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o� to do something else). The person chosen by the adversary may call upany one other person (possibly choosing the other person using randomiza-tion) and will learn all the rumors that the other person currently knows.The process continues until all participants know all of the rumors. Our goalis to minimize the total number of steps (i.e., the total number of telephonecalls).One can think of this problem as an asynchronous version of the well-known gossip problem [24]. In the gossip problem, n persons wish to dis-tribute n rumors among themselves; however, which persons communicateat each time is �xed in advance by the designer of the algorithm. By con-trast, in our problem, the choice of who receives information at each time isunder the control of an adversary. Furthermore, the algorithm used by eachprocess to choose where it will look for more information can only make thatchoice based on the information obtained so far.The collect problem. The rumor-spreading problem above is closely re-lated to the collect problem [32]. In the collect problem, each of n processesin a shared-memory system possesses some piece of information, which itstores in one of a set of single-writer multi-reader atomic registers. Wewould like each of the processes to learn the values of all of the others whileperforming as few total read and write operations as possible. Again, weassume that timing is under the control of an adversary scheduler, which hasnear-total knowledge of all events in the system, and which may start andstop processes at will. The essential di�erence between the rumor-spreadingproblem above and the collect problem is that in the collect problem the op-erations of choosing someone to read, reading his or her values, and addingthem to one's own register do not take place as a single atomic action.The description above is of the simplest version of the collect problem, inwhich all values are present at the start and each process gathers the valuesonly once. For this version of the problem, the naive solution is to have eachof the n processors read each of the n registers directly, for a total cost ofn2 operations. However, the naive solution is not the best possible, as pro-cessors can learn values indirectly from other processors, thus sharing thework of reading the registers. Indeed, Saks, Shavit, and Woll [32] describea collect algorithm that �nishes quickly when most processors are runningconcurrently, and Ajtai et al. [3] observed that the Certi�ed Write-All al-gorithm of Anderson and Woll [5] could be modi�ed in a straightforwardway to solve the collect problem in O(n3=2 logn) total operations. This is2



a substantial improvement on an upper bound of n2, but still far from thebest known lower bound of 
(n logn) [3].Repeated collects. The collect problem is motivated by its frequent ap-pearance in other algorithms. Many algorithms in the wait-free shared-memory model [1, 2, 4, 6, 7, 8, 9, 12, 13, 15, 16, 17, 19, 20, 21, 22, 23, 27, 25,26, 28, 29, 30, 34] have an underlying structure in which processes repeat-edly collect values using the cooperative collect primitive. In the cooperativecollect primitive, �rst abstracted by Saks, Shavit, and Woll [32], processesperform the collect operation { an operation in which each process learnsthe values of a set of n registers, with the guarantee that each value learnedis fresh: it was present in the register at some point during the collect. Ina sense the cooperative collect primitive is a multi-use version of the simplecollect problem, with the added di�culty of guaranteeing freshness.Interestingly, most of these algorithms (which include nearly all algo-rithms in the wait-free shared-memory literature for consensus, snapshots,coin ipping, bounded round numbers, timestamps, and multi-writer regis-ters) use the naive algorithm for performing collects in which each processorreads every register directly, at a cost of n reads per collect.1 One reason(beyond the simplicity of the naive algorithm) may be that if one consid-ers the performance of collect algorithms in traditional worst-case terms,the naive algorithm appears to be optimal: since the adversary can alwayschoose to halt all but one of the processors, that lone processor running inisolation cannot carry out a collect without reading all the other processor'sregisters.Competitive collect algorithms The apparent optimality of the naivealgorithm for repeated collects is surprising given the superior performanceof other algorithms for the one-time collect problem. Indeed, one wouldexpect that an algorithm that solved the one-time problem quickly couldbe extended to an algorithm that would give better performances in manycircumstances. Ajtai et al. [3] provided a tool, known as latency compet-itiveness, that can be used to show the superiority of more sophisticatedalgorithms. In their model the performance of a distributed algorithm is1[32, 31] present collect algorithms that do not follow the pattern of the naive algorithm.Both works, however, consider models that involve considerably stronger assumptions thateither the standard wait-free shared memory model or the slightly weaker model consideredhere. 3



