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ABSTRACTWe 
onsider the problem of designing an overlay net-work and routing me
hanism that permits �nding re-sour
es eÆ
iently in a peer-to-peer system. We arguethat many existing approa
hes to this problem 
an bemodeled as the 
onstru
tion of a random graph embed-ded in a metri
 spa
e whose points represent resour
eidenti�ers, where the probability of a 
onne
tion be-tween two nodes depends only on the distan
e betweenthem in the metri
 spa
e. We study the performan
eof a peer-to-peer system where nodes are embedded atgrid points in a simple metri
 spa
e: a one-dimensionalreal line. We prove upper and lower bounds on the mes-sage 
omplexity of lo
ating parti
ular resour
es in su
ha system, under a variety of assumptions about fail-ures of either nodes or the 
onne
tions between them.Our lower bounds in parti
ular show that the use of in-verse power-law distributions in routing, as suggested byKleinberg [5℄, is 
lose to optimal. We also give heuris-ti
s to eÆ
iently maintain a network supporting eÆ
ientrouting as nodes enter and leave the system. Finally, wegive some experimental results that suggest promisingdire
tions for future work.
1. INTRODUCTIONPeer-to-peer systems are distributed systems withoutany 
entral authority and with varying 
omputationalpower at ea
h ma
hine. We study the problem of lo
at-ing resour
es in su
h a large network of heterogeneousma
hines that are subje
t to 
rash failures. We des
ribe�Supported by NSF grants CCR-9820888 and CCR-0098078.ySupported in part by ONR grant N00014-01-1-0795.zSupported by NSF grants CCR-9820888 and CCR-0098078.
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how to 
onstru
t distributed data stru
tures that have
ertain desirable properties and allow eÆ
ient resour
elo
ation.De
entralization is a 
riti
al feature of su
h a systemas any 
entral server is a vulnerable point of failure andalso wastes the power of the 
lients. Equally importantis s
alability: the 
ost borne by ea
h node must not de-pend too mu
h on the network size and should ideallybe proportional, within polylogarithmi
 fa
tors, to theamount of data the node seeks or provides. Sin
e weexpe
t nodes to arrive and depart at a high rate, thesystem should be resilient to failures. Furthermore, dis-ruptions to parts of the data stru
ture should self-healto provide self-stabilization.Our approa
h provides a hash table-like fun
tional-ity, based on keys that uniquely identify the system re-sour
es. To a

