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Abstract

The famous Fischer, Lynch, and Paterson impossibility proof shows
that it is impossible to solve the consensus problem in a natural model
of an asynchronous distributed system if even a single process can
fail. Since its publication, two decades of work on fault-tolerant asyn-
chronous consensus algorithms have evaded this impossibility result by
using extended models that provide (a) randomization, (b) additional
timing assumptions, (c) failure detectors, or (d) stronger synchroniza-
tion mechanisms than are available in the basic model. Concentrating
on the first of these approaches, we illustrate the history and structure
of randomized asynchronous consensus protocols by giving detailed de-
scriptions of several such protocols.

1 Introduction

The consensus problem [45] is to get a group of n processes in a distributed
system to agree on a value. A consensus protocol is an algorithm that
produces such an agreement. Each process in a consensus protocol has, as
part of its initial state, an input from some specified range, and must eventu-
ally decide on some output from the same range. Deciding on an output is
irrevocable; though a process that has decided may continue to participate
in the protocol, it cannot change its decision value. The restricted problem
in which the input range is {0, 1} is called binary consensus. Except as
otherwise noted, all of the protocols discussed hereafter are binary consensus
protocols.

Correct consensus protocols must satisfy the following three conditions:
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1. Agreement. All processes that decide choose the same value.

2. Termination. All non-faulty processes eventually decide.

3. Validity. The common output value is an input value of some process.

This is not precisely the definition originally given by Pease, Shostak, and
Lamport [45]. Their paper used the even stronger condition of interactive
consistency, in which all non-faulty processes compute the same vector of
purported inputs, and this vector correctly identifies the input of each non-
faulty process. But the definition above is the one that is generally accepted
today. It derives from the three-part definition used by Fischer, Lynch, and
Paterson [37], though in their paper the validity condition is replaced by a
much weaker non-triviality condition. Non-triviality says only that there
exist different executions of the protocol that produce different common
decision values. Non-triviality is implied by validity (consider an execution
in which all processes have input 0 versus one in which all process have
input 1), but it is less useful for applications, since it says nothing about
the relationship between inputs and outputs. Nonetheless, non-triviality is
enough to show that consensus is impossible in the usual model.

The Fischer-Lynch-Paterson (FLP) impossibility result [37] demon-
strates that there is no deterministic protocol that satisfies the agreement,
termination, and non-triviality conditions for an asynchronous message-
passing system in which any single process can fail undetectably. A similar
result, proved by Loui and Abu-Amara [44] using essentially the same tech-
nique, shows that consensus is also impossible in an asynchronous shared-
memory system with at least one undetectable failure. More details of these
and similar results, and of the models in which they apply, can be found in
the survey by Fich and Ruppert appearing elsewhere in this volume.

And yet we would like to be able to solve consensus. To escape from the
FLP result, we must extend the model in some way. Several such extensions
that have been used to solve asynchronous consensus are described in Sec-
tion 2. In this paper, we concentrate on the use of randomized algorithms,
and give a more detailed description of randomized approaches in Sections 3
through 6.

2 Extensions to the model

The extensions to the base model that have been used to circumvent the
FLP result can be divided into four classes.
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1. Randomization. Randomized models provide probabilities for some
transitions. This means that instead of looking at a single worst-
case execution, one must consider a probability distribution over bad
executions. If the termination requirement is weakened to require ter-
mination only with probability 1, the FLP argument no longer forbids
consensus: non-terminating executions continue to exist, but they may
collectively occur only with probability 0.

There are two ways that randomness can be brought into the model.
One is to assume that the model itself is randomized; instead of allow-
ing arbitrary applicable operations to occur in each state, particular
operations only occur with some probability. Such a randomized
scheduling approach was first proposed by Bracha and Toueg [23]
(who called their version fair scheduling). A recent attempt to revive
this approach can be found in the noisy scheduling model of [11].
Randomized scheduling allows for very simple algorithms; unfortu-
nately, it depends on assumptions about the behavior of the world
that may not be justified in practice. Thus it has not been as pop-
ular as the second approach, in which randomness is located in the
processes themselves.

In this randomized algorithm approach, processes are equipped
with coin-flip operations that return random values according to some
specified probability distribution. Again, we can no longer talk about
a single worst-case execution, but must define a probability distribu-
tion on executions. Defining this distribution requires nailing down all
the other nondeterminism in the system (i.e., the order in which mes-
sages are sent and delivered, or in which shared-memory operations are
performed), which is done formally by specifying an adversary. An
adversary is a function from partial executions to operations that says
which applicable operation to carry out at each step. (Details are given
in Section 4.) Given an adversary, the result of the coin-flip operations
are the only remaining unknowns in determining which execution oc-
curs. So we can assign to each set of executions the probability of the
set of sequences of coin-flip outcomes that generate them.

The adversary we have just described is the strong adversary; it can
observe the entire history of the system, including past coin-flip out-
comes and the states of processes and the communications mechanism,
but it cannot predict future coin-flip outcomes. A strong adversary
gives a weak model in which consensus is possible but difficult. Weak-
ening the adversary gives a stronger model (in the sense of granting
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more strength to the processes); many consensus protocols have been
designed for weak adversaries with a restricted view of the system.

This survey concentrates primarily on randomized algorithms, largely
because they lie closest to the domain of expertise of the author, but
also because they require the least support from the underlying system.
Protocols using randomization are discussed starting in Section 3. An
excellent survey on work using randomization up to 1989 can be found
in [29].