not measured in absolute terms against the worst possible schedule, but in-stead is measured on each schedule relative to the performance of anotherdistributed algorithm chosen to be optimal for that schedule. In order tohave good latency competitiveness, an algorithm must not only perform ac-ceptably in hard situations (for collect, this is generally when there is littleor no concurrency) but must also perform well in easy situations. More de-tails of the latency competitiveness measure, and of the related throughputcompetitiveness measure [10], can be found in Sections 4.1 and 4.2.1.1 Our resultsWe describe (Section 2) an algorithm for the rumor-spreading game whichrequires only O(n log2 n) steps with high probability, slightly more than thelower bound of 
(n logn). Based on this algorithm, we construct (Sec-tion 3) a randomized algorithm for the collect problem that requires onlyO(n log3 n) steps with high probability; the extra O(logn) factor comesfrom the technique we use to simulate an atomic transfer of informationfrom one processor's register to another's. This is the �rst solution to theproblem that comes within a polylogarithmic factor of the lower boundof 
(n logn). Furthermore, we show (Section 4) that our algorithm canbe extended in a natural way to yield an implementation of the coopera-tive collect primitive that is O(log3 n)-competitive in the latency model andO(pn log3=2 n)-competitive in the throughput model. Both of these ratiosare also within a polylogarithmic factor of the best known lower bounds, andsubstantially improve on the best previously known ratios of O(pn logn) [3]and O(n3=4 logn) [10].1.2 The modelAll of our results are carried out in a model where the algorithm is allowedto generate a random value and write it out as a single atomic operation.This assumption appears frequently in early work on consensus; it is the\weak model" of Abrahamson [1] and was used in the consensus paper ofChor, Israeli, and Li [19]. In general, the weak model in its various incar-nations permits much better algorithms (e.g., [11, 18]) for such problems asconsensus than the best known algorithms in the more traditional \strongmodel". The assumption that the adversary cannot see coin-ips before theyare written is justi�ed by an assumption that in a real system failures, pagefaults, and similar disastrous forms of asynchrony are likely to be a�ected4



by where each processor is reading and writing values but not by what valuesare being read or written.It is not clear whether this assumption can be removed while still per-mitting an O(n logc n) solution to the collect problem.2 Spreading rumorsRecall from the introduction that in the rumor-spreading problem a pro-cessor may choose what processor it will read, read that processor's state,and add the information thus obtained to its own visible state as a singleatomic operation. The algorithm we analyze in this case is deceptively sim-ple: when a processor a is chosen to move by the adversary, it reads from aprocessor b chosen uniformly at random from the set of all n processors. (Itis possible that b = a.) We will refer to one of these atomic operations as amove.Intuitively it seems unlikely that this is the best algorithm. For example,if a has obtained the information from n � 1 processors, it is clear thata should examine the sole processor whose information a does not alreadypossess. Also if b = a then no information can possibly be gained. But thisalgorithm has the great advantage that it is impossible for the adversary tobias a's selection of b. This makes it much easier to analyze the performanceof this algorithm than it otherwise might be.Some notation: in the following, we will use KPt for the set of rumorspossessed by processor P at time t. We will say that a processor P knows aset of rumors S at time t when S � KPt . The e�ect of P reading Q at timet is to set KPt+1 to KPt [KQt .Let us look at some set of rumors S and consider how they spread throughthe processors. For each S, we will divide moves into two classes:� Moves by processors that already know S. We will call these movesunproductive (with respect to S).� Moves by processors that do not already know S. We will call thesemoves productive (again, with respect to S).Where it will not cause confusion we will omit a speci�c reference to S.Note however that a move might be unproductive with respect to some Sbut productive with respect to a di�erent S0.5



The following lemma shows that, with high probability, the informationknown by any single processor spreads to all of the processors after onlyO(n logn) productive moves:Lemma 1 Fix a starting time s and let S = KPs . Let T be the numberof productive moves after s before every processor knows S and let k be apositive constant. Then Pr[T � kn lnn] � 1nk�3Proof: If r processors know S prior to a productive call, then the probabil-ity that r+1 processors know S after the call is r=n. Thus the total waitingtime T is given by the sum of a set of independent, geometrically distributedrandom variables T1; T2; : : : ; Tn�1 with expectations n; n=2; : : : ; n=(n � 1).This gives a total expected time of nPn�1i=1 1i which is approximately n ln n.However, we wish to establish a stronger claim, by bounding the tail of thissum's distribution. We do this by using moment generating functions. Lett > 2n� 2 and de�ne d and c byd = nn � 1 � t� n+ 1t� n+ 2 and c = ln d:The lower bound on t ensures that d > 1 and so c > 0. Because c > 0 wehave by Markov's inequality thatPr[T � t] = Pr[ecT � ect] � E[ecT ]ect :Since the Ti are independentE[ecT ] = E[n�1Yi=1 ecTi ] = n�1Yi=1 E[ecTi ]:We can evaluate E[ecTi ] directly. Let p = i=n and q = 1 � i=n. Becauseqec = qd < 1 we get,E[ecTi] = p 1Xj=1 qj�1ecj = pec 1Xj=0(qec)j = pec1� qec = pd1� qd:6



Thus Pr[T � t] � 1dt n�1Yi=1 ind1� (1� in)d= 1dt n�1Yi=1 idid+ n � dn= (n� 1)!dt�n+1 n�1Yi=1 1id+ n � dn:Because 1 < d < n=(n� 1) we have that when 1 < i < n,1id+ n � dn < n� 1in+ n(n � 1)� n2 < 1i� 1 :Hence Pr[T � t] � (n� 1)!dt�n+1 � 1d+ n � dn � 1(n� 2)!= n � 1dt�n+1(d+ n� dn) :Let s = t� n + 1. Then Pr[T � t] � (n� 1)d�sn� d(n� 1)Let � = s=(n lnn). ThenPr[T � t] � n� 1n �n � 1n ��n lnn �s + 1s �s (s+ 1)� n��e(�n lnn+ 1):Now let t = kn ln n for k some positive constant. Then k � � � k � 1.Assuming that n is large enough that n2 � e(kn lnn+ 1) we concludePr[T � kn lnn] � 1nk�3 (1)7