omplish this, we map resour
es to pointsin a metri
 spa
e from the keys' hash values. We 
on-stru
t and maintain a random graph linking these pointsand use greedy routing to traverse its edges to �nd dataitems. The prin
iple we rely on is that failures leavebehind yet another (smaller) random graph, ensuringthat the system is robust even in the fa
e of 
onsider-able damage. Another 
ompelling advantage of randomgraphs is that they eliminate the need for global 
oor-dination. Thus, we get a fully-distributed, egalitarian,s
alable system with no bottlene
ks. We measure per-forman
e in terms of the number of messages sent bythe system for a sear
h operation. Given the growingstorage 
apa
ity of ma
hines, we are less 
on
erned withminimizing the storage at ea
h node, but the spa
e re-quirements are still small: the information stored at anode 
onsists only of a network address and lo
ation inthe metri
 spa
e for ea
h neighbor.The rest of the paper is organized as follows. Se
tion 2explains our abstra
t model in detail, and Se
tion 3 de-s
ribes some of the existing peer-to-peer systems. Weprove our results for routing in Se
tion 4, followed bya dis
ussion on how to 
onstru
t the random graph inSe
tion 5. We present experimental results in Se
tion 6and 
on
lusions and future work in Se
tion 7.
2. OUR APPROACHThe idea underlying our approa
h 
onsists of threebasi
 parts: (1) embed resour
es as points in a metri
spa
e, (2) 
onstru
t a random graph by appropriately
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Figure 1: An example of the metri
-spa
e em-bedding.linking these points, and (3) eÆ
iently lo
ate resour
esby routing greedily along the edges of the graph. Let Rbe a set of resour
es spread over a large, heterogeneousnetwork N . For ea
h resour
e r 2 R, owner(r) denotesthe node in N that provides r and key(r) denotes theresour
e's key. Let K be the set of all possible keys. Weassume a hash fun
tion h : K ! V su
h that resour
e rmaps to the point v = h(key(r)) in a metri
 spa
e (V; d),where V is the point set and d is the distan
e metri
 asshown in Figure 1. The hash fun
tion is assumed topopulate the metri
 spa
e evenly. Note that via thisresour
e embedding, a node n is mapped onto the setVn = fv 2 V : 9r 2 R; v = h(key(r))^(owner(r) = n)g,namely the set of metri
-spa
e points assigned to theresour
es the node provides.Our next step is to 
arefully 
onstru
t a dire
ted ran-dom graph from the points embedded in V . We assumethat ea
h newly-arrived node n is initially 
onne
tedto some other node in N . Ea
h node n generates theoutgoing edges for ea
h vertex v 2 Vn independently.An edge (v; u) 2 Vn � Vm simply denotes that n knowsthat m is the network node that provides the resour
emapped to u; hen
e, we 
an view the graph as a vir-tual overlay network of information. Node n 
onstru
tsea
h edge by exe
uting the sear
h algorithm to lo
atethe resour
e that is mapped to the sink of that edge. Ifthe metri
 spa
e is not populated densely enough, the
hoi
e of a sink may result in a vertex 
orresponding toan absent resour
e. In that 
ase, n 
hooses the neighborpresent 
losest to the original sink. Moving to nearbyverti
es will introdu
e some bias in the edge distributionbut the magnitude of error does not appear to be large.A more detailed des
ription of the graph 
onstru
tionis given in Se
tion 5.Having 
onstru
ted the overlay network of informa-tion, we 
an now use it for resour
e lo
ation. At anytime t, let Rt � R be the set of available resour
es andIt be the 
orresponding overlay network. A request bynode n to lo
ate resour
e r at time t is served in asimple, lo
alized manner: n 
al
ulates the metri
-spa
epoint v that 
orresponds to r, and a request message isthen routed over It from the vertex in Vn that is 
losestto v to v itself. Ea
h node needs only lo
al information,namely its set of neighbors in It, to parti
ipate in the re-sour
e lo
ation. Routing is done greedily by forwardingthe message to the node mapped to a metri
-spa
e pointas 
lose to v as possible. The problem of resour
e lo
a-

tion is thus translated into routing on random graphsembedded in a metri
 spa
e.The advantage of using random graphs is that theyare robust against failures: a node-indu
ed subgraph ofa random graph is generally still a random graph; there-fore, the disappearan
e of a vertex will still allow rout-ing over the stru
ture. Further, embedding the graphin a metri
 spa
e has the very important property thatthe only information needed to lo
ate a resour
e is thelo
ation of its 
orresponding metri
-spa
e point. Thatlo
ation is both permanent, in the sense of being un-a�e
ted by disruption of the data stru
ture, and easily
omputable by any node that seeks the resour
e. So,while the pattern of links between nodes may be dam-aged or destroyed by failure of nodes or of the underlying
ommuni
ation network, the metri
 spa
e forms an in-vulnerable foundation over whi
h to build the ephemeralparts of the data stru
ture.
3. CURRENT PEER-TO-PEER SYS-

TEMSMost peer-to-peer systems in widespread use are nots
alable. Napster's [8℄ approa
h of using a 
entral serverhas the weaknesses of a vulnerable single point of fail-ure and wasted 
lient 
omputational power. Gnutella [1℄
oods the network to lo
ate a resour
e. Flooding 
re-ates a trade-o� between overloading every node in thenetwork for ea
h request and 
utting o� sear
hes before
ompletion. While the use of super-peers [7℄ amelioratesthe problem somewhat in pra
ti
e, it does not improveperforman
e in the limit.Some of these �rst-generation systems have in-spired the development of more sophisti
ated ones likeCAN [11℄, Chord [12℄ and Tapestry [2℄. CAN parti-tions a d-dimensional metri
 spa
e into zones. Ea
h keyis mapped to a point in some zone and stored at thenode that owns the zone. Ea
h node stores O(d) infor-mation, and resour
e lo
ation, done by greedy routing,takes O(dn1=d) time. Chord maps nodes to identitiesof m bits pla
ed around a modulo 2m identi�er 
ir-
le. Resour
es are stored at existing su

