
Lower Bounds for Restricted-Use Objects∗

James Aspnes† Keren Censor-Hillel‡ Hagit Attiya§ Danny Hendler¶

March 13, 2016

Abstract

Concurrent objects play a key role in the design of applications for multi-core architectures,
making it imperative to precisely understand their complexity requirements. For some objects, it
is known that implementations can be significantly more efficient when their usage is restricted.
However, apart from the specific restriction of one-shot implementations, where each process
may apply only a single operation to the object, very little is known about the complexities of
objects under general restrictions.

This paper draws a more complete picture by defining a large class of objects for which an
operation applied to the object can be “perturbed” L consecutive times, and by proving lower
bounds on their space complexity and on the time complexity of deterministic implementations
of such objects. This class includes bounded-value max registers, limited-use approximate and
exact counters, and limited-use collect and compare-and-swap objects; L depends on the number
of times the object can be accessed or the maximum value it can support.

For n-process implementations that use only historyless primitives, we prove Ω(min(L, n))
space complexity lower bounds, which hold for both deterministic and randomized implemen-
tations. For deterministic implementations, we prove lower bounds of Ω(min(logL, n)) on the
worst-case step complexity of an operation. When arbitrary primitives can be used, we prove
that either some operation incurs Ω(min(logL, n)) memory stalls or some operation performs
Ω(min(logL, n)) steps.

In addition to our deterministic time lower bounds, the paper establishes lower bounds on
the expected step complexity of restricted-use randomized versions of many of these objects in
a weak oblivious adversary model.

1 Introduction

With multi-core and multi-processor systems now prevalent, there is growing need to gain better
understanding of concurrent objects and, specifically, to establish lower bounds on the cost of
implementing them. An important general class of concurrent objects, defined by Jayanti, Tan and
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Toueg [17], are perturbable objects, including widely-used objects, such as counters, max registers,
compare-and-swap, single-writer snapshot and fetch-and-add.

Lower bounds are known for long-lived implementations of perturbable objects, where processes
apply an unbounded number of operations to the object. For example, Jayanti et al. [17] consider
obstruction-free implementations of perturbable objects from historyless primitives, such as read,
write, test-and-set and swap. They prove that such implementations require Ω(n) space and that
the worst-case step complexity of the operations they support is Ω(n), where n is the number of
processes sharing the object.

In some applications, however, objects are used in a restricted manner. For example, there
might be a bound on the total number of operations applied on the object, or a bound on the
values that the object needs to support. When an object is designed to allow only restricted use,
it is sometimes possible to construct more efficient implementations than for the general case.

Indeed, at least some restricted-use perturbable objects admit implementations that “beat” the
lower bound of [17]. For example, a max register can do a write of v in O(min(log v, n)) steps,
while a counter limited to m increments can do each increment in O(min(log2m,n)) steps [3].
Such a limited-use counter leads to a randomized consensus algorithm with O(n) individual step
complexity [6], while limited-use counters and bounded-value max registers are used in a mutual
exclusion algorithm with sub-logarithmic amortized work [9]. The max register was also generalized
into a two-component max register, in which components are updated in a coordinated manner;
this object was used to construct an atomic snapshot object with O(log2 b log n) step complexity
for update operations and O(log b) step complexity for scan operations, where b is the number of
updates [4].

This raises the natural question of determining lower bounds on the complexity of restricted-use
objects. The proof of Jayanti et al. [17] breaks for restricted-use objects because the executions
constructed by this proof exceed the restrictions on these objects.

For the specific restriction of one-time object implementations, where each process applies
exactly one operation to the object, there are lower bounds which are logarithmic in the number
of processes, for specific objects [1,2,8] and generic perturbable objects [16]. Yet, these techniques
yield bounds that are far from the upper bounds, e.g., when the object can be perturbed a super-
polynomial number of times.

This paper provides a more complete picture of the cost of implementing restricted-use objects
by studying the middle ground. We give time and space lower bounds for implementations of
objects that are only required to work under restricted usage, for general families of restrictions.

We define the notion of L-perturbable objects that strictly generalizes classical perturbability;
specific examples are bounded-value max registers, limited-use approximate and exact counters,
and limited-use compare-and-swap and collect objects.1 L, the perturbation bound, depends on
the number of times the object can be accessed or the maximum value it can support (see Table 1).

For n-process L-perturbable objects, we show Ω(min(L, n)) space complexity lower bounds on
obstruction-free implementations from historyless primitives. These lower bounds hold for both
deterministic and randomized implementations. For deterministic implementations of these ob-
jects, we show Ω(min(logL, n)) step complexity lower bounds, using a proof technique that we call
backtracking covering, introduced by Fich, Hendler and Shavit in [13] and later used in [7].

We also consider deterministic implementations that can apply arbitrary primitives and not only

1 A single-writer snapshot object is also a collect object (the converse is, in general, false). Therefore, our lower
bounds for the collect object also hold for the single-writer snapshot object.
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perturbation step complexity max(steps, stalls) space complexity rand. step
bound (L) complexity

(m = poly(n))

compare m/2− 1 Ω(min(logm,n)) Ω(min(logm,n)) Ω(min(m,n)) Ω
(

logn
log logn

)
& swap

collect m− 1 Ω(min(logm,n)) Ω(min(logm,n)) Ω(min(m,n)) Ω
(

logn
log logn

)
max m− 1 Ω(min(logm,n)) Ω(min(logm,n)) Ω(min(m,n)) Ω

(
logn

log logn

)
register (also [3]) (for m ≤ n, also [3])

counter
√
m− 1 Ω(min(logm,n)) Ω(min(logm,n)) Ω(min(

√
m,n)) Ω

(
log logn

log log logn

)
(also [3])

k-additive
√

m
k
− 1 Ω(min(logm− log k, n)) Ω(min(logm− log k, n)) Ω(min(

√
m
k
, n)) Ω

(
log logn

log log logn

)
counter (also [3]) (for k ∈ O(1))

Table 1: Summary of lower bounds for restricted-use objects; where m is the maximum value
assumed by the object or the bound on the number of operations applied to it. All the bounds are
derived in this paper, except when stated otherwise.

historyless primitives, and use the memory stalls measure [10] to quantify the contention incurred
by such implementations. We use backtracking covering to prove that either an implementation’s
worst-case operation step complexity is Ω(min(logL, n)) or some operation incurs Ω(min(logL, n))
stalls. Table 1 summarizes the lower bounds for specific L-perturbable objects.

We also investigate the expected step complexity of randomized implementations of these ob-
jects. We establish a lower bound of Ω(log log n/ log log log n) on the expected step complexity
of several classes of approximate counters, as well as Ω(log n/ log log n) lower bounds on several
stronger objects. Our randomized lower bound technique employs Yao’s Principle [19] and assumes
a weak oblivious adversary.

Aspnes et al. [3] prove lower bounds on obstruction-free implementations of max registers and
approximate counters from historyless primitives: an Ω(min(logm,n)) step lower bound on deter-
ministic implementations and an Ω(logm/ log logm) lower bound, for m ≤ n, on the expected step
complexity of randomized implementations. These bounds, however, use a different proof tech-
nique, which is specifically tailored for the semantics of the particular objects, and do not seem to
generalize to the restricted-use versions of arbitrary perturbable objects. Moreover, they neither
prove space-complexity lower bounds nor consider implementations from arbitrary primitives.

2 Model and Definitions

A shared-memory system consists of n asynchronous processes p1, . . . , pn communicating by apply-
ing primitive operations (primitives) on shared base objects.

An application of each such primitive is a shared memory event, specified by the process applying
the event, the type of primitive operation applied, and a (possibly empty) list of event operands.
A step taken by a process consists of local computation followed by one shared memory event.

A configuration specifies the state of the system, that is, the internal states of all processes
and the values of all base objects. An event is pending in configuration C if it is about to be
applied in configuration C. An event may return different responses in different configurations,
as a function of the value of the base object to which it is applied in the configuration in which
it is applied. A primitive is nontrivial if it may change the value of the base object to which it
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is applied, e.g., a write or a read-modify-write, and trivial otherwise, e.g., a read. An event e is
nontrivial in configuration C if e is pending in C and will change the value of the base object to
which it is applied if performed in C. It follows that e is nontrivial only if it is an application of
a nontrivial operation. Note that an application of a nontrivial operation may result in a trivial
event, if it is about to write to a base object b a value equal to b’s current value.

Let o be a base object that is accessed with two primitives f and f ′; f overwrites f ′ on o [12],
if starting from any value v of o, applying f ′ and then f results in the same value as applying just
f , using the same input parameters (if any) in both cases. A set of primitives is historyless if all
the nontrivial primitives in the set overwrite each other; we also require that each such primitive
overwrites itself. A set that includes the write and (register-to-memory) swap primitives is an
example of a historyless set of primitives. An object is historyless if it is accessed only by a set of
historyless primitives.

Executions and Operations: An execution fragment is a sequence of shared memory events
applied by processes. An execution fragment is pi-free if it contains no steps of process pi. An
execution is an execution fragment that starts from an initial configuration (in which all shared
variables and processes’ local states assume their initial values). For execution fragments α and β,
we let αβ denote the execution fragment which results when the events of β are concatenated to
those of α.

An operation instance of an operation Op on an implemented object is a subsequence of an
execution, in which some process pi performs the operation Op on the object. The primitives
applied by the operation instance may depend on the values of the shared base objects before this
operation instance starts and during its execution (pi’s steps may be interleaved with steps of other
processes).

An execution is well-defined if it may result when processes each perform a sequence of operation
instances according to their algorithms. All the executions we consider are well-defined.

An operation instance is complete in an execution if it starts and terminates during the execu-
tion, and incomplete, if it starts during the execution but does not terminate. Operation instances
which are not interleaved are called non-overlapping. The sequential specification of a data struc-
ture restricts its behavior only when all operations instances are non-overlapping. The semantic
requirements for all possible concurrent executions are enforced by requiring them to be lineariz-
able [15]. This means that for any execution, there is a sequence that contains all the completed
operation instances, as well as some of the incomplete ones, that

1. extends the order of non-overlapping operations; and

2. preserves the sequential specification of the object.

An implementation is obstruction-free [14] if a process terminates its operation instance if it
runs in isolation long enough.

A process p is active after an execution α if p is in the middle of performing an operation
instance, i.e., p has applied at least one event of the operation instance in α, but the instance is not
complete in α. Let active(α) denote the set of processes that are active after α. If p is not active
after α, we say that p is idle after α.

