Fault-tolerant Routing in Peer-to-peer Systems

*
James Aspnes
Yale University,

New Haven, CT 06520, USA.

aspnes@cs.yale.edu

ABSTRACT

We counsider the problem of designing an overlay net-
work and routing mechanism that permits finding re-
sources efficiently in a peer-to-peer system. We argue
that many existing approaches to this problem can be
modeled as the construction of a random graph embed-
ded in a metric space whose points represent resource
identifiers, where the probability of a connection be-
tween two nodes depends only on the distance between
them in the metric space. We study the performance
of a peer-to-peer system where nodes are embedded at
grid points in a simple metric space: a one-dimensional
real line. We prove upper and lower bounds on the mes-
sage complexity of locating particular resources in such
a system, under a variety of assumptions about fail-
ures of either nodes or the connections between them.
Our lower bounds in particular show that the use of in-
verse power-law distributions in routing, as suggested by
Kleinberg [5], is close to optimal. We also give heuris-
tics to efficiently maintain a network supporting efficient
routing as nodes enter and leave the system. Finally, we
give some experimental results that suggest promising
directions for future work.

1. INTRODUCTION

Peer-to-peer systems are distributed systems without
any central authority and with varying computational
power at each machine. We study the problem of locat-
ing resources in such a large network of heterogeneous
machines that are subject to crash failures. We describe

*Supported by NSF grants CCR-9820888 and CCR-
0098078.

JrSupported in part by ONR grant N00014-01-1-0795.

iSupported by NSF grants CCR-9820888 and CCR-
0098078.

T f
Zoé Diamadi
Yale University,
New Haven, CT 06520, USA.

diamadi@cs.yale.edu

. I
Gauri Shah
Yale University,
New Haven, CT 06520, USA.

gauri.shah@yale.edu

how to construct distributed data structures that have
certain desirable properties and allow efficient resource
location.

Decentralization is a critical feature of such a system
as any central server is a vulnerable point of failure and
also wastes the power of the clients. Equally important
is scalability: the cost borne by each node must not de-
pend too much on the network size and should ideally
be proportional, within polylogarithmic factors, to the
amount of data the node seeks or provides. Since we
expect nodes to arrive and depart at a high rate, the
system should be resilient to failures. Furthermore, dis-
ruptions to parts of the data structure should self-heal
to provide self-stabilization.

Our approach provides a hash table-like functional-
ity, based on keys that uniquely identify the system re-
sources. To accomplish this, we map resources to points
in a metric space from the keys’ hash values. We con-
struct and maintain a random graph linking these points
and use greedy routing to traverse its edges to find data
items. The principle we rely on is that failures leave
behind yet another (smaller) random graph, ensuring
that the system is robust even in the face of consider-
able damage. Another compelling advantage of random
graphs is that they eliminate the need for global coor-
dination. Thus, we get a fully-distributed, egalitarian,
scalable system with no bottlenecks. We measure per-
formance in terms of the number of messages sent by
the system for a search operation. Given the growing
storage capacity of machines, we are less concerned with
minimizing the storage at each node, but the space re-
quirements are still small: the information stored at a
node consists only of a network address and location in
the metric space for each neighbor.

The rest of the paper is organized as follows. Section 2
explains our abstract model in detail, and Section 3 de-
scribes some of the existing peer-to-peer systems. We
prove our results for routing in Section 4, followed by
a discussion on how to construct the random graph in
Section 5. We present experimental results in Section 6

Permission to make digital or hard copies of all or part o twork for and conclusions and future work in Section 7.
personal or classroom use is granted without fee providatidbpies are

not made or distributed for profit or commercial advantage that copies

bear this notice and the full citation on the first page. Toyoofherwise, to 2. OUR APPROACH

republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

PODC '02 Monterey, California USA

Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

The idea underlying our approach counsists of three
basic parts: (1) embed resources as points in a metric
space, (2) construct a random graph by appropriately

VIRTUAL
ROUTE

VIRTUAL-
LINKS 2

= HASH .
A b - :
Y

VIRTUAL OVERLAY
NETWORK

PHYSICAL NETWORK
(RESOURCES)

Figure 1: An example of the metric-space em-

bedding.

linking these points, and (3) efficiently locate resources
by routing greedily along the edges of the graph. Let R
be a set of resources spread over a large, heterogeneous
network N. For each resource r € R, owner(r) denotes
the node in N that provides r and key(r) denotes the
resource’s key. Let K be the set of all possible keys. We
assume a hash function h : K — V such that resource r
maps to the point v = h(key(r)) in a metric space (V, d),
where V' is the point set and d is the distance metric as
shown in Figure 1. The hash function is assumed to
populate the metric space evenly. Note that via this
resource embedding, a node n is mapped onto the set
Vi ={v eV :3r €R,v=h(key(r))A(owner(r) =n)},
namely the set of metric-space points assigned to the
resources the node provides.

Our next step is to carefully construct a directed ran-
dom graph from the points embedded in V. We assume
that each newly-arrived node n is initially connected
to some other node in N. Each node n generates the
outgoing edges for each vertex v € V, independently.
An edge (v,u) € V,, X V,, simply denotes that n knows
that m is the network node that provides the resource
mapped to u; hence, we can view the graph as a vir-
tual overlay network of information. Node n constructs
each edge by executing the search algorithm to locate
the resource that is mapped to the sink of that edge. If
the metric space is not populated densely enough, the
choice of a sink may result in a vertex corresponding to
an absent resource. In that case, n chooses the neighbor
present closest to the original sink. Moving to nearby
vertices will introduce some bias in the edge distribution
but the magnitude of error does not appear to be large.
A more detailed description of the graph construction
is given in Section 5.