essor nodesof the nodes they are mapped to. Ea
h node maintainsa routing table of size m and uses greedy routing to givean O(m) delivery time. Tapestry uses Plaxton's algo-rithm [10℄, a form of suÆx-based, hyper
ube routing, asthe routing me
hanism: in this algorithm, the messageis forwarded deterministi
ally to a node whose identi�eris one digit 
loser to the target identi�er. To this end,ea
h node maintains O(lg n) pie
es of information anddelivery time is also O(lg n).Although these systems seem vastly di�erent, there isa re
urrent underlying theme in the use of some variantof an overlayed metri
 spa
e in whi
h the nodes are em-bedded. The lo
ation of a resour
e in this metri
 spa
eis determined by its key. Ea
h node maintains some in-formation about its neighbors in the metri
 spa
e, androuting is then simply done by forwarding pa
kets toneighbors 
loser to the target node with respe
t to themetri
. It is this inherent 
ommon stru
ture that leadsto similar results for the performan
e of these networks.



In this paper, we des
ribe a general setting for su
hoverlay metri
 spa
es, although most of our results areobtained from one-dimensional spa
es.In general, the fault-toleran
e properties of these sys-tems are not well-de�ned. Ea
h system provides a repairme
hanism for failures but makes no performan
e guar-antees till this me
hanism ki
ks in. For large systems,where nodes appear and leave frequently, resilien
e torepeated and 
on
urrent failures is a desirable and im-portant property. Our experiments show that with ouroverlay spa
e and linking strategies, the system per-forms reasonably well even with a large number of fail-ures.
4. ROUTINGIn this se
tion, we present our lower and upperbounds on greedy routing.
4.1 ToolsSome of our upper bounds will be proved using awell-known upper bound of Karp et al.[3℄ on probabilis-ti
 re
urren
e relations. We will restate this bound asLemma 1, and then show how a similar te
hnique 
anbe used to get lower bounds with some additional 
on-ditions in Theorem 2.Lemma 1 ([3℄). The time T (X0) needed for a non-in
reasing real-valued Markov 
hain X0; X1; X2; X3 : : :to drop to 1 is bounded byT (X0) � Z X01 1�z dz; (1)when �z = E[Xt � Xt+1 : Xt = z℄ is a nonde
reasingfun
tion of z.This bound has a ni
e physi
al interpretation. If ittakes one se
ond to jump down �x meters from x, thenwe are traveling at a rate of �x meters per se
ond dur-ing that interval. When we zip past some position z,we are traveling at the average speed �x determined byour starting point x � z for the interval. Sin
e � isnonde
reasing, using �z as our estimated speed under-estimates our a
tual speed when passing z. The integral
omputes the time to get all the way to zero if we use�z as our instantaneous speed when passing position z.Sin
e our estimate of our speed is low (on average), ourestimate of our time will be high, giving an upper boundon the a
tual expe
ted time.We would like to get lower bounds on su
h pro
essesin addition to upper bounds, and we will not ne
essarilybe able to guarantee that �z, as de�ned in Lemma 1, willbe a nonde
reasing fun
tion of z. But we will still usethe same basi
 intuition: The average speed at whi
hwe pass z is at least the minimum average speed of anyjump that takes us past z. We 
an �nd this minimumspeed by taking the minimum over all x > z; unfortu-nately, this may give us too small an estimate. Instead,we 
hoose a upper bound U on \short" jumps, 
om-pute the minimum speed of short jumps of at most Ufor all x between z and z + U , and handle the (hope-fully rare) long jumps of more than U by 
onditioning

against them. Subje
t to this 
onditioning, we 
an de-�ne an upper bound mz on the average speed passingz, and use essentially the same integral as in (1) to geta lower bound on the time. Some additional tinkeringto a