What Lemma 1 tells us is that with high probability, after kn lnn pro-ductive movesKPs will spread to all of the processors. Thereafter any furthermoves must be unproductive moves. So if 3kn lnn moves are performed, atleast 23 of them are unproductive | in other words, most of these 3kn lnnmoves are made by processors that know KPs . That this intuition is truesimultaneously for all P with high probability is captured in the followinglemma:Lemma 2 Let s be a time and let t = s + 3kn lnn. For each processor Pand time t0, let V Pt0 be the set of processors Q for which KQt0 � KPs . (ThusV Pt will consist of all processors that know after an interval of 3kn lnn stepseverything that P knew at the beginning.) For any set of processors A, de�new(A) to be the number of moves made by processors in A between s and t.Then Pr[9P w(V Pt ) < 2kn lnn] � 1nk�4Proof: The proof works by showing an upper bound on the number ofmoves not done by processors in V Pt . Let V Pt be the complement of V Pt .Since any processor in V Pt does not know KPs at time t, it cannot haveknown KPs at any time before t, and thus all of its moves prior to t areproductive moves with respect to KPs . Using Lemma 1 we getPr[w(V Pt ) � kn lnn] � 1=nk�3:Thus: Pr[9P w(V Pt ) < 2kn lnn] � nXi=0Pr[w(V Pt ) < 2kn lnn]= nPr[w(V Pt ) � kn lnn]� 1nk�4Because it is likely that V Pt and V Qt both do at least 23 of the work, itis likely that these sets overlap for any P and Q, i.e. that the informationknown by any pair of processors at time s is known to a single processor attime s+ 3kn lnn:Corollary 3 Using the notation of Lemma 2,Pr[9P;Q V Pt \ V Qt = ;] � 1=nk�4:8



Proof: Suppose w(V Pt ) � 2kn lnn and w(V Qt ) � 2kn lnn Thenw(V Qt ) < kn ln n and so V Pt 6� V Qt implying that V Pt \V Qt 6= ;. By Lemma 2the probability that the supposition does not hold is at most 1=nk�4. Theresult follows.In particular, if at time s there is some set A of r processors that be-tween them know all the rumors (i.e., SP2AKPs � SP KP0 ), then at times + 3kn lnn there will be a set of dr=2e processors that between them knowall the rumors. Initially there are n processors that between them know allthe rumors. Therefore after at most 1 + log2 n intervals of length 3kn lnnthere will be a single processor that knows all of the rumors, i.e. one thathas completed its task.The adversary cannot move a processor that knows everything, so allmoves made after a processor has completed are necessarily made by pro-cessors that have not completed. So applying Lemma 1 shows that afterkn ln n additional moves every processor will know everything with highprobability. In summary we have the following:Theorem 4 Let n be at least 3, let k be some constant, and let the adversaryand processors behave as described earlier in this section. Let c = 3(log2 e+1) = 7:32 � � �. Then the probability that there is a processor that does notknow every rumor after ckn ln2 n moves is at most 1nk�5 .Proof: Start with (1+log2 n) intervals of length 3kn lnn. During each oneof these intervals, the size of the smallest set of processors that collectivelyknow all the rumors halves, except for a \failure case" whose probability isat most 1nk�4 (from Corollary 3). If no failures occur, at the end of these(1+ log2 n)(3kn lnn) steps some single processor knows all the rumors. Theprobability that the rest of the processors fail to learn all the rumors afteran additional kn lnn steps is at most 1nk�3 by Lemma 1.Summing up the all the steps gives 4kn lnn + 3 log2 ekn ln2 n, which isless than ckn ln2 n since n � 3. Summing up the probabilities of failure gives(1 + log2 n) 1nk�4 + 1nk�3 , which is less than n � 1nk�4 = 1nk�5 , again providedn � 3.Note that the requirement that n be at least 3 is not very con�ning; ifn is two or less each processor can complete its collect with a single read.9



3 The collect problemIn the rumor-spreading problem we assumed that all of the knowledge ofany particular processor was available to any other processor that wished toread it. In the collect problem this is not the case; the adversary can stopa processor in between reading new information from another processor'sregister and writing that information to its own register. Furthermore, weallow the adversary to stop a processor between making a random choice ofwhich register to read and the actual read operation. (This rule correspondsto an assumption that not all reads are equal; some might involve cachemisses, network delays, and so forth.) However, as mentioned in Section 1.2,we will permit a processor to make a random choice and write the result ofthis choice to its own register as an atomic operation. (This rule correspondsto an assumption that the timing of a write is not a�ected by the value beingwritten.)Overall, the approach will be similar to that taken for the rumor-spreading problem. But it is no longer enough for each processor to simplykeep reading randomly selected registers. An adversary strategy that de-feats this simple algorithm is to make one of the registers a \poison pill":any processor that attempts to read this register will be halted. Since onaverage only one read out of every n would attempt to read the poisonedregister, close to n2 reads would be made before the adversary would beforced to let some processor actually swallow the poison pill.We will avoid this problem by having each processor use the followingalgorithm, which we call \Follow the Bodies." The essential idea is thatbefore attempting to read a register, a processor will leave a note sayingwhere it is going;2 poison pills can thus be detected easily by the trail ofcorpses leading in their direction. The distance that a processor will pursuethis trail will be � lnn, where � is constant chosen to guarantee that theprocessor reaches its target with high probability.In the pseudocode given below, we assume that each processor stores inits output register both the set of values S it has collected so far and itssuccessor, the processor it selected to read from most recently.� While some values are unknown:{ Set p to be a random processor, and write out p as our successor.(We will call this the selection step).2It is here that we use the assumption that we can ip a coin and write the outcomeatomically. 10