2. Timing assumptions. Consensus can be achieved despite the FLP
result by adding timing assumptions to the model that exclude bad
executions. Dolev, Dwork, and Stockmeyer [31] characterize the ef-
fects of adding limited synchrony assumptions to a message-passing
system, and show in particular that consensus becomes possible with
up to n faulty processes under a variety of restrictions on the order in
which processes take steps or messages are delivered. Dwork, Lynch,
and Stockmeyer [34] introduced the partial synchrony model, in
which either there is a bound on message delay that is not known to
the processes, or there is a known bound that applies only after some
initial time T0. They describe consensus protocols for this model that
work with a bound on the number of faulty processes. Attiya, Dwork,
Lynch, and Stockmeyer [16] give a still more refined model in which
there are known bounds C on the ratio between the maximum and
minimum real time between steps of the same process and d on the
maximum message delay; under these assumptions, they prove an up-
per bound of (f + 1)Cd and a lower bound of (f + 1)d on the amount
of real time needed to solve consensus with f faulty processes. Their
upper bound uses timeouts to detect failures and can be seen as an
early example of the failure detector approach described below.

In the shared-memory framework, a model in which processes can
deliberately delay operations in order to avoid overwriting each other’s
values was used to obtain a very simple and efficient consensus protocol
by Alur, Attiya, and Taubenfeld [7]. More recently, Anderson and
Moir [8] have used scheduling assumptions from the operating systems
world to design protocols that run in constant time when processes run
on a uniprocessor under a priority-based scheduling regime or under
one that provides minimum scheduling quanta.

3. Failure detectors. With failure detectors, some mechanism exists
for notifying other processes that a process has failed. An example
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of a failure detector is the timeout-based mechanism used by Dwork,
Lynch, and Stockmeyer [34]. Much more interesting are unreliable
failure detectors, where the failure detector can misidentify faulty
processes as non-faulty and vice versa. Work on protocols for un-
reliable failure detectors was initiated by Chandra and Toueg [28].
Chandra, Hadzilacos, and Toueg [27] extended this work by showing
the minimum conditions an unreliable failure detector must satisfy to
permit consensus. Being able to detect failures, even unreliably, per-
mits solving consensus by electing a coordinator, without the danger
of having the protocol hang forever waiting for a failed co-ordinator
to wake up. Further examples of work on failure detectors and their
limitations in various models can be found in [5, 32].

4. Strong primitives. In these models, stronger shared-memory primi-
tives extend or supplement the basic operations of reading and writing
registers. Loui and Abu-Amara [44] showed that consensus is solv-
able with one (but not two) failures using test-and-set bits and is
solvable for arbitrarily many failures using three-valued read-modify-
write registers. Extending this work, Herlihy [40] defined a hierarchy
of shared-memory objects based on their consensus number, defined
somewhat informally as the maximum number of processes for which
the object can solve wait-free consensus. The essence of this line of
research is that consensus is used as a test problem to prove that cer-
tain shared-memory objects cannot implement other, stronger objects.
More robust definitions have appeared in subsequent work (see, for ex-
ample, [42]), and there is now the beginning of a broad theory of the
power of shared-memory objects (e.g., [3, 48–50]).

Herlihy’s paper also gave one of the first universal constructions for
arbitrary shared-memory objects based on consensus; showing that
objects that can solve consensus with arbitrarily many failures can
implement arbitrary shared objects. Another construction is due to
Plotkin [46], based on sticky bits similar to the 3-valued read-modify-
write registers of Loui and Abu-Amara [44]. Subsequent constructions
have shown how to implement consensus or protocols of equivalent
power using primitives such as load-linked/store-conditional [41,52].

Some consensus protocols combine aspects of protocols from different
models. For example, a hybrid protocol of Aguilera and Toueg [4] solves
consensus very quickly given a failure detector, but solves it eventually using
randomization if the failure detector doesn’t work.
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3 Consensus using randomization

One of the first approaches to solving consensus despite the FLP result was
to use randomization. The goal of a randomized consensus protocol is to give
the set of non-terminating executions a probability of zero. This does not, in
a sense, require breaking the FLP result: these zero-probability executions
continue to exist. However, they are irrelevant in practice, provided one
is willing to accept a probabilistic termination guarantee. This requires
modifying the model as described in Section 4.

The first randomized consensus protocol was given by Ben-Or [20]; as it
provides much of the structure for later protocols, we give a description of it
in Section 5.1. Later papers extended Ben-Or’s work in two directions: the
literature on message-passing consensus protocols has largely concentrated
on solving agreement problems using cryptographic techniques or private
channels with a linear bound on the number of faulty processes (including
processes with Byzantine faults, which may misbehave arbitrarily instead
of simply stopping); while work in shared-memory systems has used the
underlying reliability of the shared-memory system to solve consensus in
the wait-free case, where there no limit on how many processes may fail but
failures are limited to crash failures. We describe some of the Byzantine
agreement work briefly in Section 5.2 and discuss wait-free shared-memory
algorithms at greater length in Section 6.