Having constructed the overlay network of informa-
tion, we can now use it for resource location. At any
time ¢, let R C R be the set of available resources and
I be the corresponding overlay network. A request by
node n to locate resource r at time ¢ is served in a
simple, localized manner: n calculates the metric-space
point v that corresponds to r, and a request message is
then routed over I' from the vertex in V;, that is closest
to v to v itself. Each node needs only local information,
namely its set of neighbors in I, to participate in the re-
source location. Routing is done greedily by forwarding
the message to the node mapped to a metric-space point
as close to v as possible. The problem of resource loca-

tion is thus translated into routing on random graphs
embedded in a metric space.

The advantage of using random graphs is that they
are robust against failures: a node-induced subgraph of
a random graph is generally still a random graph; there-
fore, the disappearance of a vertex will still allow rout-
ing over the structure. Further, embedding the graph
in a metric space has the very important property that
the only information needed to locate a resource is the
location of its corresponding metric-space point. That
location is both permanent, in the sense of being un-
affected by disruption of the data structure, and easily
computable by any node that seeks the resource. So,
while the pattern of links between nodes may be dam-
aged or destroyed by failure of nodes or of the underlying
communication network, the metric space forms an in-
vulnerable foundation over which to build the ephemeral
parts of the data structure.

3. CURRENT PEER-TO-PEER SYS-
TEMS

Most peer-to-peer systems in widespread use are not
scalable. Napster’s [8] approach of using a central server
has the weaknesses of a vulnerable single point of fail-
ure and wasted client computational power. Gnutella [1]
floods the network to locate a resource. Flooding cre-
ates a trade-off between overloading every node in the
network for each request and cutting off searches before
completion. While the use of super-peers [7] ameliorates
the problem somewhat in practice, it does not improve
performance in the limit.

Some of these first-generation systems have in-
spired the development of more sophisticated ones like
CAN [11], Chord [12] and Tapestry [2]. CAN parti-
tions a d-dimensional metric space into zones. Each key
is mapped to a point in some zone and stored at the
node that owns the zone. Each node stores O(d) infor-
mation, and resource location, done by greedy routing,
takes O(dn'/?) time. Chord maps nodes to identities
of m bits placed around a modulo 2™ identifier cir-
cle. Resources are stored at existing successor nodes
of the nodes they are mapped to. Each node maintains
a routing table of size m and uses greedy routing to give
an O(m) delivery time. Tapestry uses Plaxton’s algo-
rithm [10], a form of suffix-based, hypercube routing, as
the routing mechanism: in this algorithm, the message
is forwarded deterministically to a node whose identifier
is one digit closer to the target identifier. To this end,
each node maintains O(lg n) pieces of information and
delivery time is also O(lgn).

Although these systems seem vastly different, there is
a recurrent underlying theme in the use of some variant
of an overlayed metric space in which the nodes are em-
bedded. The location of a resource in this metric space
is determined by its key. Each node maintains some in-
formation about its neighbors in the metric space, and
routing is then simply done by forwarding packets to
neighbors closer to the target node with respect to the
metric. It is this inherent common structure that leads
to similar results for the performance of these networks.

In this paper, we describe a general setting for such
overlay metric spaces, although most of our results are
obtained from one-dimensional spaces.

In general, the fault-tolerance properties of these sys-
tems are not well-defined. Each system provides a repair
mechanism for failures but makes no performance guar-
antees till this mechanism kicks in. For large systems,
where nodes appear and leave frequently, resilience to
repeated and concurrent failures is a desirable and im-
portant property. Our experiments show that with our
overlay space and linking strategies, the system per-
forms reasonably well even with a large number of fail-
ures.

4. ROUTING

In this section, we present our lower and upper
bounds on greedy routing.

4.1 Tools

Some of our upper bounds will be proved using a
well-known upper bound of Karp et al.[3] on probabilis-
tic recurrence relations. We will restate this bound as
Lemma 1, and then show how a similar technique can
be used to get lower bounds with some additional con-
ditions in Theorem 2.

LEmMA 1 ([3]). The time T'(Xo) needed for a non-
increasing real-valued Markov chain Xo, X1, X2, X3...
to drop to 1 is bounded by

Xo 1

() < [, (1)
1 Mz

when p, = E[X¢ — Xeq1 + X¢ = 2] is a nondecreasing

function of z.

This bound has a nice physical interpretation. If it
takes one second to jump down g, meters from x, then
we are traveling at a rate of p, meters per second dur-
ing that interval. When we zip past some position z,
we are traveling at the average speed p, determined by
our starting point x > z for the interval. Since p is
nondecreasing, using p. as our estimated speed under-
estimates our actual speed when passing z. The integral
computes the time to get all the way to zero if we use
1> as our instantaneous speed when passing position z.
Since our estimate of our speed is low (on average), our
estimate of our time will be high, giving an upper bound
on the actual expected time.

We would like to get lower bounds on such processes
in addition to upper bounds, and we will not necessarily
be able to guarantee that y., as defined in Lemma 1, will
be a nondecreasing function of z. But we will still use
the same basic intuition: The average speed at which
we pass z is at least the minimum average speed of any
jump that takes us past z. We can find this minimum
speed by taking the minimum over all > z; unfortu-
nately, this may give us too small an estimate. Instead,
we choose a upper bound U on “short” jumps, com-
pute the minimum speed of short jumps of at most U
for all z between z and z + U, and handle the (hope-
fully rare) long jumps of more than U by conditioning

against them. Subject to this conditioning, we can de-
fine an upper bound m. on the average speed passing
z, and use essentially the same integral as in (1) to get
a lower bound on the time. Some additional tinkering
to account for the effect of the conditioning then gives
us our real lower bound, which appears in Theorem 2
below, as Inequality (8).