A base object o is covered after an execution α if there is a process p in the configuration
resulting from α that is about to apply a nontrivial operation to o; we say that p covers o after α.
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Restricted-Use Objects: Our main focus in this paper is on objects that support restricted
usage. One example of such objects are objects that have a limit on the number of operation
instances that can be performed on them, as captured by the following definition. An m-limited-
use object is an object that allows at most m operation instances; m is the limit of the object.

Another type of objects with restricted usage are bounded-value objects, whose state is as-
sociated with a value that cannot exceed some bound. Examples are bounded max-registers and
bounded counters [3], whose definitions we now provide. A counter is a linearizable object that sup-
ports a CounterIncrement operation and a CounterRead operation; the sequential specification of a
counter requires that a CounterRead operation instance returns the number of CounterIncrement
operation instances before it. In the sequential specification of a k-additive-accurate counter, a
CounterRead operation instance returns a value within ±k of the number of CounterIncrement

operation instances before it. Similarly, in the sequential specification of a c-multiplicative-accurate
counter, a CounterRead operation instance returns a value x with v/c ≤ x ≤ vc, where v is the
number of CounterIncrement operation instances before it. The activity counter of [9] is closely
related to a c-multiplicative-accurate n-bounded-value counter. The difference is that, for the ac-
tivity counter, the accuracy guarantee holds only with high probability and does not apply for
counter values less than O(log4 n).

A max-register is a linearizable object that supports a Write (v) operation, which writes the
value v to the object, and a ReadMax operation; in its sequential specification, ReadMax returns the
maximum value written by a Write operation instance before it. In the bounded version of these
objects, the object is only required to satisfy its specification if its associated value does not exceed
a certain threshold. A b-bounded max register takes values in {0, . . . , b− 1}. A b-bounded counter
is a counter that takes values in {0, . . . , b− 1}. For a b-bounded object O, b is the bound of O.

We also consider collect and compare-and-swap objects. A collect object provides two opera-
tions: a store(val) by process pi sets val to the latest value for pi. A collect operation cop returns
a view, 〈v1, . . . , vn〉, satisfying the following properties: 1) if vj = ⊥, then no store operation by pj
completes before cop starts, and 2) if vj 6= ⊥, then vj is the operand of a store operation sop by
pj that starts before cop completes and there is no store operation by pj that starts after sop com-
pletes and completes before cop starts. A linearizable b-valued compare-and-swap object assumes
values from {1, . . . , b} and supports the operations read and CAS(u,v), for all u, v ∈ {1, . . . , b}. In
the sequential specification of the compare-and-swap object, if the object’s value is u, CAS(u,v)
changes its value to v and returns true; when the object’s value differs from u, CAS(u,v) returns
false and does not change the object’s value.

3 Bounded Perturbable Objects

Our starting point is the definition of perturbable objects by Jayanti et al. [17]. Roughly speaking,
an object is perturbable if in some class of executions, events applied by an operation of one
process influence the response of an operation of another process. The flavor of the argument used
by Jayanti et al. to obtain their linear lower bound is that since the perturbed operation needs to
return different responses with each perturbation, it must be able to distinguish between perturbed
executions, implying that it must perform an increasing number of accesses to base objects.

Following is the formal definition of perturbable objects.

Definition 1 (See Figure 1.) An obstruction-free implementation of an object O is perturbable if
there is an operation instance opn by process pn, such that for any pn-free execution αλ where no
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α λ

a single step by some

processes except p`

-opn by pn

α γ

events by p`

λ -opn by pn

Figure 1: A perturbable object: opn returns different responses in the two executions.

process applies more than a single event in λ and for some process p` 6= pn that applies no event in
λ, there is an extension of α, γ, consisting of events by p`, such that pn returns different responses
when performing opn by itself after αλ and after αγλ.

An object O is perturbable if all its obstruction-free implementations are perturbable.
We observe that αγλ in the above definition is a well-defined execution if αλ is well-defined.

This is because no process applies more than a single event in λ and p` applies no events in λ,
hence no process can distinguish between the two executions before it applies its last event.2

The linear lower bounds [17] on the space and step complexity of obstruction-free implemen-
tations of perturbable objects (as defined in Definition 1 above) are obtained by constructing
executions of unbounded length, hence they do not apply in general for restricted-use objects.

To prove lower bounds for restricted-use objects, we define a class of L-perturbable objects.
As opposed to the definition of a perturbable object, we do not require every execution of an L-
perturbable object to be perturbable, since this requirement is in general not satisfied by restricted-
use objects. For such objects, some executions already reach the limit or bound of the object,
not allowing any further operation to affect the object, which rules out a perturbation of these
executions. To achieve our lower bounds we only need to show the existence of a special perturbing
sequence of executions rather than attempting to perturb any execution. The longer the sequence,
the higher the lower bound, since the perturbed operation will have to access more base objects in
order to distinguish between executions in the sequence and be able to return different responses.

Definition 2 (See Figure 2.) Let I be an obstruction-free implementation of an object. We say
that I is L-perturbable (for L ≥ 0) if there is an operation instance opn by process pn such that a
non-empty set of executions of I, denoted by SL, can be inductively constructed as follows.

1. S0 is the singleton set containing the empty sequence; otherwise, assume 0 < k ≤ L.

2. If αk−1λk−1 is in Sk−1, where λk−1 consists of n − 1 events, one by each of the processes
p1, . . . , pn−1, then αk−1λk−1 is in Sk. In this case, we say that αk−1λk−1 is saturated.

3. If αk−1λk−1 is in Sk−1 where λk−1 consists of n− 2 or less events, each by a distinct process,
then there is a sequence γ of events by a process pl different from pn and the processes that
have events in λk−1, such that the sequences of events by pn as it performs opn after αk−1λk−1

and αk−1γλk−1 differ. Let γ = γ′eγ′′, where e is the first event of γ such that the sequences of
events taken by pn as it performs opn by itself after αk−1λk−1 and after αk−1γ

′eλk−1 differ.
Let λ be some permutation of the event e together with the events in λk−1, and let λ′, λ′′ be

2It is, however, possible that an event e in λ returns different responses in executions αλ and αγλ, since e may be
applied in different configurations in these two executions.
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any two sequences of events such that λ = λ′λ′′. Then the execution αkλk is in Sk, where
αk = αk−1γ

′λ′ and λk = λ′′.

For k ∈ {0, . . . , L},we call Sk the set of k-perturbing executions with respect to opn.

An object is L-perturbable if all its obstruction-free implementations are L-perturbable. If an
object is L-perturbable, then, starting from the initial configuration, we may construct a sequence
of L+1 perturbing executions, αkλk, for 0 ≤ k ≤ L. If, for some i, αiλi is saturated, then we cannot
further extend the sequence of perturbing executions since we do not have available processes to
perform the perturbation. However, in this case we have lower bounds that are linear in n. For
presentation simplicity, we assume in this case that the rest of the sequence’s perturbing executions
are identical to αiλi.

As we prove later, all the objects that we argue about are such that whenever an execution
is not saturated and does not reach the object limit, any process pl, meeting the requirements of
Definition 2, would have an events sequence γ as required. For any such object implementation,
our proofs construct set Sk only if the object limit is not reached by any Sk−1-execution. Thus,
whenever we need to construct Sk, any non-saturated execution in Sk−1 would have the required
γ.

Definition 2 allows flexibility in determining which of the events of λk−1 are contained in λk
and which are contained in αk. We use this flexibility to prove lower bounds on the step, space and
stall complexity of L-perturbable objects.

Definition 2 implies that every perturbable object is L-perturbable for every integer L ≥ 0,
hence, the class of L-perturbable objects generalizes the class of perturbable objects. On the other
hand, there are L-perturbable objects that are not perturbable; for example, a b-bounded n-process
max register, for b ∈ poly(n), is not perturbable in general, by the algorithm of [3]. That is, the
class of perturbable objects is a proper subset of the class of L-perturbable objects.

Lemma 1 below establishes that several common restricted-use objects are L-perturbable, where
L is a function of the limit on the number of different operations that may be applied to them.
The challenge in the proof is in increasing L, which later translates to higher lower bounds. The
specific bounds obtained in Lemma 1 are summarized in Table 1.

αk−1 λk−1

a single step by some

processes except p`, pn

-opn by pn

αk−1 γ = γ′eγ′′

events by p`

λk−1 -opn by pn

︷ ︸︸ ︷αk

αk−1 γ′ λ′

λ′, λ′′ consist of the

events of λk−1 and e

︷ ︸︸ ︷λk

λ′′
-

opn by pn

Figure 2: An L-perturbable execution: opn performs different sequences of events after αk−1λk−1

and after αkλk. Event e is the first event of γ such that opn’s sequences of events after αk−1γ
′eλk−1

and after αk−1λk−1 differ.
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Lemma 1 1. A b-bounded-value max register is (b− 1)-perturbable.

2. An m-limited-use max register is (m− 1)-perturbable.

3. An m-limited-use counter is (
√
m− 1)-perturbable.

4. A k-additive-accurate m-limited-use counter is (
√

m
k − 1)-perturbable.

5. An m-limited-use b-valued compare-and-swap object is (m/2− 1)-perturbable (if b ≥ n).

6. An m-limited-use collect object is (m− 1)-perturbable.

Proof: 1. Let O be a b-bounded-value max register and consider an obstruction-free imple-
mentation of O. We show that O is (b− 1)-perturbable for a ReadMax operation instance opn
of pn, by induction, where the base case for r = 0 is immediate for all objects. We perturb the
executions by writing values that increase by one to the max register. This guarantees that
opn has to return different values each time, while getting closer to the limit of the object as
slowly as possible.

Formally, let r < b and let αr−1λr−1 be an (r − 1)-perturbing execution of O. If αr−1λr−1 is
saturated, then, by case (2) of Definition 2, it is also an r-perturbing execution.

Otherwise, our induction hypothesis is that opn returns r − 1 when run after αr−1λr−1. For
the induction step, r > 0, we build an r-perturbing execution after which the value returned
by opn is r. Since αr−1λr−1 is not saturated, there is a process p` 6= pn that does not take
steps in λr−1. Let γ be the execution fragment by p` where it first finishes any incomplete
operation in α and then performs a Write operation to the max register with the value
r ≤ b− 1. Then opn returns the value r when run after αr−1γλr−1, and r− 1 when run after
the (r− 1)-perturbing execution αr−1λr−1. It follows that an r-perturbing execution may be
constructed from αr−1λr−1 and γ as specified by the third case of Definition 2.

