]); in particular the Xt variables
form a martingale difference sequence while the variables St =

∑t
i=1 Xt form

a martingale proper.
Martingales are a useful class of processes because for many purposes they act

like sums of independent random variables: there is an analog of the Central Limit
Theorem that holds for martingales [Hall and Heyde 1980, Theorem 3.2], which we
use in the proof of Lemma 16; and as with independent variables, the variance of
St is equal to the sum of the variances of X1 through Xt [Hall and Heyde 1980,
p. 8], a fact we use in the proof of Lemma 17.

Martingales can also be neatly sliced by stopping times, where a stopping time
is a random variable τ which is finite with probability 1 and for which the event
[τ ≤ t] can be determined by observing only the values of X1 through Xt (see
[Grimmet and Stirzaker 1992, Section 12.4]); the process {S′t =

∑t
i=1 X ′

i} obtained
by replacing Xt with X ′

t = Xt for t ≤ τ and 0 otherwise, is also a martingale
[Grimmet and Stirzaker 1992, Theorem 12.4.5], as is the sequence S′′t =

∑t
i=1 Xτ+i

[Grimmet and Stirzaker 1992, Theorem 12.4.11]. We will use a stopping time to
distinguish the core and extra votes.

Define τ as the least value such that either (a)
∑τ

t=1 X2
t ≥ 1 or (b) the protocol

terminates after τ votes. Observe that τ is always finite, because if the protocol
does not otherwise terminate, any process eventually generates 1 unit of variance
on its own (as shown in Lemma 10). Because the weights of votes vary, τ is in
general a random variable; but for a fixed adversary strategy, the condition τ = t
can be detected by observing the values of X1 . . . Xt. Thus τ is a stopping time
ACM Journal Name, Vol. V, No. N, Month 20YY.

Approximate Shared-Memory Counting Despite a Strong Adversary · 21

relative to the Xt. The quantity Sτ will be called the core vote of the protocol.
The remaining votes Xτ+1, Xτ+2, . . . form the extra votes.

First, we show a constant probability of the core vote being at least a con-
stant. This will follow by an application of the martingale Central Limit Theo-
rem, particularly in the form of Theorem 3.2 from [Hall and Heyde 1980]. This
theorem considers a zero-mean martingale array, which is a sequence of tu-
ples {Smt,Fmt, 1 ≤ t ≤ km,m ≥ 1} parameterized by m, where for each fixed
m the sequence of random variables {Smt} is a zero-mean martingale with re-
spect to the corresponding sequence of σ-algebras {Fmt}, with difference sequence
Xmt = Smt − Sm,t−1. Specializing the theorem slightly, if it holds that:

(1) maxt |Xmt| p−→ 0,

(2)
∑

t X2
mt

p−→ 1,
(3) E

[
maxt X2

mt

]
is bounded in m, and

(4) Fm,t ⊆ Fm+1,t for 1 ≤ t ≤ km, m ≥ 1,

then Smt
d−→ N(0, 1), where N(0, 1) has a normal distribution with zero mean

and unit variance. Here
p−→ denotes convergence in probability and d−→ denotes

convergence in distribution.

Lemma 16. For any fixed α and n sufficiently large, there is a constant proba-
bility pα such that, for any adversary strategy, Pr[Sτ ≥ α] ≥ pα.

Proof. We construct our martingale array by considering, for each number of
processes n, the set of all deterministic adversary strategies for scheduling Procedure
SharedCoin. The first rows of the array correspond to all strategies for n = 1 (in
any fixed order); subsequent rows hold all strategies for n = 2, n = 3, and so
forth. Because each set of strategies is finite (for an execution with n process, each
choice of the adversary chooses one of n processes to execute the next coin-flip in
response to some particular pattern of O(n2) preceding coin-flips, giving at most
nO(n2) possible strategies), every adversary strategy eventually appears as some
row m in the array. We will write nm as the value of n corresponding to this row
and observe that it grows without bound.