{ Repeat � lnn times:� Read the register of p. Set S to be the union of S and thevalues �eld. Set p to the successor �eld.� Write out the new S.We would like to prove an analogue of Lemma 2 for this more sophis-ticated algorithm. Let us �x a starting time s. For each processor P andtime t � s, de�ne UPt recursively as follows. Let UPs = fPg. If at time t, aprocessor Q chooses a processor in UPt , then UPt+1 = UPt [ fQg; otherwiseUPt+1 = UPt . Note that the sets UPt are built up by exactly the same randomprocess as the sets V Pt de�ned in Lemma 1, and so we can use Lemma 1to show a high-probability bound on how many times the selection step canbe executed by a processor not already in UP . This bound translates into abound on the number of operations because the number of operations exe-cuted by any processor is at most 2� lnn + 1 times the number of times itexecutes the body of the outer loop, i.e., the number of times the selectionstep is executed.However, it is not enough to show that many processors will be in UP ;we must also show that these processors will eventually follow the trail ofsuccessor �elds to obtain KPs . To show this fact we view UPt as a rootedtree, whose root is the original node P . As each new node a is added to UPit must select one of the processors b already in UP ; in this case we draw anedge between a and b. Notice that (conditioning on the fact that a selects aprocessor already in UP ) the processor b is chosen uniformly from the nodesalready in UP . In Section 3.1 we investigate the random variable Mx, whichis de�ned to be the depth of a tree containing x + 1 nodes generated inprecisely this fashion. We prove (equation (10)):Lemma 5 Let � � 2, thenPr[Mx�1 � � lnx] � 1x� ln����1Intuitively, the depth of the tree is likely to be bounded by the logarithmof its size because on average the i-th node to be added to the tree will chooseas a parent the (i=2)-th node. The importance of bounding the depth of thetree is that it gives an immediate bound on the length of a trail that anyprocessor in UP must follow to learn KPs :Lemma 6 Suppose that the depth of the UP tree does not exceed � lnn. LetQ be a processor that has completed the inner loop following its �rst selectionof a processor in UP . Then Q knows KPs .11



Proof: The result follows by induction on the size of UP . If Q is a pro-cessor newly added to UP , either Q successfully follows a chain of successoredges until it reaches P , or at some point it follows an edge leaving someprocessor R that is not an edge in UP . But then R must have chosen a newsuccessor after its entry into UP and thus must have completed its innerloop following its entry into UP . It follows by the induction hypothesis thatR knows KPs , and thus Q learns it when it reads R's register.Now we have the following extension of lemma 2.Lemma 7 Let the powers of the adversary and the algorithms of the pro-cessors be as de�ned earlier in this section. Fix a starting time s, lett = s + 3(kn lnn + n)(2� lnn + 1), and de�ne V Pt as the set of proces-sors that know KPs at time t and w(A) to be the total number of operationsexecuted by processors in A between s and t. ThenPr[9P w(V Pt ) � 2(kn lnn + n)(2� lnn+ 1)] � 1nk�4 + 1n� ln����2Proof: We use an argument similar to that used for Lemma 2. Sup-pose that w(V Pt ) � (kn lnn + n)(2� lnn + 1). Then by Lemma 1 after(kn lnn)(2� lnn+1) operations every processor in V Pt is in UP . So by Lem-mas 5 and 6 after the remaining n(2� lnn+ 1) operations all n of them willhave followed their trails back and read the information. The probability ofthese events not occuring for some P is the value given in the statement ofthe lemma.This lemma can be used in exactly the same way as in Section 2 to provethe following theorem:Theorem 8 Let k; � be constants, k � 1, � � 2, and let the adversary andprocessors behave as described earlier in this section. Assume that n � 3and let c = 37. Then the probability that the cooperative collect is incompleteafter c�kn ln3 n moves is at most 1nk�5 + 1n� ln ����3 .Proof: The argument is essentially the same as used for Theorem 4. Theresulting cost is given by3(kn ln+n)(2� lnn + 1)(log2 n + 1)which is at most 37k�n ln3 n under the assumptions (needed for the lemmas)that k � 1 and � � 2, and the further assumption that n � 3 > e (implyingln3 n > ln2 n > ln n). 12