2. The proof for an m-limited-use max register is the same as that for a b-bounded value max
register. We could even allow writing any increasing sequence of values to the max register
rather than only increasing by one, since the limit of the object applies to the number of
operations rather than to its value.

3. WhenO is anm-limited-use counter, we use a proof similar to the one we used for a limited-use
max register, where we perturb a CounterRead operation opn by applying CounterIncrement

operations. The subtlety in the case of a counter comes from the fact that a single perturbing
operation may not be sufficient for guaranteeing that opn returns a different value after
αr−1λr−1 and after αr−1γλr−1, since we do not know how many of the CounterIncrement

operations by processes that are active after αr−1 are going to be linearized. As there are at
most r − 1 such operations, in order to ensure that different values are returned by pn after
these two executions, we construct γ by letting the process p` apply r CounterIncrement

operations after finishing any incomplete operation in αr−1. This can be done as long as
r ≤
√
m in order not to pass the limit on the number of operations allowed, which will be

1 +
∑√m

r=1 r = 1 + (
√
m−1)

√
m

2 ≤ m.

4. For a k-additive-accurate m-limited-use counter the proof is similar to that of a counter,
except that p` needs to perform an even larger number of CounterIncrement operations in
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γ, because of the inaccuracy allowed in the returned value of the CounterRead operation
opn. Denote by Ir the number of CounterIncrement operation instances performed by the
perturbing process in iteration r. We have that I1 = k + 1 in order for opn to return at
least 1. We claim that for r > 1, Ir = 2k + r, and prove this by induction. The operation
opn run after αr−1λr−1 can return a value which is as large as

∑r−1
j=1 Ij + k. Therefore,

we need the number of complete CounterIncrement operation instances after αr−1γλr−1 to
be at least

∑r−1
j=1 Ij + k + (k + 1), for opn to return at least

∑r−1
j=1 Ij + k + 1. Besides the

CounterIncrement operation instances in γ, at least
∑r−1

j=1 Ij − (r − 1) CounterIncrement

operation instances have finished, therefore setting Ir = 2k + r implies that opn returns at
least

∑r−1
j=1 Ij − (r − 1) + Ij − k, which is

∑r−1
j=1 Ij + k + 1 as needed.

This claim implies that a k-additive-accurate m-limited-use counter is
(√

m
k − 1

)
-perturbable,

because the total number of operation instances will be

1 +

(
(k + 1) + (2k + 2) + . . .+

(
2k +

√
m

k
− 1

))
≤

1 + 2k

(√
m

k
− 1

)
+

(√
m
k − 1

) (√
m
k − 1 + 1

)
2

≤

1 +
(
2
√
m− 2k

)
+
m

2
≤ m,

where the last inequality holds for a large enough m (m ≥ 16).

5. Let O be an m-limited-use b-bounded compare-and-swap object, b ≥ n. We show that it is
(m/2− 1)-perturbable for a read operation instance by pn, by induction, where the base case
for r = 0 is immediate for all objects. In our construction, all processes except for pn perform
only CAS operation instances.

Let r < m/2 − 1 and let αr−1λr−1 be an (r − 1)-perturbing execution of O. If αr−1λr−1 is
saturated, then, by case (2) of Definition 2, it is also an r-perturbing execution.

Otherwise, our induction hypotheses are the following.

(a) Execution αr−1λr−1 includes at most 2(r − 1) CAS operation instances, at most two
instances performed by any single process, and all these instances are of the form
CAS (i,i+ 1), for some 0 ≤ i < r.

(b) Let k be the largest integer such that one or more CAS (k,k + 1) instances are included
in αr−1λr−1, then there is a successful CAS (k − 1,k) instance in αr−1.

These two properties imply that a read after αr−1λr−1 returns either k or k + 1: αr−1λr−1

includes a successful CAS (k−1,k), it includes instances of CAS (k,k+1) (which may complete
successfully or not) but of no higher value, and all CAS instances it includes increment the
value.

We assume the initial value of the CAS object is 0 and define the value k associated with
αr−1λr−1 when r = 0 as 0. We note that induction hypotheses a) and b) above are vacuously
satisfied for r = 0.

Since αr−1λr−1 is not saturated, there is a process p` 6= pn that does not take steps in λr−1.
Let γ be the execution fragment by p` where it performs a CAS(k,k + 1) operation instance
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after αr−1. Since r < m/2 − 1, it follows from the fact that αr−1λr−1 is not saturated and
from the induction hypotheses that k + 1 < b.

There are two possibilities:

• There is an event e such that γ = γ′eγ′′ and e is the first event of γ such that the sequences
of events taken by pn as it performs a read operation by itself after αr−1λr−1 and after
αr−1γ

′eλr−1 differ. It follows that an r-perturbing execution may be constructed from
αr−1λr−1 and γ as specified by the third case of Definition 2. Since p` performs a
single CAS (k,k + 1) instance in γ, properties (a) and (b) hold also after the resulting
r-perturbing execution.

• Otherwise, the value returned by opn’s read operation is the same when it executes after
αr−1λr−1 and after αr−1γλr−1. We claim that opn’s read operation after αr−1γλr−1

returns k+ 1. This is clearly the case if the CAS(k,k+ 1) instance by p` is successful. If
the CAS(k,k + 1) instance fails, then it follows from the induction hypothesis b) that a
successful CAS(k,k+ 1) instance by another process must have been linearized in αr−1γ
and so opn’s read operation after αr−1γ must return k + 1, also in this case.

We extend γ by an execution fragment γ′, in which p` performs a second operation—a
CAS (k+ 1, k+ 2) instance. Since this is the first CAS (k+ 1, k+ 2) instance in αr−1γγ

′,
it follows that pn’s read operation returns k + 2 after αr−1γγ

′ whereas it returns k or
k + 1 after αr−1. We can therefore construct an r-perturbing execution from αr−1λr−1

and γγ′, as specified by the third case of Definition 2. Since p` performs in γγ′ one
CAS (k,k + 1) instance and one CAS (k + 1,k + 2) instance, properties (a) and (b) hold
also for the resulting r-perturbing execution.

6. Let O be an m-limited-use collect object and consider an obstruction-free implementation of
O. We show that O is (m− 1)-perturbable for a collect operation instance opn of pn, by in-
duction, where the base case for r = 0 is immediate for all objects. We perturb the executions
by having processes store values that change their collect component. This guarantees that
opn has to return different values each time, while getting closer to the limit of the object as
slowly as possible.

Formally, let r < m and let αr−1λr−1 be an (r − 1)-perturbing execution of O. If αr−1λr−1

is saturated, then, by case (2) of Definition 2, it is also an r-perturbing execution.

Otherwise, Let V =< v1, . . . , vn > denote the value that is returned by a collect operation
by pn after αr−1λr−1. Since αr−1λr−1 is not saturated, there is a process p` 6= pn that does
not take steps in λr−1. Let γ be the execution fragment by p` where it first finishes any
incomplete operation in α and then applies an update(v′`) operation operation to O, for some
v′` 6= v`. Then opn must return different values when run after αr−1γλr−1 and after the
(r − 1)-perturbing execution αr−1λr−1. It follows that an r-perturbing execution may be
constructed from αr−1λr−1 and γ as specified by the third case of Definition 2.

4 Time Lower Bounds for Deterministic L-Pertubable Objects

In this section, we prove lower bounds for obstruction-free implementations of some well-known
restricted-use objects.
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αr−1 λr−1

steps by p1r−1, . . . , p
jr−1

r−1

to base objects O1
r−1, . . . , O

jr−1

r−1

accessed by pn in φr−1

-φr−1

opn by pn accessing

{B1
r−1, . . . , B

ir−1

r−1 } ⊇ O1
r−1, . . . , O

jr−1

r−1

αr = αr−1γ
′
rλ
′
r−1 λr = λ′′rer -φr

opn by pn

Figure 3: The structure of executions αrλrφr, for r ∈ {0, . . . , L}, constructed by the proof of
Theorem 2. The notations opn, αr, λr, φr are as in Definition 2. The notation er refers to the event
e defined in the third case of Definition 2, used for constructing execution αrλrφr. The execution
αrλr is pn-free for every r.

4.1 Lower bounds for implementations using historyless objects

We start by proving a step lower bound for L-perturbable implementations, in Theorem 2 below.
The proof constructs a series of executions {αrλrφr}Lr=0, whose structure is depicted in Figure 3.
(See Lemma 3 for a formal specification of these executions.) In the r’th execution of the sequence,
process pn accesses objects B1

r , . . . , B
ir
r , while executing φr. Exactly jr of these objects, denoted

by O1
r , . . . O

jr
r , are about to be written, right after αr, by processes p1

r , . . . , p
jr
r .

Our goal is to prove that pn has to access a large number of base objects as it runs solo while
performing an instance opn of Op in one of the executions {αrλrφr}Lr=0. As we prove, if λr consists
of steps by n − 1 distinct processes, then the lower bound is linear in the number of processes,
otherwise it is logarithmic in L.

To construct αrλrφr, we deploy a free process, p`r and let it run solo until it is about to
perform a nontrivial event, er, to an uncovered object, along πr. Let πr =< B1

r , . . . , B
ir
r > denote

the sequence of base objects accessed by pn in φr, in the order of their first access in φr; πr is pn’s
solo path in φr. If all the objects accessed in λr−1 are also in λr, i.e., pn accesses them also in
φr, then λr = λr−1er. However, the application of er may have the undesirable effect (from the
perspective of an adversary) of making πr shorter than πr−1: pn may read the information written
by p`r and avoid accessing some other objects that were previously in πr−1.

To overcome this difficulty, we employ the backtracking covering technique [7, 13]. The obser-
vation underlying this technique is that objects that are in πr−1 will be absent from πr only if the
additional object to which p`r applies the nontrivial event er precedes them in πr−1. Thus the set
of objects along πr that are covered after αrλr is “closer”, in a sense, to the beginning of pn’s solo
path in φr−1. It follows that if there are many sequence executions r for which |πr| < |πr−1|, then
one of the solo paths πr must be ‘long’.

