
Stably Computable Predicates are Semilinear

Dana Angluin, James Aspnes and David Eisenstat

1

Population Protocols

Introduced by [Angluin, Aspnes, Diamadi, Fischer and Peralta,
PODC ’04].

• Anonymous, finite-state agents

• Pairwise (ordered) interactions scheduled by a faira adversary

• No faults (but see [Delporte-Gallet, Fauconnier, Guerraoui and
Ruppert, DCOSS ’06])

• No termination, stabilizing outputs

Similar models used to study epidemics, chemical reactions.
aAny configuration reachable infinitely often is reached infinitely often.

2

Example: Leader Election

States are {leader, follower}. When two agents in state leader

interact, one switches to follower.

If all agents start in state leader, eventually only one remains.

3

Stably Computing a Predicate

• Input is a multiset of symbols x, which we write as a vector.

• Each of |x| agents gets one symbol, which determines its
starting state.

• Each agent has its own 0-1 output, determined by its state.

• Agents must reach stable consensus.

Any boolean combination of stably computable predicates is stably
computable.

4

Example: OR

Two states: {0, 1}

Input and output maps are the identity.

Joint transition function:

δ 0 1

0 0,0 1,1

1 1,1 1,1

Eventually, all agents have the same output, which is the OR of the
inputs.

5

Example: Parity

Four states: {active, passive} × {0, 1}

Input map x 7→ (active, x)

Output map (status, x) 7→ x

6

Active agents combine outputs and reduce their number:

(active, x), (active, y) 7→ (active, x⊕ y), (passive, x⊕ y) (1)

Passive agents copy their output from active agents:

(active, x), (passive, y) 7→ (active, x), (passive, x) (2)

Invariant: the parity of the active agents’ outputs equals the parity
of the input.

Eventually, exactly one agent is active (1).

Other agents copy its output (2), resulting in stable consensus.

7

Parity Protocol in Action

Input: (1,3)

Initial configuration:

(active,1) (active,1)

(active,1) (active,0)

8

(active,1) (active,1)

(active,1) (active,0)

9

(active,1) (active,1)

(active,1) → (active,0)

10

(active,1) (active,1)

(active,1) (passive,0)

11

(active,1) (active,1)

↑
(active,1) (passive,0)

12

(active,1) (active,1)

(active,1) (passive,1)

13

(active,1) (active,1)

↓
(active,1) (passive,1)

14

(active,0) (active,1)

(passive,0) (passive,1)

15

(active,0) → (active,1)

(passive,0) (passive,1)

16

(active,1) (passive,1)

(passive,0) (passive,1)

17

(active,1) (passive,1)

↓
(passive,0) (passive,1)

18

(active,1) (passive,1)

(passive,1) (passive,1)

19

Example: Majority 1s

Six states: {active, passive} × {−1, 0, 1}

Input map:

0 7→ (active,−1)

1 7→ (active, 1)

Output map:

(status,−1) 7→ 0

(status, 0) 7→ 0

(status, 1) 7→ 1

20

Active agents combine outputs and reduce their number. If x 6= y,

(active, x), (active, y) 7→ (active, x + y), (passive, x + y) (3)

Passive agents copy their output from active agents as before.

Invariant: the sum of the data fields of active agents is the number
of 1s in the input minus the number of 0s.

Rule (3) resolves all conflicts between active agents, which leads to
stable consensus.

21

Semilinear Predicates

Revisiting the three predicates, a pattern emerges.

Let x = (x0, x1) be the input.

OR (x0, x1) · (0, 1) ≥ 1

Parity (x0, x1) · (0, 1) ≡ 1 (mod 2)

Majority 1s (x0, x1) · (−1, 1) > 0

22

The table suggests two basic kinds of predicates:

x · v ≥ c

x · v ≡ c (mod m),

with parameters v, an integral vector, and integers c and m.

The boolean closure of these predicates is the class of semilinear
predicates.

23

Semilinearity

Alternate characterizations:

• The multiplicities of strings of regular (or context-free)
languages

• Predicates definable in the first order theory of (N,+)

• Finite unions of sets of the form b + Np1 + . . . + Npk, where
b, p1, . . . , pk are vectors.

Some predicates that are not semilinear:

• x0 = 2x1

• x0 < x1

√
2

• x0x1 = x2

24

Main Result

[AADFP ’04]: all semilinear predicates are stably computable.

This paper: all stably computable predicates are semilinear.

25

Corollaries

Complete characterizations of the immediate, delayed, and queued
transmission models from [Angluin, Aspnes, Eisenstat and
Ruppert, OPODIS ’05]

Characterization of the (composable) stabilizing inputs model of
[Angluin, Aspnes, Chan, Fischer, Jiang and Peralta, DCOSS ’05].