ount for the e�e
t of the 
onditioning then givesus our real lower bound, whi
h appears in Theorem 2below, as Inequality (8).Theorem 2. Let X0; X1; X2; : : : be Markov pro
esswith state spa
e S, where X0 is a 
onstant. Let f be anon-negative real-valued fun
tion on S su
h that, for allt, Pr[f(Xt)� f(Xt+1) � 0 : Xt℄ = 1: (2)Let U and � be 
onstants su
h that for any x > 0,Pr[f(Xt)� f(Xt+1) � U : Xt = x℄ � �: (3)Let � = minft : f(Xt) = 0g: (4)For ea
h x with f(x) > 0, let �x > 0 satisfy�x � E[f(Xt)�f(Xt+1) : Xt = x; f(Xt)�f(Xt+1) < U ℄:(5)Now de�nemz = sup f�x : x 2 S; f(x) 2 [z; z + U)g (6)and de�ne T (x) = Z f(x)0 1mz dz (7)Then E[� ℄ � T (X0)�T (X0) + (1� �) (8)
4.2 Lower bound on greedy routingWe will now show a lower bound on the expe
ted timetaken by greedy routing on a random graph embedded ina line, where ea
h node in the graph has expe
ted outde-gree at most `, and the probability that a node at posi-tion x is 
onne
ted to positions x��1; x��2; : : : ; x��kdepends only on the set � = f�1; : : : ;�kg and not onx and is independent of the 
hoi
e of outgoing edges forother nodes.1We 
onsider to two variants of the greedy routing al-gorithm. Without loss of generality, we assume thatthe target of the sear
h is labeled 0. In one-sided greedyrouting, the algorithm never traverses a link that wouldtake it past its target. So if the algorithm is 
urrentlyat x and is trying to rea
h 0, it will move to the nodex � �i with the smallest non-negative label. In two-sided greedy routing, the algorithm 
hooses a link thatminimizes the distan
e to the target, without regardto whi
h side of the target the other end of the linkis. In the two-sided 
ase the algorithm will move to anode x��i whose label has the smallest absolute value,with ties broken arbitrarily. One-sided greedy routing1We assume that nodes are labeled by integers, andidentify ea
h node with its label to avoid ex
essive no-tation.




an be thought of as modeling algorithms on a graphwith a boundary when the target lies on the boundary,or algorithms where all links point in only one dire
tion(as in Chord).Our results are stronger for the one-sided 
ase than forthe two-sided 
ase. With one-sided greedy routing, weshow a lower bound of 
(lnn=(` ln lnn)) on the time torea
h 0 from a point 
hosen uniformly from the range 1to n that applies to any link distribution. For two-sidedrouting, we show a lower bound of 
(lnn=(`2 ln lnn)),with some 
onstraints on the distribution. We 
onje
-ture that these 
onstraints are unne
essary, and that
(lnn=(` ln lnn)) is the 
orre
t lower bound for bothmodels.In general, we assume that ea
h node is 
onne
ted toits immediate neighbors; the simplest way to model thisis to require that �1 appear in �.We will begin by developing ma
hinery that will beuseful in the proofs of both the one-sided and two-sidedlower bounds.
4.2.1 Link sets: notation and distributionsFirst we des
ribe some notation for � sets. Writeea
h � asf��s; : : :��2;��1 = �1;�1 = 1;�2; : : :�tg;where �i < �j whenever i < j. Ea
h � is a randomvariable drawn from some distribution on �nite sets;the individual �i are thus in general not independent.Let �� 
onsist of the s negative elements of � and�+ 
onsist of the t positive elements. Formally de�ne��i = �1 when i > s and �i = +1 when i > t.For one-sided routing, we make no assumptions aboutthe distribution of � ex
ept that j�j must have �niteexpe
tation and � always 
ontains 1. For two-sidedrouting, we assume that � is generated by in
ludingea
h possible Æ in � with probability pÆ, where p issymmetri
 about the origin (i.e., pÆ = p�Æ for all Æ),p1 = p�1 = 1, and p is unimodal, i.e. nonin
reasing forpositive Æ and nonde
reasing for negative Æ.2 We alsorequire that the events [Æ 2 �℄ and [Æ0 2 �℄ are pairwiseindependent for distin
t Æ; Æ0.
4.2.2 The aggregate chain StFor a �xed distribution on �, the traje
tory of a singleinitial point X0 is a Markov 
hain X0; X1; X2; : : :, withXt+1 = s(Xt;�t), where �t determines the outgoinglinks from the node rea
hed at time t and s is a su