4 How randomization affects the model

Adding randomization involves changing both the model, to include the
effect of random inputs, and the termination condition, to permit non-
terminating executions provided all such executions together have proba-
bility zero.1

From the point of view of the processes, the main change in the model
is the addition of a new coin-flip operation. The coin-flip operation be-
haves a bit like a read operation, except that it returns a random value
to the process that executes it instead of the value from some register. De-

1Permitting probability-zero non-terminating executions is not required in a syn-
chronous model, where algorithms exist that use randomization to obtain high efficiency
but that still terminate after finitely many rounds in all executions [38,53]. The difference
can be accounted for by the fact that deterministic fault-tolerant consensus is possible in
a synchronous model. In an asynchronous model, if a randomized consensus protocol ter-
minated in all executions, we could simply replace all coin-flips with hard-wired constants
and get a deterministic consensus protocol, contradicting the FLP result.
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pending on the precise details of the model, this value might be the outcome
of a fair coin-flip, or might be a value chosen from a larger range.

Adding coin-flip operations requires additional changes to the model
to handle probabilities of executions. In each state of the system there may
be a large number of operations of different processes that may occur next.
Previously the choice of which of these operations occurs has been implicit
in the choice of a single execution, but now we want to consider ensembles
consisting of many executions, where the probabilities of individual execu-
tions are determined by the return values of the coin-flip operations. In
this framework, it is convenient to assign control of which operation occurs
in each configuration to an explicit adversary, a function from partial ex-
ecutions to operations. The idea is that the adversary always chooses what
operation happens next, but if that operation is a coin-flip, the result of
the operation is random.

The adversary thus takes on the role of the single worst-case execution
in the deterministic model. It also takes on the responsibilities of the worst-
case execution, in that it must guarantee the fairness conditions required
by the algorithm. Once the adversary is specified, which execution occurs
is determined completely by the outcome of coin-flip operations, and the
probability of an execution or set of executions is determined by the probabil-
ity of the corresponding coin-flips. We can then talk about the worst-case
expected complexity of an algorithm, by considering the worst possible
adversary, and then taking the average of some complexity measure over all
executions weighted by their probability given this adversary.2

Defining the adversary as a function from partial executions to applicable
operations means that the adversary can in effect see the entire history of
the execution, including outcomes of past coin-flips, internal states of the
processes, and the contents of messages and memory locations. Restricting
the adversary’s knowledge provides an opening for further variations on the
model.

The adversary defined above is called the strong adversary. The strong
adversary has the advantage of mathematical simplicity, but for practical
purposes it may be too strong. While the choice of which operation occurs

2Technically, it may be that in some models no single worst-case adversary exists; or
in other words, that for any adversary, there is a slightly nastier adversary that produces
worse performance. An example might be when running under a fairness condition that
requires an adversary to eventually permit some operation, but allows different adversaries
to delay the operation for arbitrarily long finite times at increasing cost to the algorithm.
To handle such possibilities, one can define the worst-case expected complexity instead as
the supremum over all adversaries of the expected complexity.
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next in a system might depend on the configuration in a complicated way
(for example, whether or not reading a particular register causes a page fault
might be very difficult to predict without examining the entire previous ex-
ecution), one can reasonably argue that Nature is not so malicious that only
the strong adversary can encompass its awful power. This observation has
motivated the development of a variety of weak adversaries that permit
faster consensus protocols.3 A weak adversary might be unable to break
cryptographic tools used by the processes, or it might be restricted more di-
rectly by not being allowed to observe anything (such as message or register
contents) that would not affect the scheduling mechanism in a real system.
Formally, this usually involves restricting the adversary based on a notion
of equivalent executions. Two executions are equivalent if they consist
of the same sequence of operations (ignoring parameters of operations and
their return values), and the adversary must choose the same operation
(again ignoring parameters) after any two equivalent partial executions. An
adversary that is restricted in this way is called a content-oblivious adver-
sary, since it cannot see the contents of processes, messages, or registers. A
still weaker oblivious adversary cannot even distinguish between different
operations; it chooses in each state only which process takes the next step.
Other models restrict the actions of the adversary, by imposing additional
timing assumptions or perturbing the adversary’s choices randomly. We
describe some of these weak-adversary models in Section 6.1.

In addition to changing the model, we also adapt the correctness con-
ditions for a consensus protocol to reflect the presence of randomness. In
particular, the universal quantifier in the termination requirement, which
previously spanned all executions, now instead spans all adversaries; and we
only require for any particular adversary that the protocol terminate with
probability 1.

A similar change in quantification would not be useful for the agreement
and validity requirements. Since any violation of agreement or validity must
occur after finitely many steps—and thus finitely many coin-flips—any such
violation would occur with nonzero probability. Thus we continue to demand
that the agreement and validity conditions hold in all executions, which is
equivalent to demanding that they hold with probability 1.4

3Conventionally, weak adversaries give rise to strong models, and strong adversaries to
weak models; the strength or weakness of the model is a function of how much power it
gives to the processes.

4It does change the problem to allow disagreement with nonzero probability. A version
of the Byzantine agreement problem that permits disagreement but seeks to minimize its
probability is studied by Graham and Yao [39]. They cite an earlier unpublished paper of
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5 Fault-tolerant message-passing protocols

This section describes fault-tolerant message-passing protocols. These achieve
consensus given a bound on the number of faults (which may vary from pro-
tocol to protocol). We begin with Ben-Or’s original exponential-time proto-
col in Section 5.1 and describe some of its faster descendants in Section 5.2.

5.1 Ben-Or’s protocol

Ben-Or’s protocol is the earliest protocol that achieves consensus with prob-
abilistic termination in a model with a strong adversary. Designed for a
message-passing system, it tolerates t < n/2 crash failures, and requires
exponential expected time to converge in the worst case.