For each row in the array, we set km to include all possible votes, but truncate
the actual set of coin-flips at time τ . Formally, we define Xmt = Xt for t ≤ τ , but
set Xmt = 0 for larger t. This ensures that Smkm = Sτ , the total core vote from
each execution, while maintaining the martingale property and the fixed-length
rows required by the theorem. We ensure the nesting condition (4) by using the
same random variable to set the sign of each vote at time t in each row; in effect, we
imagine that we are carrying out an infinite collection of simultaneous executions
for different values of n and different adversary strategies using the same sequence
of random local coin-flips.

Let’s knock off the remaining requirements of the theorem in turn. For (1),
we have that maxt |Xmt| ≤ 1/

√
nm, which converges to 0 absolutely (and thus

in probability as well). For (2), by construction of τ and Lemma 15, we have
that 1 ≤ ∑

t X2
mt ≤ 1 + X2

mτ ≤ 1 + 1/nm, except for an event of probability

at most nm(2 log nm + 1)2 exp
(
−n

ε/2
m /2

)
(1 + o(1)), which goes to 0 in the limit.

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 · J. Aspnes and K. Censor

Thus
∑

t X2
mt converges in probability to 1. For (3), we again use the fact that

X2
mt ≤ 1/nm for all t.
It follows that Smt converges in distribution to N(0, 1). In particular, for any

fixed α, we have that limm→∞ Pr[Smt ≥ α] = Pr[N(0, 1) ≥ α], which is a constant.
By choosing pα strictly less than this constant, we have that for sufficiently large
m (and thus for sufficiently large n = nm), Pr[Sτ ≥ α] = Pr[Smt ≥ α] ≥ pα.

By symmetry, we also have Pr[Sτ ≤ −α] ≥ pα.
We now consider the effect of the extra votes. Our goal is to bound the probability

that the total extra vote is too large using Chebyshev’s inequality, obtaining a bound
on the variance of the extra votes from a bound on the sum of the squares of the
weights of all votes as shown in Lemma 15, (2). There is a complication in that
(with very small probability), this latter quantity may be too big; we deal with
this by truncating the process early (for now) and handling the rare case that the
protocol runs too long later.

Lemma 17. Define τ ′ to be the maximum index such that (a) Xτ ′ 6= 0 and (b)∑τ ′

i=1 X2
i ≤ 13+4/n. Let p19 be the probability from Lemma 16 that Sτ is at least 19.

Then for sufficiently large n and any adversary strategy, Pr[Sτ ′ > 15] ≥ (1/8)p19.

Proof. From Lemma 16, the probability that the sum of the core votes Sτ is at
least 19 is at least p19. We wish to show that, conditioning on this event occurring,
adding the extra votes up to τ ′ does not drive this total below 15.

Observe that τ ′ is a stopping time. For the rest of the proof, all probabilistic
statements are conditioned on the values of X1 . . . Xτ .

Define Yi = Xτ+i for τ + i ≤ τ ′ and 0 otherwise. Let Ui =
∑i

j=1 Yj . Then {Ui}
is a martingale and E[Ui] = 0 for all i. Let imax be such that Yi = 0 for i > imax

with probability 1 (imax exists by Lemma 11). Then

Var[Uimax] = Var

[
imax∑

i=1

Yi

]
=

imax∑

i=1

Var [Yi] =
imax∑

i=1

E
[
Y 2

i

]

= E

[
imax∑

i=1

Y 2
i

]
≤ E[13 + 4/n] = 13 + 4/n.

So by Chebyshev’s inequality,

Pr [|Uimax | ≥ 4] ≤ 13 + 4/n

42
= 13/16 + 1/4n ≤ 7/8,

when n ≥ 4. But if |Uimax | < 4, we have Sτ ′ = Sτ + Uimax ≥ 19 − 4 = 15. As
the event |Uimax | < 4 occurs with conditional probability at least 1/8, the total
probability that Sτ ′ ≥ 15 is at least (1/8)p19.

