A modular approach to shared-memory consensus, with applications to the probabilistic-write model

James Aspnes
Yale University

July 28th, 2010
Randomized consensus

Want n processes to agree on one of m values.

- **Validity**: each output equals some input.
- **Termination**: all non-faulty processes finish with probability 1.
- **Agreement**: all non-faulty processes get the same output.

Model: **Wait-free** asynchronous shared-memory with **multi-writer registers**.
Bounds on consensus

- Tight bounds for extreme cases:
 - **Adaptive adversary**, processes only have **local coins**: $\Theta(n^2)$ expected total operations (Attiya and Censor, 2008), $\Theta(n)$ expected operations per process (Aspnes and Censor, 2009).
 - **Oblivious adversary, global coin**, 2 values: $\Omega(1)$ expected operations per process with geometric distribution (Attiya and Censor, 2008), matching upper bound (Aumann, 1997).

- We want to know what happens in the middle: local coins but weak adversary.
Probabilistic-write model

In the **probabilistic-write model**, after the adversary schedules a process to do a write, it can flip a coin to decide whether to do so or not.

- This is the **strong model** of (Abrahamson, 1988).
- Used by (Cheung, 2005) to get $O(n \log \log n)$ total and individual work for 2-valued consensus.
- We’ll get $O(n \log m)$ total and $O(\log n)$ individual work for m-valued consensus.
- $O(\log n)$ individual work is similar to bounds for other weak-adversary models (Chandra, 1996; Aumann, 1997; Aumann and Bender, 2005).
- No lower bounds better than $\Omega(1)$.

(All bounds are in expectation.)
Most known consensus protocols alternate between detecting agreement and producing agreement.

We will make this explicit by decomposing consensus into:

1. **Ratifier** objects, which detect agreement, and
2. **Conciliator** objects, which produce it with some probability.

Essentially just **refactoring** existing code.
Like ordinary consensus objects, except:

- Output is supplemented with a **decision bit** that says whether to decide on the output (1) or adopt it for later stages of the protocol (0).
- Agreement is replaced by two new conditions:
 1. **Coherence**: If one process decides on x, every other process gets x as output (but might not decide).
 2. **Acceptance**: If all inputs are equal, all processes decide.

These are just Gafni’s **adopt-commit protocols** (Gafni, 1998) expressed as shared-memory objects.
Ratifiers

- Like ordinary consensus objects, except:
 - Output is supplemented with a **decision bit** that says whether to decide on the output (1) or adopt it for later stages of the protocol (0).
 - Agreement is replaced by two new conditions:
 1. **Coherence**: If one process decides on x, every other process gets x as output (but might not decide).
 2. **Acceptance**: If all inputs are equal, all processes decide.

- These are just Gafni’s **adopt-commit protocols** (Gafni, 1998) expressed as shared-memory objects.
Conciliators

- Like ordinary consensus objects, except agreement is replaced by:
 - **Probabilistic agreement**: All outputs are equal with probability at least δ, for some fixed $\delta > 0$.

- Conciliator objects have the same role as weak shared coins of (Aspnes and Herlihy, 1990) (and can be built from weak shared coins).

- But can also be built other ways, e.g. using the first-mover mechanism of (Chor, Israeli, and Li, 1994).
Like ordinary consensus objects, except agreement is replaced by:

- **Probabilistic agreement**: All outputs are equal with probability at least δ, for some fixed $\delta > 0$.

Conciliator objects have the same role as **weak shared coins** of (Aspnes and Herlihy, 1990) (and can be built from weak shared coins).

But can also be built other ways, e.g. using the first-mover mechanism of (Chor, Israeli, and Li, 1994).
Given infinite alternating sequence of ratifiers and conciliators:

1. Validity follows from validity of components.
2. Agreement follows from coherence + validity.
3. For termination, we go through at most \((1/\delta)\) conciliators on average before one of them produces agreement (probabilistic agreement); then following ratifier makes all processes decide (acceptance).
Building a ratifier

- **Basic idea:**
 1. **Announce** my input \(v \) (using mechanism to be provided later).
 2. If \(\text{proposal} = \perp \), \(\text{proposal} \leftarrow v \); else \(v \leftarrow \text{proposal} \).
 3. Decide \(v \) if no \(v' \neq v \) has been announced, else output \(v \) without deciding.

- **Why it works:**
 - If some value \(v \) is in proposal before any other \(v' \) is announced, any process with \(v' \) sees and adopts \(v \).

- Announce-propose-check structure same as in Gafni’s adopt-commit protocol (Gafni, 1998), but we’ll exploit multi-writer registers to reduce cost.
How to announce a value

- Assign unique write quorum W_v of k out of $2k$ registers to each value v, where $k = \Theta(\log m)$ satisfies $\binom{2k}{k} \geq m$.
- Announce v by writing all registers in W_v.
- Detect $v' \neq v$ by reading all registers in \overline{W}_v.
- I always see you if you finish writing $W_{v'}$.

Cost of ratifier: $O(\log m)$ individual work and $O(\log m)$ space.
How to announce a value

- Assign unique write quorum W_v of k out of $2k$ registers to each value v, where $k = \Theta(\log m)$ satisfies $\binom{2k}{k} \geq m$.
- Announce v by writing all registers in W_v.
- Detect $v' \neq v$ by reading all registers in \overline{W}_v.
- I always see you if you finish writing $W_{v'}$.

Cost of ratifier: $O(\log m)$ individual work and $O(\log m)$ space.
Building a conciliator

\[k \leftarrow 0 \]
\[\textbf{while } r = \bot \textbf{ do} \]
\[\quad \text{write } v \text{ to } r \text{ with probability } \frac{2^k}{2n} \]
\[k \leftarrow k + 1 \]
\[\textbf{end} \]
\[\textbf{return } r \]

- Uses Chor-Israeli-Li technique: First value written wins unless overwritten.
- Increasing probabilities means a lone process finishes quickly.
- But other processes will still have low total probability of overwriting before reading again (or they would have finished already).
- Cost: \(O(\log n) \) individual work, \(O(n) \) total work, and 1 register.
Building a conciliator

\[k \leftarrow 0 \]

\[\text{while } r = \bot \text{ do} \]
\[\text{write } v \text{ to } r \text{ with probability } \frac{2^k}{2n} \]
\[k \leftarrow k + 1 \]

\[\text{end} \]

\[\text{return } r \]

- Uses Chor-Israeli-Li technique: First value written wins unless overwritten.
- Increasing probabilities means a lone process finishes quickly.
- But other processes will still have low total probability of overwriting before reading again (or they would have finished already).
- Cost: \(O(\log n) \) individual work, \(O(n) \) total work, and 1 register.
Conclusions

- Ratifier + conciliator = n-process, m-valued consensus in the probabilistic-write model with
 - $O(\log n + \log m)$ expected individual work.
 - $O(n \log m)$ expected total work.
 - $O(\log m)$ expected space used.
- This just says
 \[
 T_{\text{consensus}} = O(T_{\text{ratifier}} + T_{\text{conciliator}}).
 \]
- But: consensus objects are both ratifiers and conciliators. So we also have
 \[
 T_{\text{consensus}} = \Omega(T_{\text{ratifier}} + T_{\text{conciliator}}).
 \]
- These bounds hold for any additive cost measure in any model.
- Moral: If you want upper or lower bounds for consensus, look for bounds on ratifiers and conciliators.