essorfun
tion that sele
ts the next node Xt+1 = Xt � �tia

ording to the routing algorithm. Note that the 
hainis Markov, be
ause the presen
e of �1 links guaranteesthat no node ever appears twi
e in the sequen
e, and soea
h new node 
orresponds to a new 
hoi
e of links.From the Xt 
hain we 
an derive an aggregate 
hainthat des
ribes the 
olle
tive behavior of all nodes insome range. Ea
h state of the aggregate 
hain is a 
on-tiguous sets of nodes whose labels all have the samesign; we de�ne the sign of the state to be the 
ommon2These 
onstraints imply that p0 = 1; formally, weimagine that 0 is present in ea
h � but is ignored bythe routing algorithm.

sign of all of its elements. For one-sided routing ea
hstate is either f0g or an interval of the form f1 : : : kgfor some k. For two-sided routing the states are moregeneral The aggregate states are 
hara
terized formallyin Lemma 4.Given a 
ontiguous set of nodes S and a set �, de�neS�i = fx 2 S : s(x;�) = x��ig:The intuition is that S�i 
onsists of all those nodes forwhi
h the algorithm will 
hoose �i as the outgoing link.Note that S�i will always be a 
ontiguous range be
auseof the greediness of the algorithm. Now de�ne, for ea
h� 2 f�; 0;+g:S�i� = fx 2 S�i : sgn s(x;�) = �g:Here we have simply split S�i into those nodes withnegative, zero, or positive su

essors.For any set A and integer Æ write A � Æ for fx � Æ :x 2 Ag.We will now build our aggregate 
hain by letting thesu

essors of a range S be the ranges S�i� � �i forall possible �, i, and �. As a spe
ial 
ase, we de�neSt+1 = f0g when St = f0g; on
e we arrive at the target,we do not leave it. For all other St, we letPr �St+1 = St�i� ��i : �� = jSt�i�jjStj ; (9)and de�ne the un
onditional transition probabilities byaveraging over all �.Lemma 3 shows that moving to the aggregate 
haindoes not misrepresent the underlying single-point 
hain:Lemma 3. Let X0 be drawn uniformly from the rangeS0. Let Y t be a uniformly 
hosen element of St. Thenfor all x and t, Pr[Xt = x℄ = Pr[Y t = x℄.Lemma 4 justi�es our earlier 
hara
terization of theaggregate state spa
es:Lemma 4. Let S0 = f1 : : : ng for some n. Then withone-sided routing, every St is either f0g or of the formf1 : : : kg for some k; and with two-sided routing, everySt is an interval of integers in whi
h every element hasthe same sign.The advantage of the aggregate 
hain over the single-point 
hain is that, while we 
annot do mu
h to boundthe progress of a single point with an arbitrary distri-bution on �, we 
an show that the size of St does notdrop too qui
kly given a bound ` on E[j�j℄. The in-tuition is that ea
h su

essor set of size a�1jStj or lesso

urs with probability at most a�1, and there are atmost 3` su
h sets on average.Lemma 5. Let E[j�j℄ � `. Then for any a � 1, ineither the one-sided or two-sided model,Pr �jSt+1j � a�1jStj� � 3`a�1: (10)Another way to write (10) is to say thatPr �ln jStj � ln jSt+1j � ln a� � 3`a�1, whi
h will givethe bound (3) on the probability of large jumps when it
omes time to apply Theorem 2.



4.2.3 Boundary pointsLemma 5 says that jStj seldom drops by too large aratio at on
e, but it doesn't tell us mu
h about howqui
kly jStj drops in short hops. To bound this latterquantity, we need to get a bound on how many sub-ranges St splinters into through the a
tion of s(�;�).We will do so by showing that only 
ertain points 
anappear as the boundaries of these subranges in the di-re
tion of 0.For �xed �, de�ne for ea
h i > 0�i = ��i +�i+12 �and ��i = ���i +��i�12 � :Let � be the set of all �nite �i and ��i.Lemma 6. Fix S and � and let � be de�ned as above.Suppose that S is positive. Let M = fmin(S�i�) :S�i� 6= ;g be the set of minimum elements of subrangesS�i� of S. Then M is a subset of S and 
ontains noelements other than1. min(S),2. �i for ea
h i > 0,3. �i + 1 for ea
h i > 0, and4. At most one of �i or �i + 1 for ea
h i > 0,where the last 
ase holds only with two-sided routing.If S is negative, the symmetri
 