THEOREM 2. Let Xo, X1, Xo2,... be Markov process
with state space S, where Xo is a constant. Let f be a
non-negative real-valued function on S such that, for all
L,

Prlf(Xe) — f(Xe41) 20: X¢] = 1. 2
Let U and € be constants such that for any x > 0,
Prif(Xi) — f(Xe41) 2 U : Xy =a] <e. ®3)
Let
7 =min{t: f(X:) =0}. (4)
For each © with f(x) > 0, let p, > 0 satisfy

pa > E[f (Xe)—f(Xe41) : Xe =z, f(Xe)—f(Xet1) < (U5])
Now define

mz:Sup{lJ'x:wES:f(w)E[Z:Z'i'U)} (6)
and define

fz)
T(x) = /0 L (7)

my
Then

T'(Xo)
E[7] > T(Xo)+(1—0) (8)

4.2 Lower bound on greedy routing

We will now show a lower bound on the expected time
taken by greedy routing on a random graph embedded in
aline, where each node in the graph has expected outde-
gree at most ¢, and the probability that a node at posi-
tion x is connected to positions z—A1,x—Ay, ..., x—Ay
depends only on the set A = {Ay1,..., A} and not on
« and is independent of the choice of outgoing edges for
other nodes.!

We cousider to two variants of the greedy routing al-
gorithm. Without loss of generality, we assume that
the target of the search is labeled 0. In one-sided greedy
routing, the algorithm never traverses a link that would
take it past its target. So if the algorithm is currently
at = and is trying to reach 0, it will move to the node
x — A; with the smallest non-negative label. In two-
sided greedy routing, the algorithm chooses a link that
minimizes the distance to the target, without regard
to which side of the target the other end of the link
is. In the two-sided case the algorithm will move to a
node x — A; whose label has the smallest absolute value,
with ties broken arbitrarily. One-sided greedy routing

We assume that nodes are labeled by integers, and
identify each node with its label to avoid excessive no-
tation.

can be thought of as modeling algorithms on a graph
with a boundary when the target lies on the boundary,
or algorithms where all links point in only one direction
(as in Chord).

Our results are stronger for the one-sided case than for
the two-sided case. With one-sided greedy routing, we
show a lower bound of Q(Inn/(¢Inlnn)) on the time to
reach 0 from a point chosen uniformly from the range 1
to n that applies to any link distribution. For two-sided
routing, we show a lower bound of Q(Ilnn/(¢*Inlnn)),
with some constraints on the distribution. We conjec-
ture that these constraints are unnecessary, and that
Q(lnn/(¢lnlnn)) is the correct lower bound for both
models.

In general, we assume that each node is connected to
its immediate neighbors; the simplest way to model this
is to require that £1 appear in A.

We will begin by developing machinery that will be
useful in the proofs of both the one-sided and two-sided
lower bounds.

421 Linksets: notation and distributions

First we describe some notation for A sets. Write
each A as

(A e Ay Al =—1A1=1,As,... A},

where A; < A; whenever i < j. Each A is a random
variable drawn from some distribution on finite sets;
the individual A; are thus in general not independent.
Let A~ consist of the s negative elements of A and
AT consist of the t positive elements. Formally define
A_; = —oo when 7 > s and A; = +0o when 7 > t.

For one-sided routing, we make no assumptions about
the distribution of A except that |A| must have finite
expectation and A always contains 1. For two-sided
routing, we assume that A is generated by including
each possible in A with probability ps, where p is
symmetric about the origin (i.e., ps = p_s for all 9),
p1 = p-1 =1, and p is unimodal, i.e. nonincreasing for
positive § and nondecreasing for negative 4.2 We also
require that the events [0 € A] and [§' € A] are pairwise
independent for distinct J,d’.

4.2.2 Theaggregate chain s*

For a fixed distribution on A, the trajectory of a single
initial point X° is a Markov chain X° X!, X2, ..., with
X = 5(X*' AY), where A! determines the outgoing
links from the node reached at time ¢ and s is a successor
function that selects the next node X't = X' — Al
according to the routing algorithm. Note that the chain
is Markov, because the presence of +1 links guarantees
that no node ever appears twice in the sequence, and so
each new node corresponds to a new choice of links.

From the X* chain we can derive an aggregate chain
that describes the collective behavior of all nodes in
some range. Each state of the aggregate chain is a con-
tiguous sets of nodes whose labels all have the same
sign; we define the sign of the state to be the common

2These constraints imply that po = 1; formally, we
imagine that 0 is present in each A but is ignored by
the routing algorithm.

sign of all of its elements. For one-sided routing each
state is either {0} or an interval of the form {1...k}
for some k. For two-sided routing the states are more
general The aggregate states are characterized formally
in Lemma 4.

Given a contiguous set of nodes S and a set A, define

Sai ={z € S:s(x,A) =z —A;}.

The intuition is that Sa; consists of all those nodes for
which the algorithm will choose A; as the outgoing link.
Note that Sa; will always be a contiguous range because
of the greediness of the algorithm. Now define, for each
oe{-0,+}:

Saic = {x € Sai : sgns(z,A) =o}.

Here we have simply split Sa; into those nodes with
negative, zero, or positive successors.

For any set A and integer § write A — § for {z — ¢ :
xz € A}

We will now build our aggregate chain by letting the
successors of a range S be the ranges Sai, — A; for
all possible A, i, and o. As a special case, we define
St = {0} when S* = {0}; once we arrive at the target,
we do not leave it. For all other S, we let

Sh;

Pr (S =Shi, — A1 A] = | |§:T|’ (9)
and define the unconditional transition probabilities by
averaging over all A.

Lemma 3 shows that moving to the aggregate chain
does not misrepresent the underlying single-point chain:

LEMMA 3. Let X° be drawn uniformly from the range
SO, Let Y be a uniformly chosen element of S*. Then
for all and t, Pr[X* =] = Pr[Y" = z].

Lemma 4 justifies our earlier characterization of the
aggregate state spaces:

LemMA 4. Let S° = {1...n} for some n. Then with
one-sided routing, every S* is either {0} or of the form
{1...k} for some k; and with two-sided routing, every
St is an interval of integers in which every element has
the same sign.