To capture this intuition, we define Ψ, a monotonically-increasing progress function of r. Ψ(r)
is a (logL)-digit binary number defined as follows. Bit 0 (the most significant bit) of Ψ(r) is 1 if
and only if the first object in πr is covered after αr (by one of the events of λr); bit 1 of Ψ(r) is 1 if
and only if the second object in πr exists and is covered after αr, and so on. Note that we do not
need to consider paths that are longer than logL. If such a path exists, the lower bound clearly
holds.

As mentioned before, we construct the r’th sequence execution by deploying a free process, p`r
and letting it run solo until it is about to write to an uncovered object, B, along πr. In terms
of Ψ, this implies that the covering event er might flip some of the digits of Ψ(r − 1) from 1 to
0. But B corresponds to a more significant digit, and this digit is flipped from 0 to 1, hence,
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Ψ(r) > Ψ(r − 1) must hold. Thus we can construct executions αrλrφr, for 1 ≤ r ≤ L, in each of
which Ψ(r) increases. It follows that Ψ(r) = L− 1 must eventually hold, implying that πr’s length
is Ω(logL).

Theorem 2 Let A be an n-process obstruction-free implementation of an L-perturbable object O
from historyless primitives. Then A has an execution in which some process accesses Ω(min(logL, n))
distinct base objects during a single operation instance.

Proof: To prove the theorem, we construct a sequence of L executions and show that the lower
bound is attained in one of them. The following lemma specifies the properties of executions in this
sequence and proves that every implementation of an L-perturbable object has such a sequence.

Lemma 3 The implementation has a sequence of executions {αrλrφr}Lr=0, defined as follows. The
execution α0λ0 is empty, φ0 is an execution of opn by pn starting from the initial configuration,
and for every r, 1 ≤ r ≤ L, the following properties hold:

1. The execution αrλr is pn-free.

2. In φr, process pn runs solo after αrλr until it completes the operation instance opn, in the
course of which it accesses the base objects B1

r , . . . , B
ir
r .

3. λr consists of jr ≥ 0 events by jr distinct processes, p1
r , . . . , p

jr
r , applying nontrivial operations

to distinct base objects O1
r , . . . , O

jr
r , respectively, all of which are accessed by pn in φr. If

jr = n− 1, we say that αrλrφr is saturated.

4. If αr−1λr−1φr−1 is saturated, then we let αr = αr−1, λr = λr−1 and φr = φr−1. Otherwise,
we let αr = αr−1γ

′
rλ
′
r−1, and λr = λ′′r−1er, where λ′r−1 is the subset of λr−1 containing all

events to base objects that are not accessed by pn in φr, λ
′′
r−1 is the subset of λr−1 containing

all events to base objects that are accessed by pn in φr, and γ′rer is an execution fragment
after αr−1λr−1 by a process p`r not taking steps in λr−1, where er is its first nontrivial event

to a base object in {B1
r−1, . . . , B

ir−1

r−1 } \ {O1
r−1, . . . , O

jr−1

r−1 }.

Proof: The proof is by induction, where we prove the existence of the execution αrλrφr, for every
r, 0 ≤ r ≤ L. To allow the proof to go through, in addition to proving that the execution αrλrφr
satisfies the four conditions defined above, we will prove that αrλr is r-perturbing.

For the base case, r = 0, α0λ0 is empty and φ0 is an execution of opn starting from the initial
configuration. Moreover, the empty execution is 0-perturbing. We next assume the construction of
the sequence up to r − 1 < L and construct the next execution αrλrφr as follows.

By the induction hypothesis, the execution αr−1λr−1 is (r − 1)-perturbing. If αr−1λr−1 is
saturated, then, by case (2) of Definition 2, αr = αr−1, λr = λr−1 and αrλr is r-perturbing.
Moreover, by the first case of Property 4 specified by the lemma, αrλrφr is the r’th sequence
execution, where φr = φr−1.

Assume otherwise. Then, by case (3) of Definition 2, there is a process p`r 6= pn that does not
take steps in λr−1, for which there is an extension of αr−1, γr, consisting of events by p`r , such that
pn returns different responses when performing opn by itself after αr−1λr−1 and after αr−1γrλr−1.
As per Definition 2, let γr = γ′rerγ

′′
r , where er is the first event of γr such that the sequences of

events taken by pn as it performs opn after αr−1λr−1 and after αr−1γ
′
rerλr−1 differ. Clearly er is a

nontrivial event.
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Denote by φr the execution of opn by pn after αr−1γ
′
rerλr−1. Since opn performs different

sequences of events after αr−1λr−1 and after αr−1γ
′
rerλr−1, and since the implementation uses only

historyless primitives, this implies that er is applied to some base object B not in {O1
r−1, . . . , O

jr−1
r−1 }

that is accessed by pn in φr.
We define λ′r−1 to be the subsequence of λr−1 containing all events to base objects that are not

accessed by pn in φr, and λ′′r−1 to be the subsequence of λr−1 containing all events to base objects
that are accessed by pn in φr. We then define αr = αr−1γ

′
rλ
′
r−1, λr = λ′′r−1er and show that αrλrφr

satisfies the properties required by the lemma.
We first observe that αrλrφr is a well-defined execution, since the execution fragment γ′r by

p`r is performed after αr−1, and all operations in λr−1 are events to distinct base objects, none of
which is by p`r . It follows that αrλr and αr−1γ

′
rerλr−1 are indistinguishable to pn, hence, φr is a

solo execution of opn by pn after both executions.
By construction, αrλr is r-perturbing (Definition 2).
By construction, αrλr is pn-free (Property 1), and φr is a solo execution fragment by pn in

which it performs opn (Property 2). To show Property 3, we observe that αrλr is indistinguishable
to pn from αr−1γ

′
rerλr−1 and hence, pn accesses the base object B in φr. Finally, Property 4 follows

by construction.

We now prove that the lower bound is attained in one of the executions αrλrφr, r ∈ {0, . . . , L}.
If αrλrφr is saturated, for some r ∈ {0, . . . , L}, then Property 3 immediately implies that pn

accesses n − 1 distinct base objects in the course of performing φr, and the lower bound holds.
Otherwise, we show that opn accesses Ω(logL) distinct base objects in one of {αrλrφr}Lr=0.

Let πr = B1
r . . . B

ir
r denote the sequence of all distinct base objects accessed by pn in φr

(after αrλr) according to Property 2, and let Sπr denote the set of these base objects. Let SCr =
{O1

r , . . . , O
jr
r } be the set of base objects defined in Property 3. Observe that, by Property 3,

SCr ⊆ Sπr holds. Without loss of generality, assume that O1
r , . . . , O

jr
r occur in πr in the order of

their superscripts.
In the execution αrλrφr, pn accesses ir distinct base objects. Thus, it suffices to show that some

ir is in Ω(logL). For j ∈ {1, . . . , ir}, let bjr be the indicator variable whose value is 1 if Bj
r ∈ SCr

and 0 otherwise. We associate an integral progress parameter, Ψ(r), with each r ≥ 0, defined as
follows:

Ψ(r) =

ir∑
j=1

bjr ·
L

2j
.

For simplicity of presentation, and without loss of generality, assume that L = 2s for some integer
s > 0, so s = logL. If ir > s for some r then we are done. Assume otherwise, then Ψ(r) can be
viewed as a binary number with s digits whose j’th most significant bit is 1 if the j’th base object
in πr exists and is in SCr , or 0 otherwise. This implies that the number of 1-bits in Ψ(r) equals
|SCr |. Our execution is constructed so that Ψ(r) is monotonically increasing in r and eventually, for
some r′, Ψ(r′) equals L− 1 = L

∑s
j=1

1
2j

. This would imply that pn accesses exactly s base objects
during φr′ (after αr′λr′).

We next show that Ψ(r) > Ψ(r− 1), for every 0 < r ≤ L. Since αr−1λr−1φr−1 is not saturated,
by the second case of Property 4, there is a process p`r that takes no steps in λr−1, and an execution
fragment γ′rer of p`r after αr−1, such that er is the first nontrivial event of p`r in γ′rer to a base

object in {B1
r−1, . . . , B

ir−1

r−1 } \ {O1
r−1, . . . , O

jr−1

r−1 }. By Property 2, this object is accessed by pn in φr.
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Let k be the index of the object among the objects accessed in φr−1, i.e., it is Bk
r−1. This implies

that Bk
r−1 ∈ Sπr−1 \ SCr−1.

As Bk
r−1 /∈ SCr−1, we have bkr−1 = 0. Since er is the first nontrivial event of p`r in γ′rer to a base

object in Sπr−1 \SCr−1, we have that the values of objects B1
r−1 · · ·B

k−1
r−1 are the same after αr−1λr−1

and αrλr. It follows that bjr−1 = bjr for j ∈ {1, . . . , k − 1}. This implies, in turn, that Bk
r−1 = Bk

r .
As Bk

r ∈ SCr , we have bkr = 1. We get:

Ψ(r) =

ir∑
j=1

bjr ·
L

2j

=

k−1∑
j=1

bjr ·
L

2j
+ bkr ·

L

2k
+

ir∑
j=k+1

bjr ·
L

2j

=

k−1∑
j=1

bjr−1 ·
L

2j
+
L

2k
+

ir∑
j=k+1

bjr ·
L

2j

≥
k−1∑
j=1

bjr−1 ·
L

2j
+
L

2k

>
k−1∑
j=1

bjr−1 ·
L

2j
+

ir−1∑
j=k+1

bjr−1

L

2j

= Ψ(r − 1),

where the last equality is based on the observation that bkr−1 = 0.
As Ψ(0) = 0 and since Ψ(r) strictly grows with r and can never exceed L − 1, it follows that

Ψ(L) = L− 1, which concludes the proof.

Lemma 1 and Theorem 2 imply the following step lower bounds (the bounds are also summarized
in Table 1).

Theorem 4 An n-process obstruction-free implementation of an m-limited-use max register, m-
limited-use counter, m-limited-use b-valued compare-and-swap object or an m-limited-use collect
object from historyless primitives has an operation instance requiring Ω(min(logm,n)) steps.
An obstruction-free implementation of a b-bounded max register from historyless primitives has an
operation instance requiring Ω(min(log b, n)) steps.
An obstruction-free implementation of a k-additive-accurate m-limited-use counter from historyless
primitives has an operation instance requiring Ω(min(logm− log k, n)) steps.