Characterization of a reversible model where executions may
include “backwards” transitions.

26

Output Stability

A configuration is output-stable if

• all agents have the same output and

• no agent can ever change its output.

Positive example: in OR protocol, agents in states 1, 1, 1, 1, 1, 1.

Negative example: in OR protocol, agents in states 0, 0, 1.

All inputs eventually reach an output-stable configuration (stable
computation).

27

Any subconfiguration of an output-stable configuration is
output-stable.

Corollary: Any non-output-stable configuration contains a minimal
non-output-stable subconfiguration.

In the OR protocol, the unique minimal non-output-stable
configuration is 0, 1.

In the Parity protocol, the minimal non-output-stable
configurations are

• any configuration with exactly two agents that have different
outputs

• (active, 1), (active, 1), which can reach (active, 0), (passive, 0).

28

Higman’s Lemma

Any subset of Nd has finitely many ≤-minimal elements.

There are finitely many minimal non-output-stable configurations.

There is a constant k such that a configuration with k agents in
each state contains each such minimal configuration.

If an output-stable configuration contains k agents in a given state,
adding more won’t destabilize it.

29

A Pumping Lemma

Suppose the predicate is true for x. Assume

x
∗→ c

c + y
∗→ c′ ≥ c,

and c is output-stable. If the agents in c′ − c are in states with
multiplicity ≥ k in c, c′ is output-stable.

Since c′ contains c, c can “absorb” any number of copies of y. Thus
the predicate is true for all the elements of x + Ny.

30

A Pumping Lemma

Suppose x1 < x2 < x3 < · · · is an increasing sequence of inputs on
which the predicate is true.

x1
∗→ c1

c1 + (x2 − x1)
∗→ c2

c2 + (x3 − x2)
∗→ c3

...

A corollary of Higman’s lemma implies that c1, c2, c3, . . . has an
infinite increasing subsequence.

There exist i < j such that the predicate is true on xi + N(xj − xi).

31

Decomposition into Cones

Using the pumping lemma techniques and Higman’s lemma, we can
write the inputs where the predicate is true as a finite union of
integral “cones”.

Here, a cone is a set that can be written

x + Ny1 + Ny2 + Ny3 + . . .

Example: Parity is true on (0, 1) + N(1, 0) + N(0, 2).

Example: Majority 1s is true on (0, 1) + N(1, 1) + N(0, 1).

32

Separating the Cones

Write the support and its complement as a finite union of cones.

Strategy: for each pair of cones, find a semilinear predicate that
agrees with the computed predicate on the cones except on finitely
many hyperplanes.

Use induction to show the semilinearity of the predicate on the
hyperplanes and express the computed predicate as a boolean
combination of semilinear predicates.

33

Parity or Majority?

Translate the cones to the origin and look at the intersection.
There are two cases:

• The intersection cannot be contained in a hyperplane.

• The intersection can be contained in a hyperplane.

34

Parity

Case: intersection is not lower-dimensional.

Example: Parity, since both shifted cones are N(1, 0) + N(0, 2).

We can show algebraically that a boolean combination of modulo
predicates separates the original cones.

35

0 2 4 6 8 10 12 14 16 18 20
0
2
4
6
8

10
12
14
16
18
20

x0

x1 x1 = 1 mod 2

36

Majority

Case: intersection is lower-dimensional.

Example: Majority, since
(N(1, 0) + N(1, 1)) ∩ (N(0, 1) + N(1, 1)) = N(1, 1).

The interiors of the convex closures of the cones are disjoint, so
separate them with a hyperplane (in Rd).

37

0 2 4 6 8 10 12 14 16 18 20
0
2
4
6
8

10
12
14
16
18
20

x0

x1 x1 > x0

38

Problem

The hyperplane might not have an integral normal vector.

0 2 4 6 8 10 12 14 16 18 20
0
2
4
6
8
10
12
14
16
18
20

x0

x1 sqrt(2) * x1 > x0

Solution: use the pumping lemma again.

39

Thanks

40

	Stably Computable Predicates are Semilinear
	Dana Angluin, James Aspnes and David Eisenstat

	Population Protocols
	Example: Leader Election
	Stably Computing a Predicate
	Example: OR
	Example: Parity
	Parity Protocol in Action
	Example: Majority 1s
	Semilinear Predicates
	Semilinearity
	Main Result
	Corollaries
	Output Stability
	Higman's Lemma
	A Pumping Lemma
	A Pumping Lemma
	Decomposition into Cones
	Separating the Cones
	Parity or Majority?
	Parity
	Majority
	Problem
	Thanks