3.1.4 Full result. We are now ready to prove the main theorem of having a
constant agreement parameter.

Theorem 18. For sufficiently large n, Procedure SharedCoin implements a weak
shared coin with constant agreement parameter.

Proof. Let T be the total number of votes generated.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Approximate Shared-Memory Counting Despite a Strong Adversary · 23

The total vote Zi computed by any process in Line 19 is equal to ST minus at
most one vote for each process because of the termination bit. From Lemma 9,
these unwritten votes have total size bounded by 1 +

∑T
i=1 X2

i . We show there is
at least a constant probability that both 1 +

∑T
i=1 X2

i ≤ 14 + 4/n and ST > 15,
which implies that for sufficiently large n there is a constant probability for having
Zi > 0 for all i, and therefore all processes agree on the value +1.

From Lemma 15, the probability that
∑T

i=1 X2
i > 13 + 4/n is o(1). From

Lemma 17, the probability that Sτ ′ ≤ 15 is at most 1− (1/8)p19. The probability
that neither of the above events hold is at least (1/8)p19−o(1), which is at least some
constant δ, and in this case we have ST ≥ Sτ ′ > 15 and 1 +

∑T
i=1 X2

i ≤ 14 + 4/n.
This proves that there is a constant probability of all processes deciding +1; the

same results hold for −1 by symmetry.

4. DISCUSSION

We have constructed an approximate counter for a shared-memory system, that
works under a strong adversary which can decide upon its scheduling adaptively, by
observing the execution so far, including the results of local coin-flips. Incrementing
and reading the counter require sublinear work, and any read operation has a high
probability of returning a value which is at most a fraction of δ less than the number
of increments that have finished before the read started, and at most a fraction of
δ more than the number of increments that have started before the read finished.

We have shown an application of this approximate counter in a shared coin
protocol with O(n) individual work, and hence O(n2) total work. This implies a
randomized consensus protocol with the same complexities, which improve upon
the best previously known protocol of O(n log n) individual work [Aspnes et al.
2008], and are tight due to the Ω(n2) lower bound of [Attiya and Censor 2007].

While the approximate counter of Section 2 is highly specialized for our particular
application, the underlying techniques seem fairly general. We believe that further
improvements could give an approximate counter with much better complexity and
fewer restrictions on its use.

The analysis of our shared coin protocol is asymptotic. While the O(n) individual
work bound holds with a reasonably small constant for all values of n, the bound
on the agreement parameter is proved only for values of n that are quite large, and
the agreement parameter itself is very small. This is in contrast to the many shared
coin protocols based on unweighted voting [Aspnes and Herlihy 1990; Aspnes 1993;
Bracha and Rachman 1991; Saks et al. 1991] culminating in the O(n2) total work
protocol of [Attiya and Censor 2007], where both the protocols and their proofs
are relatively simple, work even for small n, and give highly respectable agreement
parameters. Though the theoretical question of the asymptotic individual work
complexity of randomized wait-free consensus is now settled, the resulting algorithm
is still likely to be quite expensive, and it is an intriguing open question whether a
practical algorithm with linear individual work can be obtained.

ACKNOWLEDGMENTS

The authors would like to thank Dana Angluin and David Eisenstat for useful dis-
cussions and Hagit Attiya for many helpful comments and suggestions. Comments

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 · J. Aspnes and K. Censor

on an earlier version by the anonymous referees are appreciated.

REFERENCES

Abrahamson, K. 1988. On achieving consensus using a shared memory. In Proceedings of the
7th Annual ACM Symposium on Principles of Distributed Computing (PODC). 291–302.

Alon, N. and Spencer, J. H. 1992. The Probabilistic Method. John Wiley & Sons.

Aspnes, J. 1993. Time- and space-efficient randomized consensus. Journal of Algorithms 14, 3
(May), 414–431.

Aspnes, J. 1998. Lower bounds for distributed coin-flipping and randomized consensus. 45, 3
(May), 415–450.