4.2 Lower bounds for implementations using arbitrary primitives

The number of steps performed by an operation, as we have measured for implementations using
only historyless objects, is not the only factor influencing its time performance. The performance
of a concurrent object implementation is also influenced by the extent to which multiple processes
simultaneously access widely-shared memory locations. Dwork et al. [10] introduced a formal model
to capture such contention, taking into consideration both the number of steps taken by a process
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and the number of stalls it incurs as a result of memory contention with other processes. In their
model, an event e applied by a process p to object O in an execution α incurs k memory stalls if k
events are applied to the object by distinct processes while e is pending. This definition depends on
modeling concurrency explicitly, and is a little awkward to work with if we model concurrency by
interleaving. However, we can treat such an event as incurring k memory stalls if it is immediately
preceded by a sequence of events by distinct processes different from p that include k events that
apply nontrivial primitives to O. The intuition for why this works is that any such sequential
schedule can be reordered to produce a concurrent schedule with k memory stalls by the Dwork et
al. definition.

Our next result shows a lower bound on implementations using arbitrary read-modify-write
primitives. The proof of Theorem 2, presented earlier, uses a sequence of executions, in which
each new execution deploys a process to cover an object that is not covered in the preceding
execution. Such a series of executions cannot, in general, be constructed for algorithms that may
use arbitrary primitives. Instead, the following proof constructs a series of executions, in which
each new execution deploys a process that covers some (not necessarily uncovered) object along
pn’s path.

In the r’th execution of the sequence, process pn accesses objects B1
r , . . . , B

ir
r . On some of

these objects, denoted by O1
r , . . . O

jr
r , pn incurs memory stalls. If the number of memory stalls

incurred by pn in the r’th execution equals n− 1, then the execution is saturated; as in Definition
2, we assume in this case for presentation simplicity that the rest of the sequence’s executions are
identical to the r’th execution (see Property 4 and the first sentence of Property 5 in the statement
of Lemma 6 below).

Otherwise, we may deploy another process and let it run until about to write to some object
along pn’s path (see the second sentence of Property 5 in Lemma 6). Let Bk

r−1 denote this object.
Then the prefix of pn’s path up to (and including) Bk

r−1 does not change, but the rest of the path
may change since pn may read a different value when it accesses Bk

r−1.
We prove a logarithmic lower bound on the time complexity of obstruction-free implementations

of L-perturbable objects from arbitrary primitives. Specifically, we prove that for such implemen-
tations either the step-complexity or the memory-stalls complexity is Ω(min(logL, n)).

The proof employs a variation of the backtracking covering technique. We remind the reader
that the proof of the step lower bound on implementations from historyless primitives (Theorem 2)
constructed a sequence of executions and used a progress function Ψ, assigning integral values to
these executions. The function Ψ was a monotonically-increasing progress function of r and Ψ(r)
could be viewed as a (logL)-digit binary number whose bit i equals 1 if and only if the i’th object
in pn’s path was covered after the r’th execution.

The function Ψ cannot be used for proving a time lower bound on implementations using
arbitrary primitives, since up to n− 1 memory stalls may be incurred by pn as it accesses a single
object. Consequently, the proof that follows employs a different progress function Φ, where Φ(r)
can be viewed as an s-digit number in base n, where L = 22s. (Note that we may assume that
the path taken by pn always consists of at most s distinct objects, since otherwise the proof easily
follows.) Here, the i’th digit of Φ(r) represents the number of memory stalls that will be incurred
by pn as it accesses the i’th object in its path in the course of the r’th sequence execution.

Similarly to the proof of Theorem 2, we show that Φ is a monotonically-increasing function of r,
implying that all the values Φ(1), . . . ,Φ(L) are distinct. We then use a “bins-and-balls” argument
establishing that the value of at least one of the digits of Φ(1), . . . ,Φ(L) must be at least s, implying
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that pn incurs at least s memory stalls when it accesses the corresponding objects.

Theorem 5 Let A be an n-process obstruction-free implementation of an L-perturbable object O
from any read-modify-write primitives. Then A has an execution in which some process either
accesses Ω(min(logL, n)) distinct base objects or incurs Ω(min(logL, n)) memory stalls, during a
single operation instance.

Proof: For simplicity and without loss of generality, assume that L = 22s for some integer s. If
A has an execution in which some process accesses s distinct base objects during a single operation
instance, then the theorem holds. Assume otherwise, then our proof constructs a sequence of L
executions and shows that the lower bound is attained in one of them. The next lemma specifies the
properties of executions in this sequence and proves that the implementation has such a sequence.

Lemma 6 The implementation has a sequence of executions {αrσr,1 · · ·σr,jrρr}Lr=0, defined as fol-
lows. The execution α0 is empty, j0 = 0, ρ0 is an execution of opn by pn starting from the initial
configuration, and for every r, 1 ≤ r ≤ L, the following properties hold:

1. αr is pn-free,

2. in ρr process pn runs solo until it completes the operation instance opn; in this instance, pn
accesses the base objects B1

r , . . . , B
ir
r ,

3. there is a subsequence O1
r , . . . O

jr
r of disjoint objects in B1

r , . . . B
ir
r and disjoint nonempty sets

of processes S1
r , . . . , S

jr
r such that, for j = 1, . . . , jr,

• each process in Sjr covers Ojr after αr, and

• in σr,j, process pn applies events until it is about to access Ojr for the first time, then

each of the processes in Sjr accesses Ojr, and, finally, pn accesses Ojr.

4. let λr−1 be the subsequence of events by the processes in S1
r−1 ∪ · · ·S

jr−1

r−1 that are applied in
σr−1,1 · · ·σr−1,jr−1, then αr−1λr−1 is an r − 1-perturbing execution; if αr−1λr−1 is saturated,
then we say that αr−1σr−1,1 · · ·σr−1,jr−1ρr−1 is saturated,

5. If αr−1σr−1,1 · · ·σr−1,jr−1ρr−1 is saturated, then the r’th execution in the sequence is defined

as identical to it. Otherwise, the following holds: Ojrr = Bk
r−1, for some 1 ≤ k ≤ ir−1;

Bi
r = Bi

r−1, for all i ∈ {1, . . . k}; Oir−1 = Oir and Sir−1 = Sir for all objects Oir−1 that precede

Bk
r−1 in the sequence B1

r−1, . . . , B
ir
r−1; and either Bk

r−1 /∈ {O1
r−1, . . . , O

jr−1

r−1 } or Ojrr = Ojrr−1

and |Sjrr | = |Sjrr−1|+ 1.

Proof: The proof is by induction, where we prove the existence of the execution αrσr,1 · · ·σr,jrρr,
for every r, 0 ≤ r ≤ L.

For the base case, r = 0, α0 is empty, and j0 = 0, implying that λ0 is also empty. It fol-
lows that α0λ0 is the empty execution and therefore, by Definition 2, is 0-perturbing. We next
assume the construction of the sequence up to r < L and construct the next sequence execution,
αr+1σr+1,1 · · ·σr+1,jr+1ρr+1.

By the induction hypothesis, αrσr,1 · · ·σr,jrρr is an r-perturbing execution. If it is saturated,
then we set αr+1 = αr, jr+1 = jr, σr+1,j = σr,j for j = 1, . . . , jr and ρr+1 = ρr. By the induction
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hypothesis, Definition 2, and the third property specified by the lemma, αr+1σr+1,1 · · ·σr+1,jr+1ρr+1

is the (r + 1)’th sequence execution.
Assume, then, that αrσr,1 · · ·σr,jrρr is not saturated. Let φr denote a solo execution of opn by

pn after αrλr. Since all the events in λr are by distinct processes other than pn, and since each of the
objects Ojr is accessed by pn after it is accessed by the processes of Sjr , for j ∈ {1, . . . jr}, executions
αrσr,1 · · ·σr,jrρr and αrλrφr are indistinguishable to all processes. Since αrλr is an r-perturbing
execution and r < L, and since αrλr is not saturated, it follows from Definition 2 that there exists
a process p`r+1 6= pn that applies no event in λr and an extension γ′r+1er+1 of αr, consisting of
events by p`r+1 , such that er+1 is the first event of γ′r+1er+1 such that the sequences of events taken
by pn as it performs opn by itself after αrλr and after αrγ

′
r+1er+1λr differ. It follows that er+1 is

a nontrivial event applied by p`r+1 to a base object in {B1
r , . . . , B

ir
r }; let this base object be Bk

r .
There are two cases:
Case 1: If Bk

r = Ok
′
r , for some k′ ∈ {1, . . . , jr}, then let jr+1 = k′, for j = 1, . . . , k′−1, σr+1,j = σr,j

(thus, Ojr+1 = Ojr and Sjr+1 = Sjr), Ok
′
r+1 = Ok

′
r , Sk

′
r+1 = Sk

′
r ∪ {p`r+1} (thus, er+1 appears in

σr+1,k′), αr+1 = αrγ
′
r+1λ

′
r and λr+1 = λ′′r , where λ′r consists of the events of λr applied to objects

Ok
′+1
r , . . . , Ojrr , and λ′′r consists of the events of λr applied to objects O1

r , . . . , O
k′
r and the event

er+1.
Case 2: Otherwise, let k′ be the largest integer such that Ok

′
r precedes Bk

r in πr (or 0 if Bk
r is not

preceded in πr by any of the objects O1
r , . . . , O

jr
r ). Then jr+1 = k′+1, for j = 1, . . . , k′, σr+1,j = σr,j

(hence also Ojr+1 = Ojr and Sjr+1 = Sjr), O
jr+1

r+1 = Bk
r , S

jr+1

r+1 = {p`r+1}, αr+1 = αrγ
′
r+1λ

′
r and

λr+1 = λ′′r , where λ′r consists of the events of λr applied to objects Ok
′+1
r , . . . , Ojrr , and λ′′r consists

of the events of λr applied to objects O1
r , . . . , O

k′
r and the event er+1, and in σr+1,jr+1 , pn applies

events until it is about to apply its first event to O
jr+1

r+1 , then p`r+1 applies er+1 and finally pn applies

its first event to O
jr+1

r+1 .
In both cases, it follows from the construction and from Definition 2 that αr+1λr+1 is (r+1)-

perturbing. Since αr is pn-free and none of the events of γ′r+1λ
′
r are by pn, αr+1 is also pn-free.