In particular if we take k = � � 9 we can combine the terms in theprobability bound to get as a special case that the probability that the co-operative collect is incomplete after ck2n ln3 n moves is at most 2nk�5 (wherec = 37 as in the theorem).3.1 Proof of Lemma 5In this section we investigate the expected depth of a rooted tree which isbuilt by adjoining each new vertex to one of the existing vertices chosen atrandom. We will show that with high probability the depth of the tree of ivertices is at most O(log i).Let Ti be a random variable whose value is a rooted tree with i+ 1 ver-tices, including the root vertex. So T0 consists of the root vertex only. LetTi+1 be de�ned by uniformly selecting one of the i + 1 vertices in Ti andattaching a new vertex to the selected vertex.De�ne random variables Di to be the depth of the ith vertex, where theroot has depth �1, a vertex adjacent to the root has depth 0 and so on. LetMi be the depth of the tree Ti, soMi = maxj�i Dj:Now de�ne indicator variables for i � 0, d � �1,Xi d = ( 1 if Di = d0 otherwiseLet xi d = Pr[Di = d] = Pr[Xi d = 1] = E[Xi d].From the construction of the tree we have for i � 1 and d � 0Pr[Xi d = 1] = 1i i�1Xj=0Xj d�1:Taking expectations we getE[Xi d] = 1i i�1Xj=0E[Xj d�1]:So the xi d are de�ned by the recurrence equationxi d = 8><>: 1i Pi�1j=0 xj d�1 if i � 1 and d � 01 if i = 0 and d = �10 otherwise. (2)13



From (2) we can derive two further recurrence equations, for i � 1, d � 0xi d = i� 1i xi�1 d + 1i xi�1 d�1 (3)and xi d = 1i X0<i1<i2<:::<id<i dYj=1 1ij : (4)Now we can use (3) to �nd the expectation of Di, sinceE[Di] = 1Xd=0 dxi d = 1X0 d�i� 1i xi�1 d + 1i xi�1 d�1�= i� 1i 1X0 dxi�1 d + 1i 1X1 (d� 1)xi�1d�1 + 1i 1X1 xi�1 d�1= i� 1i E[Di�1] + 1i E[Di�1] + 1i � 1= E[Di�1] + 1iSince E[D0] = �1 we get E[Di] = iXj=2 1j � ln i (5)This shows that in a tree with r vertices the expected depth of any particularvertex is at most ln r, which suggests that the expected depth of the entiretree is also of the order of ln r. To prove this we will need to get an upperbound on xi d.By comparing the identity0@i�1Xj=1 1j1Ad � i�1Xi1=1 i�1Xi2=1 � � � i�1Xid=1 dYj=1 1ijwith (4) we see that0@i�1Xj=1 1j1Ad = ixi dd! + terms involving squares. (6)Hence xi d � �Pi�1j=1 1j �di � d! � (1 + ln(i� 1))di � d! (7)14



In fact we can show that as i ! 1, xi d ! lnd i=(id!). That is, the Diare asymptotically Poisson distributed with parameter ln i.Let h = d= ln i. Then using Stirling's formula we have(1 + ln i)dd! = �dh�d �1 + hd�dd! � 2�dh�d ehd!� 2ehp2�d �dh�d �ed�d � eheh(1�lnh) ln i� 1ih lnh�h�1 (8)assuming that i � 3. Let k � 2. By combining (7) and (8) we obtainxi d � 1ik lnk�k provided i � 3 and d � k ln i (9)Suppose Mt � d for some t and d. If there is a node with depth biggerthan d there must be a node of depth exactly d. Thus using (2) we havethat Pr[Mt � d] �Xi�t Pr[Di = d] =Xi�t xi d = (t+ 1)xt+1d+1:So by applying (9) we can conclude since k � 2Pr[Mt�1 � k ln t] � 1tk lnk�k�1 (10)In particular if k � 9 we have that k ln k � k � 1 � k soPr[Mt�1 � k ln t] � 1tk for k � 9: (11)4 Repeated collectsIn this section we consider an extension of the algorithm from Section 3,which implements the cooperative collect primitive. For this primitive, aprocessor must not only be able to collect a set of values that are initiallypresent in the registers; it must also be able to repeatedly carry out collectoperations that gather n new values that are guaranteed to be fresh in thesense that they were present in the registers at some time during the collectoperation. 15



Our algorithm ensures freshness by a simple timestamp scheme. Uponstarting a collect a processor writes out a new timestamp. Timestampsspread through the processor's registers in parallel to register values. Whena processor reads a value directly from its original register, it tags that valueby the most recent timestamp it has from each of the other processors. Thusif a processor sees a value tagged with its own most recent timestamp, itcan be sure that that value was present in the registers after the processorstarted its most recent collect, i.e. that the value is fresh.The algorithm can be summarized as follows. Below, S tracks the setof values (together with their tags) known to the processor. The array Tlists each processor's most recent timestamps. Both S, T , and the currentsuccessor are periodically written to the processor's output register.� Choose a new timestamp � and set our entry in T to � .� While some values are unknown:{ Set p to be a random processor, write out p as our successor andT as our list of known timestamps.{ Repeat � lnn times:� Read the register of p. Set S to be the union of S and thevalues �eld. Update T to include the most recent timestampsfor each processor. Set p to the successor �eld.� Write out the new S and T .� Return S.We can characterize the performance of this algorithm by describing itscollective latency [3], an upper bound on the amount of work needed tocomplete all collects in progress at some time t:Theorem 9 Fix a starting time s. Let k, �, n, and c be as in Theorem 8.Each process carries out a certain number of steps between s and the timeat which it completes the collect it was working on at time s. Let T be thesum over all processors of these numbers. ThenPr[T > 2c�kn ln3 n] � 2� 1nk�5 + 1n� ln����3� : (12)16