Each process starts off with a preference equal to its input. The pro-
tocol proceeds in rounds, each of which has two stages, a voting stage and
a ratification stage. Nothing in the system guarantees that all processes
proceed through different rounds at the same time; instead, each process
keeps track of its own round and uses round labels on messages from other
processes to decide whether to use them in its current round, throw them
away (for messages from rounds the process has already finished), or save
them for later (for messages from rounds the process has not yet reached).

The first stage of each round implements a voting procedure; each pro-
cess transmits its current preference p to all processes (including itself) by
sending a message of the form (1, r, p), and then waits to receive n− t such
messages. If any process receives more than n/2 votes for a single value, it
causes all processes to decide on this value using the ratification mechanism.

This mechanism is implemented by the second stage of each round.
Any process that has observed a majority of votes for v sends a message
(2, r, v, ratify) to all processes. A process that has not observed a majority
for either value sends instead a place-holder message (2, r, ?).

As in the first stage, each process waits to receive at least n− t second-
stage messages. Any process that receives even a single (2, r, v, ratify) mes-
sage in round r changes its preference for round r+1 to v. If, in addition, it
receives more than t such messages, it immediately decides on v. If, on the
other hand, it receives only (2, r, ?) messages, it flips a fair coin to choose
a new preference for the next round. The process then continues with the
first stage of round r + 1.

This procedure is summarized as Algorithm 1.
The algorithm guarantees agreement because:

Karlin and Yao as originating this approach.
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Input: boolean value input
Output: boolean value stored in output
Data: boolean preference, integer round
begin

preference ← input
round ← 1
while true do

send (1, round, preference) to all processes
wait to receive n− t (1, round, ∗) messages
if received more than n/2 (1, round, v) messages then

send (2, round, v, ratify) to all processes
else

send (2, round, ?) to all processes
end
wait to receive n− t (2, round, ∗) messages
if received a (2, round, v, ratify) message then

preference ← v
if received more than t (2, round, v, ratify) messages then

output ← v
end

else
preference ← CoinFlip()

end
round ← round + 1

end
end

Algorithm 1: Ben-Or’s consensus protocol. Adapted from [20].
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1. At most one value can receive a majority of votes in the first stage
of a round, so for any two messages (2, r, v, ratify) and (2, r, v′, ratify),
v = v′.

2. If some process sees t+ 1 (2, r, v, ratify) messages, then every process
sees at least one (2, r, v, ratify) message.

3. If every process sees a (2, r, v, ratify) message, every process votes for v
in the first stage of round r+ 1 and every process that has not already
decided decides v in round r + 1.

Validity follows by a similar argument; if all processes vote for the their
common input v in round 1, then all processes send (2, r, v, ratify) and decide
in the second stage of round 1.

Assuming a weak adversary that cannot observe the contents of mes-
sages, termination follows because if no process decides in round r, then
each process either chooses its new preference based on the majority value
v in a (2, r, v, ratify) message; or it chooses its new preference randomly,
and there is a nonzero probability that all of these random choices equal
the unique first-stage majority value (or each other, if there is no majority
value). The situation is more complicated with a strong adversary, as differ-
ent processes may be in the first and second stages at the same time, and so
the first-stage majority value may not be determined until after the adver-
sary has seen some of the coin-flips from the second stage. The algorithm
continues to work with a strong adversary, but a much more sophisticated
proof is needed [6].

Unfortunately, in either case the probability that the algorithm termi-
nates in any given round may be exponentially small as a function of the
number of processes, requiring exponentially many rounds. Note also that
each process continues to run the protocol even after deciding; however, the
protocol can be modified so that each process exits at most one round after
first setting its output value.

5.2 Faster protocols

Ben-Or’s protocol not only showed that consensus becomes possible with
randomization, but also initiated a large body of work on randomized proto-
cols for the harder problem of Byzantine agreement, in which faulty pro-
cesses can exhibit arbitrary behavior instead of simply crashing. This work
has generally assumed the availability of cryptographic tools. Rabin [47]
showed that Byzantine agreement can be solved in constant expected time
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given a shared coin visible to all processes, and described an implementation
of such a coin based on digital signatures and a trusted dealer. Feldman and
Micali [35] gave a constant-round shared-coin for a synchronous system that
uses secret sharing to avoid the need for a trusted dealer.

A constant-time shared coin for an asynchronous system was given by
Canetti and Rabin [25] based in part on further unpublished work by Feld-
man. For the Canetti and Rabin protocol the cryptographic assumptions
can be replaced by the assumption of private channels. A simplified pre-
sentation of the Canetti-Rabin protocol that tolerates crash failures only is
given in [17, Section 14.3.2].

6 Wait-free shared-memory protocols

A protocol that tolerates up to n − 1 crash failures is called wait-free,
because it means that any process can finish the protocol in isolation without
waiting for the others. Wait-free message-passing protocols for all but trivial
problems are easily shown to be impossible, as a process running in isolation
cannot tell whether it is the sole survivor or simply the victim of a network
partition [23].

With shared memory, things become easier. Even though processes may
fail, it is usually assumed that data in the shared memory survives.5 This
eliminates the possibility of partition— even a process running in isolation
can still read the notes left behind by dead processes that ran before. The
consensus problem then becomes a problem of getting the contents of the
shared memory into a state that unambiguously determines the decision
value, even for processes that may have slept through most of the protocol.