Let ρr+1 denote the execution fragment in which process pn runs solo after αr+1σr+1,1 · · ·σr+1,jr+1

until it completes the operation instance opn, in the course of which it accesses the base objects
B1
r+1, . . . , B

ir+1
r . It follows from our construction that αr+1σr+1,1 · · ·σr+1,jr+1ρr+1 is the (r + 1)’th

execution in sequence.

If one of these executions, αrσr,1 · · ·σr,jrρr, for some r ≤ L, is saturated, then it follows from
from the third property specified by the lemma that pn incurs n− 1 memory stalls in the course of
σr,1 · · ·σr,jr and the theorem holds. We therefore assume in the following that none of the executions
in constructed by the lemma is saturated. We will prove that pn incurs Ω(s) memory stalls in one
of these executions.

We remind the reader that we let Bi
r denote that i’th object accessed by pn in αrσr,1 · · ·σr,jrρr,

and we let Omr and Smr respectively denote the m’th covered object along pn’s path and the set of
processes that cover it (see the statement of Lemma 6).

For i ∈ {1, . . . , ir}, let variable nir be defined as follows:

nir =

{
|Smr |, if ∃m ∈ {1, . . . , jr} : Bi

r = Omr ,
0, otherwise.

(1)

Let Nr =
∑ir

j=1 n
j
r. Thus, it suffices to show that one of these executions has Nr = Ω(s). We
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associate the following integral progress parameter, Φ(r), with each execution r ≥ 0:

Φ(r) =

ir∑
i=1

nir · ns−i. (2)

Φ(r) can be viewed as an s-digit number in base n whose i’th most significant digit is 0 if i > ir
or equals the number of processes in S1

r , . . . , S
jr
r covering Bi

r after αr otherwise.

From the last property required by Lemma 6, O
jr+1

r+1 = Bk
r , for some 1 ≤ k ≤ ir and, moreover,

Bi
r+1 = Bi

r for i ∈ {1, . . . k}, nir+1 = nir for i ∈ {1, . . . , k − 1}, nkr+1 = nkr + 1, and nir+1 = 0 for
i ∈ {k + 1, . . . , ir}. We get:

Φ(r + 1) =

ir+1∑
i=1

nir+1 · ns−i

=
k∑
i=1

nir+1 · ns−i

=
k−1∑
i=1

nir · ns−i + (nkr + 1) · ns−k

>

k∑
i=1

nir · ns−i +

s∑
i=k+1

(s− 1) · ns−i

≥
ir∑
i=1

nir · ns−i

= Φ(r)

Since the sequence of values Φ(1), . . . ,Φ(L) is strictly increasing, each Φ(r) is unique. By the
definition of Φ, each value Φ(r) corresponds to a different partitioning of integer Nr to the values
of the s digits of Φ(r). What is the maximum number N of different executions r for which Nr ≤ s
holds? N is at most the number of distinguishable partitions of up to s identical balls into s bins.
Let Ab,c be the number of distinguishable partitions of b identical balls into c bins, then:

N ≤
s∑
j=0

Aj,s = As,s+1 =

(
2s

s

)
=

(
logL

logL/2

)

= Θ

(
4logL/2√
π logL/2

)
= Θ

(
L√

π logL/2

)
< L.

Where the penultimate equality above follows from Stirling’s approximation and the error of

the approximation ratio
( logL

logL/2

)
/ 4logL/2√

π logL/2
is inversely proportional to s [11, page 75]. Thus, for

all L ≥ 4, there is an execution αr′σr′,1 · · ·σr′,jr ′ρr′ such that Nr′ > s holds.

From Theorem 5 and Lemma 1, we obtain the following specific bounds (see also in Table 1).

Theorem 7 An n-process obstruction-free implementation of an m-limited-use max register, m-
limited-use counter, an m-limited-use b-valued compare-and-swap object or an an m-limited-use
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collect object from any read-modify-write primitives has an operation instance that either requires
Ω(min(logm,n)) steps or incurs Ω(min(logm,n)) stalls.
An obstruction-free implementation of a b-bounded max register from any read-modify-write primi-
tives has an operation instance that either requires Ω(min

(
log b, n

)
) steps or incurs Ω(min

(
log b, n

)
)

stalls.
An obstruction-free implementation of a k-additive-accurate m-limited-use counter from any read-
modify-write primitives has an operation instance that either requires Ω(min

(
logm−log k, n

)
) steps

or incurs Ω(min
(

logm− log k, n
)
) stalls.

5 Space lower bounds for implementations using historyless ob-
jects

In this section we prove space lower bounds on L-perturbable objects. Although our proofs assume
deterministic algorithms, they also apply for randomized algorithms. A randomized algorithm may
make a random selection (often called a coin-flip) for determining what next step to take. Since a
randomized algorithm can be seen as a weighted average of deterministic ones, space lower-bounds
proven for deterministic algorithms apply also for randomized algorithms.

Theorem 8 Let A be an n-process obstruction-free implementation of an object O from historyless
primitives. Then A has an execution in which L distinct base objects are accessed.

Proof: To prove the lower bound, we construct a sequence of L executions and show that many
distinct objects are being written in them.

Lemma 9 The implementation has a sequence of executions {αrλrφr}Lr=0 defined as follows. Ex-
ecution α0λ0 is empty, φ0 is an execution of opn by pn, and for every r, 1 ≤ r ≤ L, the following
properties hold.

1. The execution αrλr is pn-free.

2. In φr, process pn runs solo after αrλr until it completes opn.

3. In λr, distinct processes q1, . . . , qr each apply a nontrivial operation to distinct base objects
O1, . . . , Or, respectively.

4. |active(αrλr)| ≤ r.

Proof: The proof is by induction, where we prove the existence of the execution αrλrφr, for every
r, 0 ≤ r ≤ L. To allow the proof to go through, in addition to proving that the execution αrλrφr
satisfies the four properties specified by the lemma, we will prove that αrλr is r-perturbing.

For the base case, r = 0, α0λ0 is empty and φ0 is an execution of opn starting from the initial
configuration. Moreover, the empty execution is 0-perturbing. We next assume the construction of
the sequence up to r − 1 < L and construct the next execution αrλrφr as follows.

By the induction hypothesis, the execution αr−1λr−1 is (r−1)-perturbing. If αr−1 is saturated,
we take αr = αr−1 and λr = λr−1. Otherwise, by case (3) of Definition 2, there is a process p`r 6= pn
that does not take steps in λr−1, for which there is an extension of αr−1, γr, consisting of events by
p`r , such that pn returns different responses when performing opn by itself after αr−1λr−1 and after
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αr−1γrλr−1. As per Definition 2, let γr = γ′rerγ
′′
r , where er is the first event of γr such that the

sequences of events taken by pn as it performs opn by itself after αr−1λk−1 and after αr−1γ
′
rerλr−1

differ. Clearly, er is a nontrivial event.
Denote by φr the execution of opn by pn after αr−1γ

′
rerλr−1. Since opn returns different values

after αr−1λr−1 and after αr−1γ
′
rerλr−1, and since the implementation uses only historyless primi-

tives, this implies that er is applied to some base object B not in {O1, . . . , Or−1} that is accesses
by pn in φr.

Define αr = αr−1γ
′ and λr = λr−1e. To conclude the proof, we need to show that the

execution αrλr satisfies the properties required by the lemma. Since Property 1 holds for ex-
ecution αr−1λr−1, it is pn-free. By construction, γ′ is performed by p`r 6= pn, hence αrλr is
also pn-free, establishing that Property 1 holds for it as well. Property 4 holds for αrλr since
|active(αrλr)| = |active(αr−1λr−1)|+ 1 ≤ r− 1 + 1 = r. Finally, Properties 2 and 3 are immediate
from our construction.

By its construction, αrλr is r-perturbing, which concludes the proof.

The space lower bound follows immediately from Property 3 proved in the lemma.

The following space lower bounds on specific restricted-use objects follow immediately from
Lemma 1 and Theorem 8 (see also in Table 1). As argued above, these lower bounds apply for both
deterministic and randomized algorithms.

Theorem 10 The space complexity of any obstruction-free implementation of an m-limited-use
max register or an m-limited-use collect object from historyless primitives is Ω(min(m,n)).
The space complexity of any obstruction-free implementation of an m-limited-use b-valued compare-
and-swap object, for b ≥ n, from historyless primitives is Ω(min(m,n)).
The space complexity of any obstruction-free implementation of a b-bounded max register from
historyless primitives is Ω(min(b, n)).
The space complexity of any obstruction-free implementation of a k-additive-accurate m-limited-use
counter from historyless primitives is Ω(min(

√
m
k , n)).

6 Lower Bounds for Randomized Implementations

Proving step lower bounds for randomized implementations of concurrent objects is more difficult,
due to the extra flexibility these implementations have. However, lower bounds on many objects can
be obtained using a variation of the L-perturbability argument that generalizes the lower bounds
for max registers from [3] and for approximate counters from the conference version of the present
work [5].

The basic idea is to construct a family of executions where instead of delaying operations as soon
as they cover a register observed by the reader, we delay each step with some fixed probability q.
Then on average each register contains only 1 + 1/q distinct values across the family of executions,
as compared to at most 2 in the deterministic case. This gives a bound of (1 + 1/q)r on the
expected number of distinct values that can be returned by a deterministic reader that runs for
r steps. Constructing a family of executions for a specific object that forces the reader to return
many values on average despite delayed operations gives the lower bound.

We assume an oblivious adversary, which fixes the sequence of process steps in advance, without
being able to predict the coin-flips of the processes or the progress of the execution; in fact, our
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adversary does not even require knowledge of the implementation, allowing us to prove the lower
bound using Yao’s Principle [19]. For simplicity, we provide a fixed operation to each process and
use the oblivious adversary only to specify the timing of process steps. We consider deterministic
algorithms, since a randomized algorithm can be seen as a weighted average of deterministic ones.
A distribution over schedules that gives a high cost on average for any fixed deterministic algorithm,
also gives a high cost on average for any randomized algorithm, which also implies that there exists
some specific schedule that does so.

Our main tool is a variant of L-perturbability that we call uniform (p, L)-perturbability. As
with L-perturbability, our goal is to generate a family of executions in which opn returns L + 1
distinct values. But instead of generating these executions by repeated perturbations of previous
executions, we consider a single sequence of update operations γ1 . . . γn−1, choose each update to
include a delayed step with independent probability at most p, and then consider all n executions
obtained by taking the first j updates followed by any delayed operations and opn. The idea is
that an implementation is uniformly (p, L)-perturbable if the resulting family of executions always
yields at least L+ 1 distinct values on average, for any choice of which specific step of each delayed
operation to delay (a formal definition appears in Definition 3.)