Proof: Divide the steps contributing to T into two classes: (i) steps takenby processors that do not yet know timestamps corresponding to all of thecollects in progress at time s; and (ii) steps taken by processes that know alln of these timestamps. To bound the number of steps in class (i), observethat the behavior of the algorithm in spreading the timestamps during thesesteps is equivalent to the behavior of the algorithm in Section 3. Similarly,steps in class (ii) correspond to an execution of the algorithm in Section 3when we consider the spread of values tagged by all n current timestamps.Thus the total time for both classes of steps is bounded by twice the boundfrom Theorem 8, except for a case whose probability is at most twice theprobability from Theorem 8.It is important to note that the probability bound given in the abovetheorem does not depend on the state of the protocol at time s, thoughobviously if many collects are nearly �nished at time s, the collective latencywill in fact be lower.For some applications it is more convenient to have a bound on theexpected collective latency:Corollary 10 The expected value of T as de�ned in Theorem 9 isO(n log3 n).Proof: Fix constants k, � large enough that the probability on the right-hand side of (12) is bounded above by some constant p. Then for eachm the probability that T exceeds m � 2c�kn ln3 n is at most pm, and thusE[T ] � 1p2c�kn ln3 n = O(n log3 n).Having a bound on the collective latency of our repeated-collect algo-rithm is important because it allows us to show that the algorithm is com-petitive against other distributed algorithms. The competitive ratio that weobtain depends on the particular competitive model chosen; there are twonatural possibilities for the collect problem, described in the following twosections.4.1 Latency competitivenessThe competitive latency model of Ajtai et al. [3] is a mechanism for ap-plying the technique of competitive analysis, originally developed to dealwith the unknown sequences of user inputs in on-line algorithms [33], tounknown patterns of system behavior as found in fault-tolerant distributed17



Figure 1: Latency model. New high-level operations (ovals) start at timesspeci�ed by the scheduler (vertical bars). Scheduler also speci�es timing oflow-level operations (small circles). Cost to algorithm is number of low-leveloperations actually performed (�lled circles).
Figure 2: Throughput model. New high-level operations (ovals) start assoon as previous operations end. Scheduler controls only timing of low-level operations (�lled circles). Payo� to algorithm is number of high-leveloperations completed.algorithms. In the context of the repeated collect problem, it is assumedthat the adversary controls the execution of an algorithm by generating(possibly in response to the algorithm's behavior) a schedule that speci�eswhen collects start and when each processor is allowed to take a step (seeFigure 1. A processor halts when it �nishes a collect; it is not charged foropportunities to take a step in between �nishing one collect and startinganother (intuitively, we imagine that it is o� doing something else). Thecompetitive latency of a candidate algorithm is the least constant k, if any,that guarantees that the expected total number of operations carried outby the candidate on a given schedule � is at most k times the cost of anoptimal distributed algorithm (called the champion by [3]) running on the18



same schedule.Ajtai et al. show that if an algorithm has a maximum collective latencyof L at all times, then its competitive ratio in the latency model is at mostL=n + 1. Unfortunately, this result is stated only for deterministic algo-rithms, and in any case the upper bound on the collective latency of ouralgorithm is only a high-probability guarantee and not absolute.However, as we show below, the proof in [3] of the relationship betweencollective latency and competitive latency does not really depend on thesedetails, and works equally well to bound the expected latency competitive-ness of a randomized algorithm given a bound on the expected collectivelatency.Theorem 11 The expected competitive latency of the repeated collect algo-rithm is O(log3 n).Proof: The proof is essentially identical to the proof in [3], except that anabsolute bound L on the total work done to �nish any collects in progress atany given time must be replaced by a bound on the expected work. We willassume without loss of generality that the adversary has chosen some �xedstrategy, and that all expectations and probabilities are conditioned on theadversary following this strategy.In [3] it is shown that any schedule can be divided into a sequence ofintervals I1; I2; : : : Ik such that:1. In the optimal champion algorithm, at least n operations are per-formed during each interval except the last.2. In the candidate algorithm, at most n operations are performed duringIj (where j < k) as part of collects that start during Ij . (Additionalwork may be done during Ij to �nish collects that started earlier, butthis work will be charged to earlier intervals as described below.)3. In the last interval Ik, all algorithms perform the same number ofoperations m � n as part of collects starting in Ik .Note that with a randomized candidate algorithm, k, m, and the end-points of the intervals are all random variables that depend on the candidatealgorithm's random choices and the adversary's response to them. So in or-der to use the above facts to show an L=n + 1 ratio for the competitivelatency, we must be very careful about issues of dependence.19