In this section, we begin describing the history of wait-free shared-
memory consensus, and then give examples of different approaches to the
problem, showing the range of the trade-off between efficiency and robust-
ness against adversaries of increasing strength.

The first randomized protocol to use shared memory to solve consensus
was described by Chor, Israeli, and Li [30], for a model in which processes can
generate random values and write them to shared memory in a single atomic
operation (this is equivalent to assuming a weak adversary that cannot see
internal coin-flips until they are written out). A noteworthy feature of the
protocol is that it works for values in any input range, not just binary values.

We describe the Chor-Israeli-Li protocol in more detail in Section 6.1.1.
To give a brief summary, the essential idea of the Chor-Israeli-Li protocol

5See [2, 43] for models in which the shared memory itself can be faulty.

12



is to have the processes run a race, where processes advance through a
sequence of rounds as in the Ben-Or protocol, and slow processes adopt the
preferences of faster processes that have already reached later rounds. If a
single process eventually pulls far enough ahead of all processes that disagree
with it, both this leader and the other processes can safely decide on the
leader’s preference, knowing that any other processes will adopt the same
preference by the time they catch up. Processes flip coins to decide whether
or not to advance to the next level. With the probability of advancement
set at 1

2n , a leader emerges after O(n2) total work.
With a strong adversary, the Chor-Israeli-Li protocol fails. The win-

ning strategy for the adversary is to construct a “lockstep execution” that
keeps all processes at the same round, by stopping any process that has
incremented its round until all other processes have done so as well. This
strategy necessarily requires that the adversary be able to observe internal
states of the processes when making its scheduling decisions. It is still pos-
sible to solve consensus with a strong adversary, but a different approach is
needed.

Wait-free consensus protocols that tolerate a strong adversary began to
appear soon after the publication of the conference version of the Chor-
Israeli-Li paper. Abrahamson [1] gave the first randomized wait-free con-
sensus protocol for a strong adversary. Though described in terms of pro-
cesses acquiring locks of increasing strengths, if the strengths of the locks
are interpreted as round numbers it superficially resembles the Ben-Or pro-
tocol translated to shared memory. As in Ben-Or’s protocol, the method
for obtaining agreement is to have the processes choose new preferences at
random; after 2O(n2) steps on average, the processes’ random choices will
have agreed for a long enough period that the adversary cannot manipulate
them into further disagreement.

Also as with Ben-Or’s protocol, eliminating exponential waiting time re-
quired replacing the independent local coins of the processes with global coin
protocols shared between the processes. The first protocol to do this was
given by Aspnes and Herlihy [12]; it used a round structure similar to the
Chor-Israeli-Li protocol but relied on a shared coin protocol based on ma-
jority voting to shake the processes into agreement. The Aspnes and Herlihy
protocol was still fairly expensive, requiring an expected O(n4) total opera-
tions in the worst case, though much of this cost was accounted for by the
overhead of using a primitive O(n2)-work snapshot subroutine constructed
specifically for the protocol. Subsequent work with the strong adversary by
many authors [9,14,15,21,22,33,51] has largely retained the overall structure
of the Aspnes and Herlihy protocol, while reducing the overhead and elimi-
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nating in some cases annoyances like the use of unboundedly large registers.
The net result of these developments was to reduce the expected total work
to achieve consensus to O(n2 log n) using the shared-coin protocol of Bracha
and Rachman [22] and the expected per-process work to O(n log2 n) using
the shared-coin protocol of [14]. An O(n2 log n) consensus protocol using
the Bracha-Rachman coin is described in Section 6.2.

Further improvements in the strong-adversary model stalled at this point.
It was later shown by Aspnes [10] that no strong-adversary consensus proto-
col could run in less than Ω(n2/ log2 n) total work in essentially any model
in which the FLP bound applies. The essential idea of this lower bound
was to extend the classification of states in the FLP argument as bivalent
or univalent to a randomized framework, by defining a state as bivalent if
the adversary can force either decision value to occur with high probability,
univalent if it can force only one decision value to occur with high proba-
bility, and null-valent if it can force neither decision value to occur with
high probability. This last case is equivalent to saying that the adversary
cannot bias the outcome of the protocol too much— or, in other words, that
the protocol acts like a shared coin. Aspnes showed, using a variant of the
FLP argument, that any consensus protocol that reaches a decision in less
than n2 steps is likely to pass through a null-valent state, and provided a
separate lower bound on shared coins to show that Ω(n2/ log2 n) expected
work (specifically, Ω(n2/ log2 n) expected write operations) would be needed
to finish any protocol starting in a null-valent state. Combining these two
results gives the lower bound on consensus.

Even before this lower bound was known, the lack of further improve-
ment in strong-adversary protocols led to greater interest in protocols for
weak adversaries. Aumann and Bender [19] gave a shared coin algorithm for
the value-oblivious adversary that cannot observe the internal states of
the processes or values that have been written to memory but not yet read.
Based on propagating values through a butterfly network, their algorithm
gives a constant-bias shared coin in O(n log2 n) total work. Concurrently,
Chandra devised an algorithm for repeatedly solving consensus in a model
with essentially the same adversary, with a polylogarithmic per-process time
bound. Chandra’s protocol uses a stockpile of pre-flipped coins that the pro-
cesses agree to use. The initial execution of the protocol is expensive, due to
the need to generate an initial stockpile of unused coins, but subsequent ex-
ecutions can solve new instances of the consensus problem in only O(log2 n)
time. Chandra’s algorithm also gives a very streamlined implementation of
the rounds mechanism from earlier strong-adversary protocols, reducing the
shared data needed to just two arrays of multi-writer bits. (We use a ver-
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sion of this algorithm to reduce consensus to shared coin in Section 6.2.1.)
Soon afterwards, Aumann [18] showed how to achieve O(log n) expected per-
process work even for a single iteration of consensus. It is not clear whether
O(log n) expected steps is the best possible in this model, or whether further
improvements may be obtained.