The advantage of the aggregate chain over the single-
point chain is that, while we cannot do much to bound
the progress of a single point with an arbitrary distri-
bution on A, we can show that the size of S* does not
drop too quickly given a bound ¢ on E[|A]]. The in-
tuition is that each successor set of size a™'|S?| or less
occurs with probability at most a~!, and there are at
most 3¢ such sets on average.

LEMMA 5. Let E[|A|] < €. Then for any a > 1, in
either the one-sided or two-sided model,

Pr[|S"™ <a™'S] < 3ta”t. (10)
Another way to write (10) is to say that
Pr [ln [SY] —In [S*TY > In a] < 3la™*, which will give

the bound (3) on the probability of large jumps when it
comes time to apply Theorem 2.

4.2.3 Boundary points

Lemma 5 says that |S¢| seldom drops by too large a
ratio at once, but it doesn’t tell us much about how
quickly |S?| drops in short hops. To bound this latter
quantity, we need to get a bound on how many sub-
ranges S’ splinters into through the action of s(-, A).
We will do so by showing that only certain points can
appear as the boundaries of these subranges in the di-
rection of 0.

For fixed A, define for each ¢ > 0

A + A
et

and

A+ A

Let 3 be the set of all finite 3; and ;.

LEMMA 6. Fiz S and A and let B be defined as above.
Suppose that S is positive. Let M = {min(Sai,) :
Snic # 0} be the set of minimum elements of subranges
Snic of S. Then M is a subset of S and contains no
elements other than

1. min(S),

2. A; for each i >0,

3. Ai+1 for each i > 0, and

4. At most one of B; or Bi + 1 for each i > 0,

where the last case holds only with two-sided routing.
If S is negative, the symmetric condition holds for
M = {max(Sair) : Saic # 0}.

PRrROOF. Counsider some subrange Sai, of S. If Saje
contains min(S), the first case holds. Otherwise: (a) if
Saic = Saio, the second case holds; (b) if Saic = Sai+,
the third case holds; (c) if Saic = Sai—, the fourth case
holds, with min(Sa;—) = Bi—1 if A;j—1 + A; is odd, and
either B;_1 or Bi—1+1if A;_1+A; is even, depending on
whether the tie-breaking rule assigns 3;—1 to Sag—1)+
or Sa;—. O

We will call the elements of M boundary points of S.

4.2.4 Bounding changesin In|S!|

Now we would like to use Lemmas 5 and Lemma 6 to
get an upper bound on the rate at which In|S*| drops
as a function of the A distribution.

The following lemma is used to bound a sum that
arises in Lemma 8.

LEMMA 7. Let ¢ > 0. Let 3", x; = M where each
x; > 0 and at least one x; is greater than c Let B be the
set of all © for which x; is greater than c. Then

- ilnx;
Zigg @il (max (%)) o an
ZieB Ti n

Proor. If & < ¢, we still have z; > c for all i € B,
so the left-hand side cannot be less than Inc. So the
interesting case is when % > c.

Let B have b elements. Then }°,; ; i < (n—b)c and
Yien = M —(n—b)c= M —nc+bc. Because z; Inx; is
convex, its sum over B is minimized for fixed ZieB T;
by setting all such z; equal, in which case the left-hand
side of (11) becomes simply In(z;) for any 7 € B.

Now observe that setting all z; in B equal gives x; =
M*Tgc+bc:M;nc +CZ M;nc_i_c:%. I:‘

LEMMA 8. Fiz a > 1, and let S = S be a positive
range with |S| > a. Define B as in Lemma 6. Let
5" = [min(S) + [a '[S|] — 1, max(S) — 1]. Then

E [In|S"] —In|S*": S In|S*| —In|S*| < Ina]
<ln 1 +InE[l+2Z:5"

l1-a

(12)
where Z = 2|A N S'| with one-sided routing and Z =
21AN S|+ 8N S| with two-sided routing.

Proor. Call asubrange Sai- large if |Saio| > a71|S|
and small otherwise. Observe that [a™'|S[] > 2, im-
plying any large set has at least two elements.

For any large Saic, max(Saio) > min(S)+[a S]] -
1. Similarly min(Sa;,) < max(S)—1. So any large Saio
intersects S’ in at least one point.

Let T = {T1,T>, ..., T} be the set of subranges Sai.,
large or small, that intersect S'. It is immediate from
this definition that |J7 2 S’ and thus Y |T}] > |S'|.

Using Lemma 6, we can characterize the elements of
T as follows:

1. There is at most one set 7; that contains min(7}).

2. There is at most one set T that has min(7j) = A;
for each A; in S'.

3. There is at most one set T} that has min(T;) =
A; + 1 for each A; in S'.

4. With two-sided routing, there is at most one set
T; that has min(7}) = £; or min(7}) = 3; + 1 for
each 3; in S'. Note that there may be a set whose
minimum element is 8; +1 where 8; = min(S") -1,
but this set is already accounted for by the first
case.

Thus T has at most 1 + Z = 1 + 2|A N 5’| elements
with one-sided routing and at most 1 + 72 =1+ 2|A N
S'| +18 N S'| elements with two-sided routing.

Conditioning on |S**| > a7!|S|, |S*™!] is equal to
|Saio| for some large Sais and thus for some large T €
T. Which large T} is chosen is proportional to its size,
so for fixed T', we have

T
E[ln St+1 . T] _ L:‘I |T7|ln |T7
’ - Tl
i=1 Tl
_ 7|
> In (max (a ! S,L>)
2

|5'|)
In ,
(lTl

where the first inequality follows from Lemma 7.
Now let us compute

E[ln |S*| — In|S*T|: S
< In|S'| = E[n|S| —In|T|: S
In ﬂ + E[n|T: St]
15"
< In # +InE[|T| : S"].
In the last step we use E[In|T| : S'] < mE[|T| : S'],

which follows from the concavity of In and Jensen’s in-
equality. [

4.2.5 Putting the pieces together

We now have all the tools we need to prove our lower
bound.