Aspnes, J., Attiya, H., and Censor, K. 2008. Randomized consensus in expected O(n log n)
individual work. In Proceedings of the twenty-seventh ACM symposium on Principles of dis-
tributed computing (PODC). 325–334.

Aspnes, J. and Herlihy, M. 1990. Fast randomized consensus using shared memory. Journal of
Algorithms 11, 3 (Sept.), 441–461.

Aspnes, J. and Waarts, O. 1996. Randomized consensus in expected O(N log2 N) operations
per processor. SIAM J. Comput. 25, 5 (Oct.), 1024–1044.

Attiya, H. and Censor, K. 2007. Tight bounds for asynchronous randomized consensus. In
Proceedings of the thirty-ninth annual ACM symposium on Theory of computing (STOC).
155–164.

Attiya, H., Guerraoui, R., Hendler, D., and Kouznetsov, P. 2006. Synchronizing without
locks is inherently expensive. In Proceedings of the twenty-fifth annual ACM symposium on
Principles of distributed computing (PODC). 300–307.

Bracha, G. and Rachman, O. 1991. Randomized consensus in expected O(n2 log n) operations.
In Distributed Algorithms, 5th International Workshop, S. Toueg, P. G. Spirakis, and L. M.
Kirousis, Eds. Lecture Notes in Computer Science, vol. 579. Springer, 1992, Delphi, Greece,
143–150.

Fich, F. E., Hendler, D., and Shavit, N. 2005. Linear lower bounds on real-world imple-
mentations of concurrent objects. In Proceedings of the 46th Annual IEEE Symposium on
Foundations of Computer Science (FOCS). 165–173.

Fischer, M. J., Lynch, N. A., and Paterson, M. S. 1985. Impossibility of distributed consensus
with one faulty process. 32, 2 (Apr.), 374–382.

Flajolet, P. 1985. Approximate counting: a detailed analysis. BIT 25, 1, 113–134.

Flajolet, P. and Martin, G. N. 1985. Probabilistic counting algorithms for data base applica-
tions. J. Comput. Syst. Sci. 31, 2, 182–209.

Grimmet, G. R. and Stirzaker, D. R. 1992. Probability and Random Processes, 2nd ed. Oxford
Science Publications.

Guruswami, V., Umans, C., and Vadhan, S. 2007. Unbalanced expanders and randomness
extractors from Parvaresh-Vardy codes. In Proceedings of the 22nd Annual IEEE Conference
on Computational Complexity (CCC ‘07). 96–108.

Hall, P. and Heyde, C. 1980. Martingale Limit Theory and Its Application. Academic Press.

Herlihy, M. 1991. Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13, 1 (January),
124–149.

Herlihy, M. P. and Wing, J. M. 1990. Linearizability: a correctness condition for concurrent
objects. ACM Transactions on Programming Languages and Systems 12, 3 (July), 463–492.

Hoory, S., Linial, N., and Wigderson, A. 2006. Expander graphs and their applications.
Bulletin (new series) of the American Mathematical Society 43, 4 (Oct.), 439–561.

Loui, M. C. and Abu-Amara, H. H. 1987. Memory requirements for agreement among unreliable
asynchronous processes. Advances in Computing Research, 163–183.

Mitzenmacher, M. and Upfal, E. 2005. Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press.

Morris, R. 1978. Counting large numbers of events in small registers. Commun. ACM 21, 10,
840–842.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Approximate Shared-Memory Counting Despite a Strong Adversary · 25

Saks, M., Shavit, N., and Woll, H. 1991. Optimal time randomized consensus—making resilient
algorithms fast in practice. In Proceedings of the 2nd annual ACM-SIAM symposium on
Discrete algorithms (SODA). 351–362.

Wormald, N. C. 1999. The differential equation method for random graph processes and greedy
algorithms. In Lectures on Approximation and Randomized Algorithms, M. Karonski and H. J.
Proemel, Eds. PWN, 73–155.

ACM Journal Name, Vol. V, No. N, Month 20YY.