The intuition is that for many common objects, if p is small enough, most of the update opera-
tions are completed, so as more and more of these are included in the execution, any implementation
of the object is forced to return new values from opn no matter how the smaller number of delayed
operations are linearized. This intuition is justified for many common objects in Lemma 11.

If each update γi has expected step complexity w, then delaying each operation with probability
p/w satisfies the requirements of uniform (p, L)-perturbability while preventing any historyless
base object from taking on more than O(w/p) distinct values on average. This means that an
implementation of opn that accesses at most r base objects will see at most O((w/p)r) distinct
sequences of values, which gives (Lemma 12) an upper bound on the expected value of L. The
same lemma includes similar bounds for general objects with bounded contention. The collision
between these upper bounds and the lower bound in the definition of uniform (p, L)-perturbability
gives the full lower bounds, stated in Theorem 15.

6.1 Uniform perturbability

Definition 3 An implementation I is uniformly (p, L)-perturbable if there is an operation instance
opn by process pn and operation instances γ1 . . . γk by distinct processes p1 . . . pk, with k < n, such
that, if for each i, with independent probability at most p, γ′iδi is a prefix of γi where δi is a
single step, and γ′i = γi and δi is the empty sequence otherwise, then in the family of executions
Ξi = γ′1 . . . γ

′
iδi . . . δ1opn, where 0 ≤ i ≤ k, the set of values returned by opn contains at least L+ 1

distinct elements on average.

An object is uniformly (p, L)-perturbable if all its obstruction-free implementations are uniformly
(p, L)-perturbable.

The +1 in the definition is for consistency with L-perturbability; a family of executions yields
L+ 1 distinct values if the return value changes L times.

6.2 Uniform perturbability of particular objects

For typical restricted-use objects, our goal will be to show uniform (p, L)-perturbability where p is
a constant and L is polynomial in n. For asymptotic bounds on step complexity, the exact value
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of p and the exponent on L only affect the constants, so in the lemma below these are chosen for
simplicity rather than optimality.

Lemma 11 1. A b-bounded-value max register is uniformly (1/4,Ω (min (b, n)))-perturbable.

2. An m-limited-use max register is uniformly (1/4,Ω (min (m,n)))-perturbable.

3. A c-multiplicative-accurate m-limited-use counter is uniformly (1/4,Ω (log min(m,n)/ log c)))-
perturbable.

4. The activity counter of Bender and Gilbert [9] is (1/4,Ω (log n))-perturbable.

5. An m-limited-use counter is uniformly (1/4,Ω (log min (m,n)))-perturbable.

6. A k-additive-accurate m-limited-use counter is uniformly (1/4,Ω (log min (m/k, n)))-perturbable.

7. An m-limited-use b-valued compare-and-swap object is uniformly (1/4,Ω (min (
√
m, b,

√
n)))-

perturbable.

8. An m-limited-use collect object is uniformly (1/4,Ω (min (m,n)))-perturbable.

Proof: 1. Let γi = Write(i) for 1 ≤ i ≤ min(b − 1, n − 1) and let opn = ReadMax(). For
each γi that is not truncated, the corresponding execution Ξi = γ1 . . . γiδi . . . δ1opn contains
a complete Write(i) operation that must be linearized before opn and no Write(i′) operation
for any i′ > i. It follows that opn returns i in this execution. Since on average (1−p) min(b−
1, n− 1) operations are not truncated, opn returns Ω(min(b, n)) distinct values on average.

2. Follows from the same construction as for a b-bounded counter.

3. Let each γi, for 1 ≤ i ≤ min(m,n−1), be a CounterIncrement and let opn be a CounterRead

for a c-multiplicative-accurate counter. We pick out a subfamily of executions Ξk0 ,Ξk1 , . . .Ξk`−1

where we choose ki so that the schedule Ξki includes the first mi =
⌊
(2c)2i

√
min (m,n− 1)

⌋
calls to CounterIncrement, where i ranges from 0 to `−1 =

⌊
1
2 log2c

√
min (m,n− 1)

⌋
−1 =

Θ (log min(m,n)/ log c).

Let Ti be the number of truncated increments among the first mi increments. Since each
increment is truncated with probability at most 1/4, we have E[Ti] ≤ mi/4. Standard Chernoff
bounds (for example, [18, (4.2)]) give, for 0 ≤ δ ≤ 1,

Pr[Ti ≥ (1 + δ)mi/4] ≤ e−(mi/4)δ2/3 (3)

Let a be a constant, and let δ =
√

24a lnmi
mi

= o(1). Then (3) becomes

Pr [Ti ≥ mi (1/4 + o(1))] ≤ e−a lnmi

= m−2a
i .

Because mi = Ω
(√

min(m,n− 1)
)

, the error probability is Ω (min(m,n− 1)−a), and apply-

ing the union bound gives that Ti < (mi) (1/4 + o(1))
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for all `� min(m,n− 1) executions with probability at least 1− Ω
(
min(m,n− 1)−a+1

)
.

Suppose that this event holds. Let vi be the number of increments that can be linearized
before the CounterRead in the execution Ξki . Then we have mi/2 < mi(3/4 − o(1)) <
vi ≤ mi, and for the return value xi of a correct c-multiplicative-accurate CounterRead we
have mi/2c < xi ≤ cmi. From our definition of mi, we have mi = mi+1/4c

2, so xi ≤
cmi = cmi+1/4c

2 = mi/4c
2 < xi+1. It follows that the return value of the CounterRead

in any two distinct executions Ξki , Ξkj is distinct. We thus get ` distinct values with high
probability, giving at least `/2 distinct values on average for sufficiently large m and n, which
is Ω(log min(m,n)/ log c).

4. Recall that the activity counter of [9] differs from an idealized c-multiplicative-accurate
counter in that CounterRead may return inaccurate values with probability n−a for any fixed
a and sufficiently large n after any number of increments, and with larger probability after
fewer than O(log4 n) increments. So with high probability, of the executions Ξki constructed
above, only those with i = O(log log n) will return different values from an activity counter
as from a c-multiplicative-accurate counter. This leaves `/4−O(log log n) = Ω(logn) distinct
values, giving the claimed bound.

5. Immediate from the c-multiplicative-accurate bound.

6. Immediate from the c-multiplicative-accurate bound.

7. Let ` =
⌊√

min(m, (b− 1)2, n− 1)
⌋

and let k = `2. Construct the sequence γ1 . . . γk by

concatenating ` blocks of ` CAS operations each, where the i-th block for i = 1 . . . ` consists
entirely of CAS(i− 1, i) operations.

Observe that the probability that a single block contains no undelayed operation is at most
(1/4)`. By the union bound, the probability that every block contains at least one complete
CAS operation is at least 1− `(1/4)`. As this goes to 1 in the limit, for sufficiently large ` we
have that it is at least 1/2. If this event occurs, we get a sequence of truncated operations
γ′1 . . . γ

′
k that includes complete operations CAS(0, 1)CAS(1, 2) . . . CAS(`− 1, `) as a subse-

quence. It follows that between them the executions Ξ1 . . .Ξk cause the reader to return `+1
distinct values. Taking the expectation gives L ≥ (1/2)(`+ 1) = Ω (min (

√
m, b,

√
n)).

8. By reduction from an m-limited-use max register: implement each Write(i) operation by pi
by a store operation, and implement ReadMax by performing a single collect from which we
compute the maximum value. Then apply the same construction as for a max register.

6.3 Lower bound for uniformly perturbable objects

We now state the core lemma for our lower bound for uniformly (p, L)-perturbable objects.

Lemma 12 Let O be uniformly (p, L)-perturbable. For any obstruction-free implementation of O
in which each update operation takes at most w steps on average and opn takes at most r steps
always, we have

(w/p)(1 + (C + 1)(w/p))r − 1 ≥ L (4)
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if the implementation uses base objects with maximum contention C, and

(w/p)(1 + (w/p))r − 1 ≥ L (5)

if the implementation uses historyless base objects.

6.3.1 Proof of Lemma 12

Given a uniformly (p, L)-perturbable object where each update operation runs in expected w steps,
let γ1 . . . γk be a sequence of perturbing operations and opn an operation that together demonstrate
(p, L)-perturbability. We will construct a family of executions Ξi in which each γi operation is
delayed with probability at most p, by delaying each step of γi with independent probability q =
p/w. We will then show that unless the bounds in the lemma hold, these executions do not allow
opn to return enough distinct values on average to satisfy the requirement of (p, L)-perturbability.

Let ji be the number of steps of γi that are not delayed; observe that ji is a random variable
with geometric distribution. Construct a family of schedules σij of the form

σij = pj11 p
j2
2 . . . pji︸ ︷︷ ︸
γ′1...γ

′
i

pipi−1 . . . p1︸ ︷︷ ︸
δi...δ1

prn︸︷︷︸
opn

,

where 1 ≤ j ≤ ji and pxi represents x many steps by pi. Note that this schedule may assign steps
to processes that have already completed their operations; we assume that any such steps become
no-ops. For the special case i = 0, let σ00 be the schedule prn. Let Ξi, for each i in 0 . . . k, be the
execution corresponding to σiji .

Each operation γi includes at most w steps on average; each step is delayed with probability
p/w. So by Wald’s lemma, the probability that γi includes a delayed step is at most w(p/w) = p.
The construction thus satisfies the requirements of Definition 3, so the executions Ξi cause opn to
return L+ 1 values on average.

Given a schedule σij , let B1, . . . Br be the base objects accessed by the first, second, etc., steps
of pn. Define cij(k) to be the number of delayed operations δ in σij that access Bk. Define bij(k)
to be 1 if some delayed operation δ applies a non-trivial primitive to Bk and 0 otherwise.

The significance of these quantities is that cij(k) measures the number of simultaneous primitives
on Bk if all operations δi . . . δ1 are scheduled concurrently, while bij(k) simply records whether Bk
is covered by a primitive in δi . . . δ1 or not. Both values are bounded: cij(k) is at most C + 1 if we
have a contention bound C, while bij(k) is at most 1 by definition.