THEOREM 9. Let G be a random graph whose nodes
are labeled by the integers. Let Ay for each x be a set of
integer offsets chosen independently from some common
distribution, subject to the constraint that —1 and +1
are present in every Ay, and let node x have an outgoing
edge to x—0 for each § € A,. Let £ = E[|A]]. Consider a
greedy routing trajectory in G starting at a point chosen
uniformly from 1...n and ending at 0.

With one-sided routing, the expected time to reach 0
is

In?n
@ (flnlnn) (13)
With two-sided routing, the expected time to reach 0
18
In?n
@ <€2 lnlnn) ’ (14)

provided A is generated by including each 6 in A with
probability ps, where (a) p is unimodal, (b) p is sym-
metric about 0, and (c) the choices to include particular
8,0" are pairwise independent.

Proor. Let S ={1...n}.

We are going to apply Theorem 2 to the sequence
S0 8% 8% ... with f(S) = In|S|. We have chosen f so
that when we reach the target, f(S) = 0; so that a lower
bound on 7 gives a lower bound on the expected time of
the routing algorithm. To apply the theorem, we need
to show that (a) the probability that In |S| drops by a
large amount is small, and (b) that the integral in (7)
is large.

Let a = 3¢ln®n. By Lemma 5, for all ¢,
Pr[|S** | <a S]] < 3ta™' = In"®n, and thus
Prln|S?| — In|S**| > Ina] < In"®n. This satisfies
(3) with U =Ina and e = In"® n.

For the second step, Theorem 2 requires that we
bound the speed of the change in f(5) solely as a func-
tion of f(S). For one-sided routing this is not a prob-
lem, as Lemma 4 shows that f(S), which reveals |S|,
characterizes S exactly except when |S| = 1 and the
lower bound argument is done. For two-sided routing,
the situation is more complicated; there may be some

S* which is not of the form {1...]S*|} or {0}, and we
need a bound on the speed at which In|S*| drops that
applies equally to all sets of the same size.

It is here (and only here) that we use our con-
ditions on A for two-sided routing. Suppose that
each & appears in A with probability ps, that these
probabilities are pairwise-independent, and that the
sequence p is symmetric and unimodal. Let § =
{absceil (££2) : 2,y € A,z # y}, where absceil (), the
absolute ceiling of z, is [z] when z > 0 and |z| when
z < 0. Observe that ,@‘ D f; in effect, we are counting in
£ all midpoints of pairs of distinct elements of & with-
out regard to whether the elements are adjacent. For
each k, the expected number of distinct pairs z, y with
z+y=zand z,y € Ais at most by =D 7 pr_iPi;
this is a convolution of the non-negative, symmetric, and
unimodal p sequence with itself and so it is also sym-
metric and unimodal.It follows that for all 0 < k < K/,
br > by, and similarly b_p > b_;/.

Now for the punch line: for each § # 0, ¢s =
b25 —sgns + b2s is an upper bound on the expected num-
ber of distinct pairs x,y that put ¢ in 3, which is in
turn an upper bound on Pr[§ € f], and from the uni-
modularity of b we have that ¢gs > g5+ and g5 > q_s
whenever 0 < § < ¢’. Though ¢ grossly overcounts
the elements of 8 (in particular, it gives a bound on
E[|B]] of £%), its ordering property means that we can
bound the expected number of elements of 3 that ap-
pear in some subrange of any positive S* by using ¢ to
bound the expected number of elements that appear in
the corresponding subrange of {1...|S!|}, and similarly
for negative S* and {—1... —|S*|}. Because p; already
satisfies a similar ordering property, we can thus bound
the number of elements of both A and 3 that hit a fixed
subrange of S* given only |S|.

Which we now proceed to do. For convenience, for-
mally define ¢; = 0 for one-sided routing. For each
integer i >0let A;, ={k€Z:a"'-1<k<dat -1} =
{k€Z:|lnak+1] =i} Let yvi =34, 2pi + Qi
Note that v; > 2 E[|A; N A]] for one-sided routing and
vi > 2E[|4i N Al] + E[J4; N B]] for two-sided routing.
Observe also that) ™ ; is at most 2¢ for one-sided
routing and by 2¢ + £° for two-sided routing.

Consider some S = S*. If |S| > a, then by Lemma 8
we have

E[In|S" —In|S": S In|S*| —In|S*!| < Ina]
<ln——1 +InE[l+2Z: 5,

1-a—1

(15)
where Z = 2|A N S’| with one-sided routing and Z =
2IA N S|+ [8NS'| with two-sided routing, and S’ =
[min(S)+[a'|S|]—1, max(S)—1]. By the monotonicity
of p; and ¢; for positive i, InE[1 + Z] is at most

1 [S|—1

M1n|5|=lnm+lﬂ 1+ Z 2pit+qi |,
i=[a=1|S[]-1
(16)
provided |S| > a. For |S| < a, set p,|s| = Ina.
Let us now compute m., as defined in (6). For
z < Ina, m, = Ina. For larger z, observe that m, =

sup {m1u|5| cef < S| < aez}. Now if e* < |S]| < ae?,
then the bounds on the sum in (16) both lie between
[a_lez] — 1 and ae® — 1, so that

lae®—1]

1
lnl—ia—l +lIl 1+ Z
i:|—aflez-|71

g
IN

2pi +q;

1
< g +In(l 4+ % + Vo1 +%r42),

where z' = |z/Ina] — 1.
Finally, compute

T(Inn)
Inn
= / ! dz
0 mz

Inn 1
/ I dz
ma ==t +In(1+7 + 7241+ V2ry2)