6.1 Weak-adversary protocols

In this section, we first describe the Chor-Israeli-Li protocol that demon-
strated the possibility of wait-free consensus, and then sketch out some
more recent work that uses a similar approach. The unifying theme of these
protocols is to have the processes run a race where advancement to the next
phase is controlled by some random process and winning the race (by get-
ting far enough ahead of the other processes) determines the outcome of the
protocol. Although the adversary can use its control over timing to handi-
cap particular processes, a weak adversary cannot identify which phase each
process is in and thus cannot prevent a victor from emerging.

6.1.1 The Chor-Israeli-Li protocol

Pseudocode for a simplified version of the Chor-Israeli-Li protocol is given
as Algorithm 2.

Communication between processes is done by having each process alter-
nate between writing out its current round and preference to its own output
register in Line 1, and reading all the other processes’ registers to observe
their recent states in Line 2. The only interactions with the shared mem-
ory are in these two lines. A process notices that the race has been won
if it observes that processes with preference v are far enough ahead of all
disagreeing processes in Line 3; in this case, it decides on v and exits. If
the process does not decide, it adopts the common preference of the fastest
processes provided they all agree (Lines 4–5).

The only tricky part is ensuring that eventually some process does win
the race, i.e. moves far enough ahead of any processes that disagree with it.
This is done in Line 6 by having each process choose whether to advance to
the next round at random. Chor et al. show that, provided the adversary
cannot delay a process’s write depending on its choice to advance or not, a
leader emerges on average after O(n) passes through the loop. The expected
total work is O(n2), since each pass requires O(n) read operations.
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Input: input (an arbitrary value)
Output: return value
Local data: preference, round, maxround
Shared data: one single-writer multi-reader register for each pro-

cess
begin

preference ← input
round ← 1
while true do

1 write (preference, round)
2 read all registers R

maxround ← maxRR.round
3 if for all R where R.round ≥ maxround− 1, R.preference = v

then
return v

else
4 if exists v such that for all R where R.round = maxround,

R.preference = v then
5 preference ← v

end
6 with probability 1

2n do
round ← max(round + 1,maxround− 2)

end
end

end
end

Algorithm 2: Chor-Israeli-Li protocol. Adapted with modifications
from [30].
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6.1.2 Protocols for still weaker adversaries

For still weaker adversaries, it is possible to remove the randomization from
the Chor-Israeli-Li protocol and still solve consensus. This is essentially what
is done in the uniprocessor consensus protocol of Anderson and Moir [8],
which relies on quantum and/or priority-based scheduling to avoid lock-
step executions and which achieves consensus deterministically in constant
work per process; and in the “noisy environment” consensus protocol of
Aspnes [11], which assumes that the adversary’s schedule is perturbed by
cumulative random noise and achieves consensus in expected O(log n) work
per process.

6.2 Strong-adversary protocols

The main tool for defeating a strong adversary—one that can react to the
internal states of processes and the contents of memory—has been the use of
weak shared coin protocols. These provide a weak shared coin abstraction
with the property that, regardless of the adversary’s behavior, for each value
0 or 1 there is a constant minimum probability ε that all processes agree
on that value as the value of the shared coin. The coin is said to be weak
because ε is in general less than 1

2 : there will be some executions in which the
adversary either seizes control of the coin or prevents agreement altogether.

We describe a typical weak shared coin protocol in Section 6.2.2. As
in most such protocols, the shared coin is obtained by taking a majority of
many local coin flips generated by individual processes. While the adversary
can bias the outcome of the coin by selectively killing processes that are
planning to vote the wrong way, it can only hide up to n − 1 votes in this
way, and with enough votes it is likely that the majority value will not shift
as a result of the adversary’s interference.

Before presenting a shared coin protocol, we will show that having such
a protocol does indeed give a solution to consensus.

6.2.1 Consensus from a shared coin

Given a polynomial-work shared coin protocol, it is easy to build a wait-free
shared-memory consensus protocol requiring similar total work. The basic
idea is the same as in the Ben-Or protocol: disagreements are eliminated by
sending all but the fastest processes off to flip coins. The actual structure of
the algorithm resembles the Chor-Israeli-Li algorithm, in that processes pro-
ceed through a sequence of rounds, and slow processes adopt the preferences
of faster ones, but now the rounds structure is no longer used to distinguish
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winners from losers but instead simply ensures that the fastest processes do
not have to wait for processes stuck in earlier rounds. With appropriate
machinery, we can arrange that in each round all processes either (a) think
they are leaders and agree with all other leaders, or (b) participate in the
shared coin protocol. Since all processes in the first category agree with
each other, and all processes in the second category will also choose this
agreed-upon value with probability at least ε, after O(1/ε) = O(1) rounds
all processes agree.