ondition holds forM = fmax(S�i�) : S�i� 6= ;g.Proof. Consider some subrange S�i� of S. If S�i�
ontains min(S), the �rst 
ase holds. Otherwise: (a) ifS�i� = S�i0, the se
ond 
ase holds; (b) if S�i� = S�i+,the third 
ase holds; (
) if S�i� = S�i�, the fourth 
aseholds, with min(S�i�) = �i�1 if �i�1 +�i is odd, andeither �i�1 or �i�1+1 if �i�1+�i is even, depending onwhether the tie-breaking rule assigns �i�1 to S�(i�1)+or S�i�.We will 
all the elements of M boundary points of S.
4.2.4 Bounding changes in ln jStjNow we would like to use Lemmas 5 and Lemma 6 toget an upper bound on the rate at whi
h ln jStj dropsas a fun
tion of the � distribution.The following lemma is used to bound a sum thatarises in Lemma 8.Lemma 7. Let 
 � 0. Let Pni=1 xi = M where ea
hxi � 0 and at least one xi is greater than 
 Let B be theset of all i for whi
h xi is greater than 
. ThenPi2B xi lnxiPi2B xi � ln�max�
; Mn �� : (11)

Proof. If Mn < 
, we still have xi > 
 for all i 2 B,so the left-hand side 
annot be less than ln 
. So theinteresting 
ase is when Mn > 
.Let B have b elements. ThenPi=2B xi < (n� b)
 andPi2B �M � (n� b)
 =M �n
+ b
. Be
ause xi lnxi is
onvex, its sum over B is minimized for �xed Pi2B xiby setting all su
h xi equal, in whi
h 
ase the left-handside of (11) be
omes simply ln(xi) for any i 2 B.Now observe that setting all xi in B equal gives xi =M�n
+b
b = M�n
b + 
 � M�n
n + 
 = Mn .Lemma 8. Fix a > 1, and let S = St be a positiverange with jSj � a. De�ne � as in Lemma 6. LetS0 = [min(S) + �a�1jSj�� 1;max(S)� 1℄. ThenE �ln jStj � ln jSt+1j : St; ln jStj � ln jSt+1j < ln a�� ln 11�a�1 + lnE[1 + Z : St℄ (12)where Z = 2j� \ S0j with one-sided routing and Z =2j� \ S0j + j� \ S0j with two-sided routing.Proof. Call a subrange S�i� large if jS�i�j > a�1jSjand small otherwise. Observe that �a�1jSj� � 2, im-plying any large set has at least two elements.For any large S�i�, max(S�i�) � min(S)+�a�1jSj��1. Similarly min(S�i�) � max(S)�1. So any large S�i�interse
ts S0 in at least one point.Let T = fT1; T2; : : : ; Tkg be the set of subranges S�i�,large or small, that interse
t S0. It is immediate fromthis de�nition that ST � S0 and thus P jTj j � jS0j.Using Lemma 6, we 
an 
hara
terize the elements ofT as follows:1. There is at most one set Tj that 
ontains min(Tj).2. There is at most one set Tj that has min(Tj) = �ifor ea
h �i in S0.3. There is at most one set Tj that has min(Tj) =�i + 1 for ea
h �i in S0.4. With two-sided routing, there is at most one setTj that has min(Tj) = �i or min(Tj) = �i + 1 forea
h �i in S0. Note that there may be a set whoseminimum element is �i+1 where �i = min(S0)�1,but this set is already a

ounted for by the �rst
ase.Thus T has at most 1 + Z = 1 + 2j� \ S0j elementswith one-sided routing and at most 1 + Z = 1 + 2j� \S0j + j� \ S0j elements with two-sided routing.Conditioning on jSt+1j > a�1jSj, jSt+1j is equal tojS�i�j for some large S�i� and thus for some large Tj 2T . Whi
h large Tj is 
hosen is proportional to its size,so for �xed T , we haveE[lnSt+1 : T ℄ = PjT jj=1 jTj j ln jTjPjT jj=1 jTj j� ln�max�a�1jSj; jST jjT j ��� ln� jS0jjT j � ;