[Inn/lna]—1

v

Z lna
In —L— +1In(1 + vi +yit1 +Yit2)

i=0 1—a—1

To get a lower bound on the sum, note that

llInn/lna]—1 llInn/Ilna]+1 o
(vityit1+7i+2) <3 7 <3y i
=0 =0 =0

which is at most L = 6¢ for one-sided routing and at
most L = 6£ + 3¢* for two-sided routing. In either case,

1 . .
because (o) Is convex and decreasing, we have

T(lnn)

[Inn/lna]—1 Ina

In —0 +In(1 + 79 + Yit1 + Yit2)

=0 1-a—1
[Inn/lna]—-1

>

1 L
i=0 In 1-a—1 +In (1 + [Inn/Ina])
_ 1 Ina|lnn/lna| : . (17)
In 1—a~1 +In (1 + |_lnn/1uaj)

We will now rewrite our bound on T'(Inn) in a more
convenient asymptotic form. We will ignore the 1 and
concentrate on the large fraction. Recall that a =
3¢In®n, so Ina = O(Inf + Inlnn). Unless £ is polyno-
mial in n, we have Inn/Ina = w(1) and the numerator
simplifies to O(Inn).

Now let us look at the denominator. Consider first
the term In # We can rewrite this term as — In(1—

v

Ina

v

a™1); since a”! goes to zero as ¢ and n grow we have
—In(l-a ') =0 ") =0 In"*n). It is unlikely
that this term will contribute much.

Turning to the second term, let us use the fact that
In(1+z) <z for x > 0. Thus

. (” Mm) < Twrme]
O(L(lnl+lnlnn)>7

Inn

and the bound in (17) simplifies to
Q (In*n/ (L(In £ +Inlnn))). We can further as-
sume that ¢ = O(In"n), since otherwise the
bound degenerates to (1), and rewrite it simply
as Q (In®n/ (Llnlnn)).

For large L the approximation In(1 +2) < 1+ Inx
for > 0.59 is more useful. In this case (17) simplifies
to T'(Inn) = Q(Inn/Inf), which has a natural interpre-
tation in terms of the tree of successor nodes of some
single starting node.

We are not quite done with Theorem 2 yet, as we
still need to plug our T and e into (8) to get a lower
bound on E[7r]. But here we can simply observe that
¢T = O(In~" n), so the denominator in (8) goes rapidly
to 1. Our stated bounds are thus finally obtained by
substituting O(¢) or O(¢?) for L. O

4.2.6 Possible strengthenings of the lower bound

Examining the proof of Theorem 9, both the ¢? that
appears in the bound (14) for two-sided routing and
the extra conditions imposed on the A distribution arise
only as artifacts of our need to project each range S onto
{1...]5|} and thus reduce the problem to tracking a
single parameter. We believe that a more sophisticated
argument that does not collapse ranges together would
show a stronger result:

CONJECTURE 10. Let G, A, and ¢ be as in Theo-
rem 9. Consider a greedy routing trajectory starting at
a point chosen uniformly from 1...n and ending at 0.

Then the expected time to reach 0 is

In®n
Q
(flnlnn) '

with either one-sided or two-sided routing, and no con-
straints on the A distribution.

We also believe that the bound continues to hold in
higher dimensions than 1. Unfortunately, the fact that
we can embed the line in, say, a two-dimensional grid
is not enough to justify this belief; divergence to one
side or the other of the line may change the distribution
of boundaries between segments and break the proof of
Theorem 9.

4.3 Upper Bounds

In this section, we present our upper bounds on the
delivery time for settings that include failure of nodes
and links. Note that we use the term node here to
mean the point in the metric space and not the phys-
ical machine as implied in earlier sections. To sim-
plify the theoretical analysis, we assume an ideal place-
ment of one node at every point of the one-dimensional
line. Each node is connected to its immediate neigh-
bors and has ¢ multiple long-distance links chosen in-
dependently as follows: Pr[v is the ith neighbor of u]
= g7/ Zwste Ty Where d(u,v) is the distance be-
tween v and v.

We first consider an idealized model with no failures.
Kleinberg [5] proved that with n? nodes embedded at
grid points in a d-dimensional grid, with each node

connected to its immediate neighbors and one long-
distance neighbor v chosen with probability inversely
proportional to d(u, v)d, any message can be delivered
in time polynomial in log n using greedy routing. While
this result can be directly applied to our model with
d=1and ¢ = 1 to give a O(log®n) delivery time, we
have a much simpler proof using Lemma 1, which we
omit for lack of space.

The next interesting question to ask is if the per-
formance improves by adding more long-distance links.
We consider two different strategies for ¢ € [1,lgn| and
(Ign,n°], ¢ < 1. In [6], Kleinberg uses a group structure
to cover the first case with polylogarithmic links to get
O(logn) delivery time. However, he uses a more com-
plicated algorithm for routing while we obtain the same
bound (for the case of a line) using only greedy routing.

We prove that with ¢ € [1,lgn], we get an expected
delivery time of O(lg? n/f). The main idea behind the
proof is that the delivery of a message is divided into
phases. This is an extension of the idea used in [5]. A
message is said to be in phase j if the distance from
the current node to the destination node is between 27
and 2/*1. There are at most (Ign -+ 1) such phases. We
analyze the expected number of links present between
any two phases and this number increases as ¢ increases.
We prove that the expected time spent in each phase is
at most O(lgn/¢), thus giving a total upper bound on
the delivery time as O(lgn/¢).

For ¢ € (Ign,n°], we use a deterministic strategy.
The location of each node is identified as a number to a
base b. With O(blog, n) links per node, routing is done
by forwarding the message to a node with an identi-
fier closer to the target identifier by one digit. With at
most O(log, n) digits, we get the same delivery time.
This strategy is similar in spirit to Plaxton’s algorithm
[10].

TuHEOREM 11. Choose an integer b > 1. With
¢ = (b — 1)[log,n], let each node link to mnodes
at distances lx,2x,3x,...,(b — 1)z, for each z €
{6°,0',... ,bloss "]_1}. Then the expected delivery time
T(n) = O(log, n).