Let Xj be the indicator variable for the event that k is greater than j,i.e., for the event that Ij is an interval in which the champion does at leastn work. Then the cost of the champion algorithm is at least nPjXj +m,where m is the random variable corresponding to the work done in the lastinterval Ik .To bound the cost of the candidate, consider the total work performedas part of collects starting in some interval Ij where j < k (i.e., Xj = 1).At most n work is performed as part of these collects during Ij . FromTheorem 9, the expected additional work done by these collects after theend of Ij is L = O(n log3 n). This expected value is conditioned on the factthat Xj = 1, but it is not otherwise a�ected by the fact that Xj = 1 sincethe determination that Xj = 1 occurs before the end of the interval Ij . Onthe other hand, if Xj = 0, no work is done after Ij on behalf of collectsstarting in Ij . So in either case we have that the expected work done aspart of collects starting in Ij , conditioned on Xj, is at most (n+ L)Xj . Inaddition, there will be a cost of m for work done in the last interval Ik.Summing over all j and taking expectations then shows that the expectedwork of the champion is at least nE[Pj Xj ]+E[m] while the expected workof the candidate is at most (n+ L) E[Pj Xj ] + E[m]. Since E[m] is at mostn, we can absorb it into the additive constant and the ratio between theremaining terms, giving the competitive latency, is (n+ L)=n = L=n+ 1.For the Follow-the-Bodies algorithm, L = O(n log3 n), so the competitivelatency L=n+ 1 is O(log3 n) as claimed.Since the lower bound on the cost of the champion is a function only ofthe structure of the schedule, the theorem holds even against an adaptiveo�-line adversary [14], which is allowed to choose the champion algorithmafter seeing a complete execution of the candidate.4.2 Throughput competitivenessMore recently, Aspnes and Waarts [10] have proposed a di�erent measurefor the competitive performance of a distributed algorithm. This measure,which they call the competitive throughput, removes the adversary controlover the starting times of collects; instead, both the candidate and the cham-pion try to complete as many collects as possible in the time available (seeFigure 2). It also distinguishes between the schedule (the timing of events inthe system), which is shared between a candidate algorithm and the cham-pion it is competing against, and the input (the speci�cation of what tasks to20



perform), which is assumed to be worst-case for the candidate and best-casefor the champion. (In analyzing just the cooperative collect primitive, theinput is irrelevant since the cooperative collect algorithm can only performone type of task). The throughput competitiveness is a bound on the ratioof the number of high-level tasks (e.g., collects) completed by the championto the number of high-level tasks completed by the candidate.The motivation for these changes from the earlier latency model is thatthey permit competitive algorithms to be constructed modularly; they allowthe competitive ratio of a subroutine and a function that calls it to becomputed separately, with the competitive ratio of the combined algorithmsimply being the product of the ratios of its components.Unfortunately, the throughput model does not permit as good a compet-itive ratio for cooperative collect as the latency model: Aspnes and Waartsgive a lower bound of 
(pn). However, it is an indication of the merits ofour algorithm that (with a slight modi�cation) it comes very close to thisbound. Again, the key property is its low collective latency. By havingeach processor alternate between running one step of our algorithm and onestep of the naive algorithm that simply reads all registers directly, we getan algorithm whose collective latency is still O(n log3 n) and which guaran-tees to �nish any single processor's collect in at most 2n work done by thatprocessor. In [10] it is shown that any algorithm with a collective latencyof L and an absolute bound of 2n operations on any single collect will havea competitive ratio of at most 4pL+ 2n; as with the competitive latencybound, this bound is stated only for deterministic algorithms, but with a bitof tinkering its proof can be made to apply to our algorithm as well. Theresult is:Theorem 12 The expected competitive throughput of the repeated col-lect algorithm, modi�ed so that no collect takes more than 2n steps, isO(n1=2 log3=2 n).Proof: The proof is a straightforward modi�cation of the proof given fordeterministic algorithms in [10]. We will give the outline of that proof below(much of which is taken from [10]), indicating where it must be modi�ed todeal with a randomized algorithm. As in the proof of Theorem 11, we willassume without loss of generality that the adversary has chosen some �xedstrategy, and that all expectations and probabilities are conditioned on theadversary using this strategy.The key idea is to de�ne a potential function T called the fractionalthroughput. The fractional throughput is the sum of two terms for each21



process that can be thought of as measuring how much each step uses up ofthe bound L of the collective latency and of the bound 2n on the process'sown maximum cost per collect.The potential function is given in two parts corresponding to these twodi�erent bounds. Write Cp(t) for the �rst part (the fractional collectivethroughput) charged to a process p at time t. Set Cp(0) = 0. Suppose someprocess q (possibly equal to p) performs a step at time t as part of a collectoperation C. Then Cp(t) = Cp(t� 1) + 1L+2n if at least one of the followingholds:1. p is performing a collect operation that started no earlier than Cstarted;2. This step of q is the last step it performs before p starts a new collectoperation; or3. This step of q is the �rst step it performs after the last collect com-pleted by p.If none of these conditions hold, then Cp(t) = Cp(t� 1).Write Pp(t) for the second part (the fractional private throughput). Thisterm is de�ned to be the number of steps carried out by p up to and includingtime t, divided by 2n.The fractional throughput T (t) is given by Pp 12(Cp(t) + Pp(t)). In [10]it is shown that:1. For a deterministic algorithm with collective latency L, at least T (t)�ncollect operations have �nished by t.2. In any interval during which n steps are carried out by m processes,T rises by at least 14 + m24(L+2n) . (Sketch of proof: each of the n stepscontributes 12n to Pp for some p; and for each of the roughly m2=2pairs of not necessarily distinct active processors p and q, each stepcontributes 1L+2n to either Cp or Cq. These contributions do not de-pend on the behavior of the algorithm but only on the de�nitions ofPp and Cp, and so are not a�ected by using a randomized algorithm.)3. No algorithm completes more than m collects in any interval in whichn steps are carried out by m processes. (Proof: at most m processes�nish collects during the interval since �nishing a collect requires atleast one operation; but no process �nishes two consecutive collectsduring the interval because at least n reads are needed between them.)22