The first wait-free consensus protocol to use this technique was the proto-
col of Aspnes and Herlihy [12], which included an ad-hoc snapshot algorithm
and various other additional mechanisms to allow the protocol to be built
from single-writer registers using the techniques of the day. A more recent
algorithm due to Chandra [26] gives a much simpler implementation of the
multi-round framework using two arrays of multi-writer bits.

Pseudocode for a simplified version of this algorithm is given as Algo-
rithm 3. The main simplification the use of unbounded bit-vectors, which
avoids some additional machinery in Chandra’s algorithm for truncating the
protocol if it has not terminated in O(log n) rounds and switching to a slower
bounded-space algorithm.6 The simplified algorithm requires very few as-
sumptions about the system. In particular, it works even when processes do
not have identities [24] and with infinitely many processes [13].

We will not give a detailed proof of correctness of Algorithm 3, referring
the interested reader instead to [26]. However, we can give some intuition
about why it works.

The two arrays of bits substitute for the round fields in the Chor-Israeli-
Li algorithm, allowing a process to quickly determine if its preference is
in the lead without having to read n separate registers. A process P that
reaches round r with preference p registers this fact by setting mark[p][r] in
Line 1.

What P does next depends on whether it sees itself behind, tied with, one
round ahead, or two rounds ahead of the fastest process with the opposite
preference:

• If it sees a mark in mark[1− p][r + 1], it knows that it is behind, and
6This trick, of switching from a fast algorithm that is running too long to a slower but

bounded algorithm was originally devised by Goldreich and Petrank [38] for synchronous
Byzantine agreement protocols. Chandra’s original algorithm was designed for a weak
adversary and its shared coin subroutine consumes “pre-flipped” shared coins stored in
memory. Switching to a second algorithm is needed to avoid running out of these pre-
flipped coins. But since the switch occurs with low probability, the cost of the slower
algorithm is rarely incurred, and thus does not change the total asymptotic expected cost.
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Input: boolean value input
Local data: boolean preference p, integer round r, boolean new

preference p′

Shared data: boolean mark[b][i] for each b ∈ {0, 1}, i ∈ Z+, of
which mark[0][0] and mark[1][0] are initialized to true
while all other elements are initialized to false.

Subprotocols: Shared coin protocols SharedCoinr for r = 0, 1, . . ..
begin

p← input
r ← 1
while true do

1 mark[p][r]← true
if mark[1− p][r + 1] then

2 p′ ← 1− p
else if mark[1− p][r] then

3 p′ ← SharedCoinr()
else if mark[1− p][r − 1] then

4 p′ ← p
else

5 return p
end
if mark[p][r + 1] = false then

6 p← p′

end
7 r ← r + 1

end
end

Algorithm 3: Wait-free consensus using shared coins. Adapted with
modifications from [26], Figure 1.
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switches to the other preference (Line 2).

• If the latest mark it sees is in mark[1− p][r], it assumes it is tied, and
chooses a new preference using the shared coin (Line 3).

• If the latest mark it sees is in mark[1 − p][r − 1], it keeps its current
preference (Line 4) but does not yet decide, as it may be that some
process Q with the opposite preference is close enough that Q will
immediately set mark[1− p][r] and then think it is tied with P .

• Finally, if it sees no mark later than mark[1−p][r−2] (which it doesn’t
bother to read), then any Q with a different preference has not yet
executed Line 1 in round r−1; and so after Q has done so, it will see the
mark that P already put in mark[p][r], and then switch its preference
to P ’s preference p. In this case P can safely decide p (Line 5) knowing
that any slower process will switch to the same preference by the time
it catches up.

As a last step, the process checks to see if at least one process with its old
preference has already advanced to the next round. In this case, it discards
its decisions from the current round and sticks with its previous preference;
otherwise, it adopts the new preference it determined in the preceding lines
(Line 6). This avoids a problem where some process P decides p in r, but
a process P ′ with the same preference later sees a tie in r − 1 (after some
other processes catch up with it), executes the shared coin, and suddenly
switches its preference while catching up with P .

Intuitively, agreement holds precisely because of the explanations for
Lines 5 and 6. But a full correctness proof is subtle, and depends among
other things on the precise order in which mark[1− p][r+ 1], mark[1− p][r],
and mark[1 − p][r − 1] are read in Algorithm 3. However, if one accepts
that the algorithm satisfies agreement, it is trivial to see that it also satisfies
validity, because no process every changes its preference unless it first sees
that some other process has a different preferences.

Termination follows from the properties of the shared coin. Note that it is
possible that some processes tied for the lead will skip the coin because they
read mark[1−p][r] just before the others write it. But it is not hard to show
that these processes will at least agree with each other. So the processes that
do participate in the coin will fall into agreement with the non-participants
with at least a constant probability, due to the bounded bias of the coin,
and agreement is reached after a constant number of rounds on average.
Since the overhead of the consensus protocol is small (five operations per
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round in the worst case), the cost is dominated by the cost of the shared
coin protocol.

6.2.2 Bracha and Rachman’s shared coin protocol

We can use any shared coin subroutine we like in Chandra’s protocol; as
discussed previously, the expected cost of the algorithm will be within a
constant factor of the cost of the shared coin, provided the shared coin
guarantees at most constant bias. The most efficient shared coin proto-
col currently known for the strong adversary, when measured according to
expected total work, is Bracha and Rachman’s 1991 voting protocol [22].
Pseudocode for this protocol is given as Algorithm 4.