4.3.1 Failureof Links

We get reasonable performance even with link fail-
ures. We assume that each long-distance link is present
independently with probability p, but that each node
is always connected to its immediate neighbors. This
ensures that a message will always be delivered even if
it takes a long time.

With £ € [1,1gn], we use the same idea of delivering
messages in phases. Intuitively, the expected time in
each phase increases inversely proportional to p and we
get the following result.

THEOREM 12. Let each node be connected to its im-
mediate neighbors (at distance 1) and £ € [1,1gn] long-
distance neighbors chosen independently with replace-
ment, with probability inversely proportional to the dis-
tance between the nodes. Assume that the links to the
immediate neighbors are always present. If the proba-

bility of a long-distance link being present is p, then the
delivery time is O(lg® n/pf).

A similar intuition works for £ € (Ign,n]. If a link
fails, then the node has to take a shorter long-distance
link, which will not take the message as close to the
target as the initial failed link. Clearly as p decreases,
the message has to take shorter and shorter links which
increases the delivery time.

THEOREM 13. Let each node have { = O(log,n),
long-distance links to distances b°,b' b2 ... ,bliogenl
Assume that the links to the nearest neighbors are al-
ways present. If the probability of a link being present is
p, then the expected delivery time T (n) = O(blgn/p).

4.3.2 Failure of Nodes

The analysis for node failures is not as simple as that
for link failures because we lose the important property
of independence between links of different nodes. It is
no longer the case that if one node cannot communicate
with some other node, it has a good chance of doing so
by passing the message to its neighbor. We analyze the
situation when a node forwards a message to its next
best neighbor after it reaches a dead neighbor.

To prove our result, we again use the formulation of
a message moving between phases to reach the target.
The idea is that the jumps between phases are indepen-
dent so once we move from phase j to phase j—1, further
routing no longer depends on any nodes in phase 5. We
can condition on the number of nodes being alive in the
lower phase and estimate the time spent in each phase.
Intuitively, if a node is present with probability p, we
would expect to wait for a time inversely proportional
to p in anticipation of finding a node in the lower phase
to jump to.

THEOREM 14. Let the model be as in Theorem 12.
and let each node be present with probability p. Then
the expected delivery time T(n) = O(lg? n/pf).

In contrast, it appears that our deterministic routing
strategy can lead to very poor performance; we have not
yet analyzed this situation formally.

5. CONSTRUCTION OF GRAPHS

As the group of nodes present in the network changes,
so does the graph of the virtual overlay network. In or-
der for our routing techniques to be effective, the graph
must always exhibit the property that the likelihood of
any two vertices v,u being connected is Q(d(v,u)™!).
We describe briefly a heuristic approach to construct
and maintain a graph with such an invariant.

Since the choice of edges leaving each vertex is inde-
pendent of the choices of other vertices, we can assume
that points in the metric space are added one at a time.
Let v be the k-th point to be added. Point v chooses
the sinks of its outgoing edges according to the inverse-
distance distribution and connects to them by running
the search algorithm. If a desired sink u is not present,
v connects to u’s closest, present neighbor. In effect,

each of the k — 1 points already present before v is sur-
rounded by a basin of attraction, collecting probability
mass in proportion to its length. Since we assume the
hash function populates the metric space evenly, and
because of absolute symmetry, the basin length L has
the same distribution for all points. It is easy to see that
with high probability, L will not be much smaller than
its expectation: Prob(L < c-k ') =1—(1—c-k H)* L.
A lower bound on the probability that the edge (v,u) is
present is ¢’ - k' - d(v, f)™*, where f is the point in u’s
basin that is the farthest from v.> However, the bound
holds only if w is amongst the k — 1 points added be-
fore v. Otherwise, the aforementioned probability is 0,
which means that we need to amend our linking strategy
so as to transfer probability mass from the former case
to the latter one. We describe next how to accomplish
this task.

Let u be a new point. We give earlier points the op-
portunity to obtain outgoing edges to w by having u (1)
calculate the number of incoming edges it “should” have
from points added before it arrived, and (2) choose such
points according to an appropriate distribution a.? If
¢ is the number of outgoing edges for each point, then
¢ will also be the expected number of incoming edges
that w has to estimate in step (1). For graphs with a
large number of points n, each point has roughly 1/n
chance of ending at w because of symmetry. The num-
ber of links ending at u is thus distributed according
to a Poisson distribution with rate ¢, that is, the prob-

ability that u has k incoming edges is e_kl!lk, and the
expectation of the distribution is £. After step (2) is
completed by u, each chosen point v responds to u’s
request by using a distribution S to choose one of its
existing outgoing edges to replace with an edge to w.
It is easy to show that if @ and B are proportional to
the inverse of the distance between points, the resulting
graph has the property we want. This procedure can
be repeated to allow for regeneration of links when a
network node crashes.

We believe that our method will give a distribution
close enough to the desired distribution for the rout-
ing algorithm to work. Unfortunately, the construction
process interacts in a complicated way with the routing
algorithm, which makes analysis difficult. We are cur-
rently conducting simulations to assess the effectiveness
of constructing a graph using our heuristic.

There has recently been related work [9] on how to
construct, with the support of a central server, random
graphs with many desirable properties, such as small
diameter and guaranteed connectivity with high prob-
ability. Although it is not clear what kind of fault-
tolerance properties this approach offers if the central
server crashes, or how the constructed graph can be
used for efficient routing, it is likely that similar tech-
niques could be useful in our setting.

3The constant ¢’ has absorbed ¢ and the normalizing
constant for the distribution.
“All this can be easily calculated by u since the link
probabilities are symmetric.