The last two facts are then used to show that the ratio between the rise inT between the start and end of the execution and the number of collectscompleted by a champion algorithm is at least 14pL+2n , which implies thefull claim for deterministic algorithms using the relation between T and thenumber of completed collects given by the �rst fact. Since the bound onthe ratio between T and the champion's payo� does not depend on having adeterministic candidate algorithm, we can still use it. But it is not immediatethat we can still use T � n as a lower bound on the expected number ofcollects completed by a randomized algorithm.It is necessary to look closely at the proof that T � n is a lower boundon the number of collects. In [10] it is shown that Tp = 12(Cp+ Pp) rises byat most 1 during any single collect operation carried out by p. We will showthat the expected increase in 12(Cp+ Pp) during any single collect is at most1, provided we are using a candidate algorithm whose expected collectivelatency is bounded by L.Let Sk be the starting time of p's k-th collect. For a randomized al-gorithm Sk is a random variable, and we will set it to in�nity if p startsfewer than k collects. We would like to show that Tp(Sk+1) � Tp(Sk) � 1,conditioned on Sk being �nite. To do so, observe �rst that Pp (which countsthe number of steps taken by p, divided by 2n) rises by at most 1 duringany single collect, because no collect operation takes more than 2n steps.To show a bound on the rise in Cp, note that there are three categories ofsteps that can increase Cp by 1L+2n :1. All steps that a process q (possibly equal to p) performs between Skand Sk+1 as part of a collect that started before Sk. There is atmost one such collect for each q and the expected total work requiredfor these collects is at most L. (Note that conditioning on Sk being�nite does not a�ect this bound, because the fact that Sk is �nite isdetermined before the starting time Sk, and the bound depends onlyon events after Sk.)2. The last step that each process q performs before Sk. There are atmost n such steps (one for each process).3. The �rst step, if any, that each process q peforms between the time atwhich p �nishes the collect starting at Sk and the time Sk+1. Again,there are at most n such steps.Summing over all three categories gives at most L + 2n steps on average,each of which raises Cp by 1L+2n . Thus the expected increase in Cp is at23



most 1, and since Tp is the average of Cp and Pp, the expected value ofTp(Sk+1)� Tp(Sk) is also at most 1.The bound on the increase in Tp is conditioned on Sk being �nite. IfSk is in�nite, p performs no k-th collect, and Tp(Sk+1)� Tp(Sk) = 0. If welet Xk be the indicator variable for the event that p starts its k-th collect,the conditional expectation E[Tp(Sk+1)�Tp(Sk)jXk] is at most Xk. Takingexpectations of both sides gives E[Tp(Sk+1) � Tp(Sk)] � E[Xk]. Summingover all k on both sides thus shows that the expected value of E[Tp(1)]is a lower bound on the expected number of collects started by p, and asecond summation shows E[T (1)] is a lower bound on the expected numberof collects started by all processes. But we know from [10] that T (1) isat least 14pL+2n times the number of collects completed by the championin any schedule, so E[T (1)] is at least 14pL+2n times the expected num-ber of collects completed by the champion. Thus the expected competitivethroughput of an algorithm with expected collective latency L is at most4pL+ 2n.For the modi�ed Follow-the-Bodies algorithms, L = O(n log3 n), so theexpected competitive throughput is O(n1=2 log3=2n).References[1] K. Abrahamson. On achieving consensus using a shared memory. InProc. 7th ACM Symposium on Principles of Distributed Computing,pp. 291{302, August 1988.[2] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit.Atomic snapshots of shared memory. Proc. 9th ACM Symposium onPrinciples of Distributed Computing, pp. 1{13, 1990.[3] M. Ajtai, J. Aspnes, C. Dwork, and O. Waarts. A theory of competitiveanalysis for distributed algorithms. In Proc. 33rd IEEE Symposium onFoundations of Computer Science, pp. 401{411, November 1994. Fullversion available.[4] J. Anderson. Composite registers. Proc. 9th ACM Symposium on Prin-ciples of Distributed Computing, pp. 15{30, August 1990.[5] R. Anderson and H. Woll. Wait-free parallel algorithms for the Union-Find Problem. In Proc. 23rd ACM Symposium on Theory of Computing,pp. 370{380, 1991. 24
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