where the �rst inequality follows from Lemma 7.Now let us 
omputeE[ln jStj � ln jSt+1j : St℄� ln jStj � E[ln jS0j � ln jT j : St℄= ln jStjjS0j + E[ln jT j : St℄� ln 11� a�1 + lnE[jT j : St℄:In the last step we use E[ln jT j : St℄ � lnE[jT j : St℄,whi
h follows from the 
on
avity of ln and Jensen's in-equality.
4.2.5 Putting the pieces togetherWe now have all the tools we need to prove our lowerbound.Theorem 9. Let G be a random graph whose nodesare labeled by the integers. Let �x for ea
h x be a set ofinteger o�sets 
hosen independently from some 
ommondistribution, subje
t to the 
onstraint that �1 and +1are present in every �x, and let node x have an outgoingedge to x�Æ for ea
h Æ 2 �x. Let ` = E[j�j℄. Consider agreedy routing traje
tory in G starting at a point 
hosenuniformly from 1 : : : n and ending at 0.With one-sided routing, the expe
ted time to rea
h 0is 
� ln2 n` ln lnn� (13)With two-sided routing, the expe
ted time to rea
h 0is 
� ln2 n`2 ln lnn� ; (14)provided � is generated by in
luding ea
h Æ in � withprobability pÆ, where (a) p is unimodal, (b) p is sym-metri
 about 0, and (
) the 
hoi
es to in
lude parti
ularÆ; Æ0 are pairwise independent.Proof. Let S0 = f1 : : : ng.We are going to apply Theorem 2 to the sequen
eS0; S1; S2; : : : with f(S) = ln jSj. We have 
hosen f sothat when we rea
h the target, f(S) = 0; so that a lowerbound on � gives a lower bound on the expe
ted time ofthe routing algorithm. To apply the theorem, we needto show that (a) the probability that ln jSj drops by alarge amount is small, and (b) that the integral in (7)is large.Let a = 3` ln3 n. By Lemma 5, for all t,Pr �jSt+1j � a�1jStj� � 3`a�1 = ln�3 n, and thusPr[ln jStj � ln jSt+1j � ln a℄ � ln�3 n. This satis�es(3) with U = ln a and � = ln�3 n.For the se
ond step, Theorem 2 requires that webound the speed of the 
hange in f(S) solely as a fun
-tion of f(S). For one-sided routing this is not a prob-lem, as Lemma 4 shows that f(S), whi
h reveals jSj,
hara
terizes S exa
tly ex
ept when jSj = 1 and thelower bound argument is done. For two-sided routing,the situation is more 
ompli
ated; there may be some