The intuition behind this protocol is the same as for all voting-based
protocols: The processes collectively generate many “common votes,” which
in this case consist of all votes generated before n2 votes have been written
to the registers. Each process’s view of the common votes is obscured both
by additional “extra votes” that are generated by processes that have not yet
noticed that there are enough votes in the registers, and by the adversary’s
selective removal of “hidden votes” by delaying processes between generating
votes in Line 1 and writing them out in Line 2.7 The reason the protocol
works is that we can argue that the n2 common votes have at least a constant
probability of giving a majority large enough that neither the random drift
of up to n2/ log n extra votes nor the selective pressure of up to n−1 hidden
votes is likely to change the apparent outcome.

Because the extra votes are not biased by the adversary, they are less
dangerous than the hidden votes and we can tolerate more of them. This is
why the protocol can amortize the cost of the n read operations to detect
termination in Line 3 over the n

logn votes generated in the inside loop. This
amortized termination test was the main contribution of the Bracha and
Rachman protocol, and was what finally brought the expected total work
for consensus down to nearly O(n2) from the O(n3) (or worse) bounds on
previous protocols.

In detail, the votes are classified as follows. These classes are not ex-
clusive; a vote that is in either of the first two classes may also be in the
last.

7Our explanation of the Bracha-Rachman protocol follows the analysis of a similar
protocol from [14]. Bracha and Rachman’s original analysis in [22] uses a slightly different
classification that includes common and extra votes but does not separate out the issue
of hidden votes. Their classification requires the analysis of a more sophisticated random
process than the one considered here.
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Input: none
Output: boolean output
Local data: boolean preference p; integer round r; utility variables

c, total, and ones
Shared data: single-writer register r[p] for each process p, each of

which holds a pair of integers (flips, ones), initially
(0, 0)

begin
repeat

for i← 1 to n
logn do

1 c← CoinFlip()
2 r[p]← (r[p].flips + 1, r[p].ones + c)

end
3 Read all registers r[p]

total ←
∑
p r[p].flips

until total > n2

4 Read all registers r[p]
total ←

∑
p r[p].flips

ones ←
∑
p r[p].ones

5 if total
ones ≥

1
2 then

return 1
else

return 0
end

end

Algorithm 4: Bracha and Rachman’s voting protocol. Adapted from
[22], Figure 2.
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1. Common votes consist of all votes generated before the sum of the
r[p].total fields exceeds n2. In a sense, these are all the votes that would
be seen by all processes if they had been written out immediately.
There will be between n2 + 1 and n2 + n such votes.

2. Extra votes for process P are those votes Xi that are not part of the
common votes and that are generated by some process Q before P
reads r[Q] in Line 4. Each process Q contributes at most n

logn such
extra votes, because it cannot generate more without executing the
termination test staring in Line 3. The common votes plus the extra
votes for P include all votes that P would have seen had they been
written out immediately.

3. Hidden votes for P are those votes which were generated by some
process Q but not written to r[Q] when P reads r[Q]. Each process Q
contributes at most one hidden vote for P .

The total vote for P is given by:

(common votes) + (extra votes for P )− (hidden votes for P ).

When the adversary permits a process to flip its coin in Line 1, it is
already determined whether or not that coin-flip will count towards the
common votes or the extra votes for any particular process P . So both the
common votes and the extra votes consist of a sequence of unbiased fair
coins, and the only power the adversary has over them is the choice of when
to stop the sequence.

Using the normal approximation to the binomial distribution, it is pos-
sible to show that the net majority for 1 of the approximately n2 common
votes is at least 3n with some constant probability p. Adding in the n2

logn
extra votes for a particular process P may adjust this total up or down; it
reduces it below n only if at some point during an unbiased random walk
of length n2

logn the total drops below −2n. Standard results8 show that this
probability is bounded by 1

n2 , so even when we multiply the probability for
a single process by the number of processes n, the probability that the extra
votes are less than n for any P is still less than 1

n . We thus have a proba-
bility of at least p

(
1− 1

n

)
that the common votes plus the extra votes for

all P are at least n. Since each P has at most n − 1 hidden votes, each P
then sees a positive net vote and decides 1.

8E.g. [36, Theorem III.7.3].
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The preceding argument shows that when n > 1, all processes decide 1
with at least a constant probability ε = p/2. The case for decision value 0
is symmetric.

The total work of Algorithm 4 is O(n2 log n); there are O(n2) votes cast
by all of the processes together, and each vote has an amortized cost of
O(log n). Plugging the Bracha-Rachman shared coin into Algorithm 3 thus
gives a consensus protocol whose expected total work is also O(n2 log n).

This is the current best known bound on expected total work for wait-
free consensus in the strong-adversary model. Since the Bracha-Rachman
algorithm, the only further improvement in this model has been the Aspnes-
Waarts shared coin [14], which modifies the Bracha-Rachman coin to prevent
any single process from having to perform more than O(n log2 n) work, at
the cost of increasing the total work bound to O(n2 log2 n).

There is still some room left to improve the total work, but not much. We
have previously mentioned the Ω(n2/ log2 n) lower bound on the expected
number of write operations for any wait-free consensus protocol from [10].
The same paper conjectured that the actual lower bound is Ω(n2/ log n).
Using this conjectured lower bound, and throwing in an extra logarithmic
factor for the cost of amortizing reads over coin-flips and writes, a reasonable
guess for the true cost of consensus in this model might be Θ(n2).
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