The following randomized progress measure is an adaptation of Ψ from Section 4.1. It is defined
for any vector c = c(1)c(2) . . . c(r) with 0 ≤ c(i) ≤ m,

Ψp,m(c) = (1/p)
r∑
i=1

(1 +m/p)r−ic(i). (6)

Unlike Ψ, which increases by 1 whenever a new base object is covered, Ψp,m only increases by
1 in expectation when some operation γi attempts to apply an operation to a base object observed
by opn. As these are the only events that can change the return value of opn, the expected value
of Ψp,m is an upper bound on the maximum number of times opn’s view has changed. It follows
that the maximum possible value of Ψp,m bounds L. The intuition is that a step applied to the i-th
register observed by opn will not change c(j) for j < i, will increase c(i) by 1 with some probability,
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and might change c(j) arbitrarily for j > i, as observing the change in Bi may divert subsequent
reads by opn to different base objects that may or may not already be covered.

We begin by showing that changes to ci following these rules do indeed have the claimed effect
on E[Ψp,m].

Lemma 13 Given a vector c = c(1)c(2) . . . c(r) with 0 ≤ c(i) ≤ m, let c′ be obtained from c by
choosing some position i and letting

1. c′(j) = c(j) for j < i;

2. c′(i) = c(i) +X, where X is a 0− 1 random variable that is 1 with probability p; and

3. c′(j) ≥ 0 for all j > i.

Then

E[Ψp,m(c′)] ≥ Ψp,m(c) + 1. (7)

Proof: First, we remove some of the dependence on r by a change of variables. Write Ψp,m(c) as∑r−1
i=0 wic(r− i). We will show that wi = (1/p)(1 +m/p)i is the solution to a recurrence that arises

from (7), which after undoing the change of variables yields the coefficients (1/p)(1 + m/p)r−i in
(6).

First, compute

E
[
Ψp,m(c′)−Ψp,m(c)

]
≥ E[wiX]−

i−1∑
j=0

wjc(r − j)

≥ wip−
i−1∑
j=0

wjm. (8)

We want this final quantity to be at least 1 for all i. Suppose that it is equal to 1, i.e.,

pwi −m
i−1∑
j=0

wj = 1. (9)

Let F (z) =
∑∞

i=0wiz
i be the ordinary generating function for wi. Then (9) can be rewritten as

pF (z)−m z

1− z
F (z) =

1

1− z
.

Solving for F (z) gives

F (z) =
1

(1− z)
(
p−m z

1−z

)
=

1

p (1− z − (m/p)z)

= (1/p)
1

1− (1 +m/p)z
.

This gives wi = (1/p)(1 +m/p)i as claimed.
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From the recurrence (9) we can also calculate that

i−1∑
j=0

wjm = pwi − 1

= (1 +m/p)i − 1.

This gives an upper bound of (1+m/p)r−1 on Ψp,m(c) for any vector c with r components c(i) ≤ m.
Let Vij be the number of distinct values returned by opn in the executions corresponding to

schedules σ11 through σij . Observe that Vk,jk gives an upper bound on the number of distinct
values returned by opn in the subset Ξ1,Ξ2, . . .Ξk of these executions. We will show that Vij is
bounded in expectation by Ψp/w,C+1(cij) for implementations with contention bound C and by
Ψp/w,1(bij) for implementations from historyless objects, by showing that Ψp/w,C+1(cij) − Vij and
Ψp/w,1(bij)− Vij are submartingales.3

Lemma 14 Fix p, and fix an obstruction-free implementation of O from either bounded-contention
or historyless objects, in which every execution of γi takes at most w steps on average and every
executions of opn takes at most r steps. Let Ξ1 . . .Ξk be as defined above. Then the expected number
of distinct values returned by opn in these executions is at most

(w/p)(1 + (C + 1)w/p)r − 1 (10)

for base objects with contention at most C and

(w/p)(1 + w/p)r − 1 (11)

for historyless base objects.

Proof: Observe that in the initial schedule σ00, V00 = Ψp/w,C+1(c00) = Ψp/w,1(b00) = 0. So the
initial values Ψp/w,C+1(c00)− V00 and Ψp/w,1(b00)− V00 are both 0.

First let us look at the case of arbitrary base objects, and consider what happens as we extend
a schedule σij by one step. Let c = cij be the vector of delayed operation counts preceding this
step and let b = bij be the vector of covering indicators. Let c′ and b′ be the corresponding vectors
following the step; that is, c′ = ci′j′ and b′ = bi′j′ where i′ = i and j′ = j+ 1 or i′ = i+ 1 and j′ = 1
in the case j = ji. Let V = Vij and V ′ = Vi′j′ be the number of distinct values returned by opn in
the executions corresponding to schedules σ11 through σij or σi′j′ , respectively.

If the step does not access any base object accessed by opn, then there is no change to c, b,
or V . Conditioning on this even occurring, Ψp/w,C+1(c′) − V ′ = Ψp/w,C+1(c) − V and similarly
Ψp/w,1(b′)− V ′ = Ψp/w,1(b)− V .

Alternatively, if the step does access a base object accessed by opn, it may be the case that opn
returns a new value, giving V ′ = V + 1. To compensate for this, we need the progress measure to
rise as well. Let k be the index of the first step in opn that observes this base object. Then for any
k′ < k, Bk′ is a distinct base object from Bk, so c′(k′) = c(k′) and b′(k′) = b(k′) for these positions.

For k itself, with probability p/w the new operation is delayed to become δi. In the case of an
arbitrary base object, this gives a p/w chance that c′(k) increases by one from c(k). Furthermore,

3A submartingale is a process X0, X1, X2, . . . where E[Xi+1|X1 . . . Xi] ≥ Xi. A simple induction shows that, in
any submartingale, E[Xi] ≥ E[X0] for all i.
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the reader may react to the new operation—whether it is delayed or not—by accessing different
base objects for operations k′ > k. This may cause c′(k′) to be less than c(k′) for these values of
k′, but none of them can drop below 0.

In the case of a historyless base object, we need only consider the case where b(k) = 0, as
otherwise the new step is covered by some previous delayed operation δ, and V and b do not
change. In this case, there is a similar p/w chance that b′(k) increases to 1, while b′(k) may drop
to 0 for k′ > k.

For both classes of objects, if we condition on the operation being visible to opn, the conditions
of Lemma 13 apply to the appropriate progress function, so we have

E[Ψp/w,C+1(c′)− V ′] ≥ E[Ψp/w,C+1(c)− V ]

and

E[Ψp/w,1(b′)− V ′] ≥ E[Ψp/w,1(b)− V ],

which establishes the submartingale property. From this it follows that

E[Ψp/w,C+1(ck,jk)− Vk,jk ] ≥ 0

and

E[Ψp/w,1(bk,jk)− Vk,jk ] ≥ 0

It follows that in either case, E[Vk,jk ] is bounded by the maximum possible value of Ψ, giving the
claimed result.

To complete the proof of Lemma 12, observe that Lemma 13 provides upper bounds on precisely
the same quantity E[Vj,jk ] for which L is a lower bound.

6.4 Lower bound on worst-case expected step complexity

Lemma 12 gives a rather technical result, which is also constrained by the assumption that opn
always runs in a fixed number of steps. The following theorem removes this restriction and restates
the lower bound in terms of worst-case expected step complexity for any operation on a (p, L)-
perturbable object.

Theorem 15 Let O be uniformly (p, L)-perturbable. Then:

1. For any implementation of O from base objects with maximum contention C, there is some
operation with worst-case expected step complexity

Ω

(
log pL

log ((C + 1)/p) + log log pL

)
.

2. For any implementation of O from historyless base objects, there is some operation with
worst-case expected step complexity

Ω

(
log pL

log (1/p) + log log pL

)
.
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Proof: Consider a family of executions as constructed for the proof of Lemma 12. Let w be
the maximum expected step complexity of each operation γ, and let r be the worst-case expected
step complexity of opn. Construct an object O′ from O by truncating any instance of opn that
takes more than 2r steps and having it return a default value. By Markov’s inequality, opn will be
truncated at most half the time on average, so if O is (p, L)-perturbable, O′ is (p, L/2)-perturbable,
and our derived implementation has the property that opn always finishes in 2r steps.

From Lemma 12, we have that

(w/p)(1 + (C + 1)(w/p))2r − 1 ≥ L/2 (12)

or

(w/p)(1 + (w/p))2r − 1 ≥ L/2 (13)

for implementations of O from C-bounded-contention or historyless objects, respectively.
Observe that the left-hand sides of (12) and (13) are increasing functions in both w and r. So

if there is some value s such that setting both w and r to s makes either inequality false, we must
have at least one of w and r greater than s to make it true.

Taking logs and performing some tedious calculations shows that (12) fails for

s =
1

5
· log(pL/2)

log((C + 1)/p) + log log pL
,

giving

max(w, r) = Ω

(
log pL

log((C + 1)/p) + log log pL

)
.

The bound for historyless base objects is obtained by setting C = 0.

For fixed p and C > 0, the bounds simplify to Ω(logL/(log logL+logC)) and Ω(logL/ log logL),
respectively.

Because L only appears within a logarithm, polynomial changes in L yield only constant-
factor changes in the bounds. Using the bounds on L computed in Lemma 11, this gives a lower

bound on worst-case expected step complexity of Ω
(

logn
log logn+logC

)
using C-bounded-contention

base objects and Ω
(

logn
log logn

)
for poly(n)-bounded-value max registers, poly(n)-limited-use max

registers, poly(n)-limited-use poly(n)-valued compare-and-swap objects, and poly(n)-limited-use

collect objects; and corresponding lower bounds of Ω
(

log logn
log log logn+logC

)
and Ω

(
log logn

log log logn

)
on Θ(1)-

multiplicative-accurate poly(n)-limited-use counters, activity counters, poly(n)-limited-use coun-
ters, and k-additive-accurate m-limited-use counters with m/k = poly(n).

7 Summary

This paper presents lower bounds for concurrent obstruction-free implementations of objects that
are used in a restricted manner. (See Table 1 in the introduction.) The step lower-bound on
max registers is tight and matches the previously-known lower bound proved using a specialized
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argument [3]. While we are not aware of a sublogarithmic upper bound for approximate random-
ized counters, the weaker activity counters of [9] have step complexity O(log log n), close to the

lower bound of Ω
(

log logn
log log logn

)
. It is unclear whether the other lower bounds are tight and it would

be interesting to investigate that. Another interesting research direction is to devise generic im-
plementations for L-perturbable objects. This is of particular interest in the case of randomized
implementations, in which case, it is important to study the type of adversary tolerated.
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