6. EXPERIMENTAL RESULTS

We simulated a network at the application level with
n = 2'7 nodes. Each node has lgn = 17 links cho-
sen using the randomized rule explained in Section 4.3.
Routing is done greedily by forwarding a message to
the neighbor closest to its target node. In each sim-
ulation, the network is set up afresh and a fraction p
of the nodes fail. We choose random source and des-
tination nodes which have not failed and route a mes-
sage between them. For each value of p, we ran 1000
simulations delivering 100 messages in each simulation,
and averaged the number of delivery hops for successful
searches and number of failed searches.

With node failures, a node may not be able to find
a live neighbor that is closer to the target node than
itself. We studied three possible strategies to overcome
this problem as follows: (i) Terminate the search. (ii)
Randomly choose another node, deliver the message to
this new node and then try to deliver the message from
this node to the original destination node (similar to the
hypercube routing strategy as explained in [13]). (iii)
Keep track of a fixed number (in our simulations, 5)
of nodes through which the message is last routed and
backtrack. When the search reaches a node from where
it cannot proceed, it backtracks to the most recently
visited node from this list and chooses the next best
neighbor to route to. For all these strategies we note
that once a node chooses its best neighbor, it does not
send the message to any other link if it finds out that
the best neighbor has failed.

Failed Searches
Random Reroute -
0.6 Backtracking -

Fraction of failed searches

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Fraction of failed nodes

Figure 2: Fraction of failed searches

Figure 2 shows the fraction of messages that fail to be
delivered versus the fraction of failed nodes. Figure 3
shows the number of hops for successful searches versus
the fraction of failed nodes. It is very interesting to
see how well the system behaves even with such a large
number of failed nodes. In addition, backtracking gives
a significant improvement in reducing the number of
failures as compared to the other two methods, although
it may take a longer time for delivery.

Our results may not be directly comparable to those
of CAN[11] and Chord[12] since they use different sim-
ulators for their results. However, we see that we get
results as good as theirs. Even if we just terminate
the search, we get less than p fraction of failed searches
with p fraction of failed nodes. Chord[12] has roughly

Failed Search ——
ndom Reroute ---—-—-
16 Backtracking --

o
Q.

Delivery time
-
&

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Fraction of Failed Nodes

Figure 3: Delivery time

the same performance after their network stabilizes from
some repair mechanism. Further, with backtracking we
see that with 80% failed nodes, we still get less than
30% failed searches. These results are very promising
and it would be very interesting to study backtracking
analytically.

7. CONCLUSIONS
WORK

The following table summarizes our upper and lower
bounds®:

AND FUTURE

Model # Links £ | Upper Bound | Lower Bound
o 1 oUg’n) [QAggh)
failures (1,1gn] O(#) Q (ll[[fl[?n)
lgn,n%] O(%5) Q(£7)
Pr[Link | [1,1gn] o(er) -
present]=p g n, n°] o(%ﬁ))
T e | o |

We have shown that greedy routing in an overlay net-
work organized as a random graph in a metric space can
be a nearly optimal mechanism for searching a peer-
to-peer system with low message complexity, even in
the presence of many faults. We see this as an im-
portant first step in the design of efficient algorithms
for such networks, but many issues still need to be ad-
dressed. Our results mostly apply to one-dimensional
metric spaces like the line or a circle. One interesting
possibility is whether similar strategies would work for
higher-dimensional spaces, particularly ones in which
some of the dimensions represent the actual physical
distribution of the nodes in real space; good network-
building and search mechanisms for this model might
allow efficient location of nearby instances of a resource

°In the upper bound with (Ign,n¢] links, the num-
ber of links £ = O(blog, n). Also, the deterministic
strategy used for links ¢ € (lgn,n°], with link failures
is slightly different that the one with no failures, and
¢ = O(log, n). In the lower bound column, the bound
for [1,1g n] links is for one-sided routing.

without having to resort to local flooding (as in [4]).
Another promising direction would be to study the se-
curity properties of greedy routing schemes, to see how
they can be adapted to provide desirable properties like
anonymity or robustness against Byzantine failures.

8. REFERENCES

[1] GNUTELLA. http://gnutella.wego.com.

[2] A. D. Joseph, J. Kubiatowicz, and B. Y. Zhao.
Tapestry: An infrastructure for fault-tolerant
wide-area location and routing. Technical Report
UCB/CSD-01-1141, University of California,
Berkeley, Apr 2001.

[3] R. M. Karp, E. Upfal, and A. Wigderson. The
complexity of parallel search. Journal of Computer
and System Sciences, 36(2):225-253, 1988.

[4] D. Kempe, J. M. Kleinberg, and A. J. Demers.
Spatial gossip and resource location protocols. In
Proceedings of 33rd Annual ACM Symposium on
Theory of Computing, pages 163-172, 2001.

[56] J. Kleinberg. The small-world phenomenon:an
algorithmic perspective. Technical Report
99-1776, Cornell University, Oct. 1999.

[6] J. Kleinberg. Small-world phenomena and the
dynamics of information. 2001.

[7] MORPHEUS. http://www.musiccity.com.

[8] NAPSTER. http://www.napster.com.

[9] G. Panduragan, P. Raghavan, and E. Upfal.
Building low-diameter P2P networks. In
Proceedings of 42nd Annual IEEE Symposium on
the Foundations of Computer Science (FOCS),
2001.

[10] C. Plaxton, R. Rajaram, and A. W. Richa.
Accessing nearby copies of replicated objects in a
distributed environment. In Proceedings of the
Ninth Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA), June 1997.

[11] S. Ratnasamy, P. Francis, M. Handley, R. Karp,
and S. Shenker. A scalable content-addressable
network. In Proceedings of the ACM SIGCOMM,
pages 161-170, 2001.

[12] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishna. Chord: A scalable peer-to-peer
lookup service for internet applications. In
Proceedings of SIGCOMM 2001, pages 149-160,
2001.

[13] L. Valiant. A scheme for fast parallel
communication. SIAM Journal on Computing,
11:350-361, 1982.