St whi
h is not of the form f1 : : : jStjg or f0g, and weneed a bound on the speed at whi
h ln jStj drops thatapplies equally to all sets of the same size.It is here (and only here) that we use our 
on-ditions on � for two-sided routing. Suppose thatea
h Æ appears in � with probability pÆ, that theseprobabilities are pairwise-independent, and that thesequen
e p is symmetri
 and unimodal. Let �̂ =�abs
eil �x+y2 � : x; y 2 �; x 6= y	, where abs
eil (z), theabsolute 
eiling of z, is dze when z � 0 and bz
 whenz � 0. Observe that �̂ � �; in e�e
t, we are 
ounting in�̂ all midpoints of pairs of distin
t elements of Æ with-out regard to whether the elements are adja
ent. Forea
h k, the expe
ted number of distin
t pairs x, y withx+ y = z and x; y 2 � is at most bk =P1i=�1 pk�ipi;this is a 
onvolution of the non-negative, symmetri
, andunimodal p sequen
e with itself and so it is also sym-metri
 and unimodal.It follows that for all 0 � k < k0,bk � bk0 , and similarly b�k � b�k0 .Now for the pun
h line: for ea
h Æ 6= 0, qÆ =b2Æ�sgn Æ + b2Æ is an upper bound on the expe
ted num-ber of distin
t pairs x; y that put Æ in �, whi
h is inturn an upper bound on Pr[Æ 2 �℄, and from the uni-modularity of b we have that qÆ � qÆ0 and q�Æ � q�Æ0whenever 0 < Æ < Æ0. Though q grossly over
ountsthe elements of � (in parti
ular, it gives a bound onE[j�j℄ of `2), its ordering property means that we 
anbound the expe
ted number of elements of � that ap-pear in some subrange of any positive St by using q tobound the expe
ted number of elements that appear inthe 
orresponding subrange of f1 : : : jStjg, and similarlyfor negative St and f�1 : : :� jStjg. Be
ause pi alreadysatis�es a similar ordering property, we 
an thus boundthe number of elements of both � and � that hit a �xedsubrange of St given only jStj.Whi
h we now pro
eed to do. For 
onvenien
e, for-mally de�ne qi = 0 for one-sided routing. For ea
hinteger i > 0 let Ai = fk 2 Z : ai� 1 � k < ai+1� 1g =fk 2 Z : blna k + 1
 = ig. Let 
i = Pk2Ai 2pi + qi.Note that 
i � 2 E[jAi \�j℄ for one-sided routing and
i � 2E[jAi \ �j℄ + E[jAi \ �j℄ for two-sided routing.Observe also that P1i=0 
i is at most 2` for one-sidedrouting and by 2`+ `2 for two-sided routing.Consider some S = St. If jSj � a, then by Lemma 8we haveE �ln jStj � ln jSt+1j : St; ln jStj � ln jSt+1j < ln a�� ln 11�a�1 + lnE[1 + Z : St℄; (15)where Z = 2j� \ S0j with one-sided routing and Z =2j� \ S0j + j� \ S0j with two-sided routing, and S0 =[min(S)+�a�1jSj��1;max(S)�1℄. By the monotoni
ityof pi and qi for positive i, ln E[1 + Z℄ is at most�ln jSj = ln 11� a�1 + ln0B�1 + jSj�1Xi=da�1jSje�1 2pi + qi1CA ;(16)provided jSj � a. For jSj < a, set �ln jSj = ln a.Let us now 
ompute mz, as de�ned in (6). Forz < lna, mz = ln a. For larger z, observe that mz =



sup�mln jSj : ez � jSj < aez	. Now if ez � jSj < aez,then the bounds on the sum in (16) both lie between�a�1ez�� 1 and aez � 1, so thatmz � ln 11� a�1 + ln0B�1 + baez�1
Xi=da�1eze�1 2pi + qi1CA� ln 11� a�1 + ln(1 + 
z0 + 
z0+1 + 
z0+2);where z0 = bz= ln a
 � 1.Finally, 
omputeT (lnn)= Z lnn0 1mz dz� Z lnnlna 1ln 11�a�1 + ln(1 + 
z0 + 
z0+1 + 
z0+2)dz� blnn= lna
�1Xi=0 lnaln 11�a�1 + ln(1 + 
i + 
i+1 + 
i+2) :To get a lower bound on the sum, note thatblnn= lna
�1Xi=0 (
i+
i+1+
i+2) � 3 blnn= lna
+1Xi=0 
i � 3 1Xi=0 
iwhi
h is at most L = 6` for one-sided routing and atmost L = 6`+3`2 for two-sided routing. In either 
ase,be
ause 1
+ln(1+x) is 
onvex and de
reasing, we haveT (lnn)� blnn= lna
�1Xi=0 ln aln 11�a�1 + ln(1 + 
i + 
i+1 + 
i+2)� blnn= lna
�1Xi=0 ln aln 11�a�1 + ln�1 + Lblnn= lna
�= ln a blnn= ln a
ln 11�a�1 + ln�1 + Lblnn= lna
� : (17)We will now rewrite our bound on T (lnn) in a more
onvenient asymptoti
 form. We will ignore the 1 and
on
entrate on the large fra
tion. Re
all that a =3` ln3 n, so ln a = �(ln ` + ln lnn). Unless ` is polyno-mial in n, we have lnn= ln a = !(1) and the numeratorsimpli�es to �(lnn).Now let us look at the denominator. Consider �rstthe term ln 11�a�1 . We 
an rewrite this term as � ln(1�a�1); sin
e a�1 goes to zero as ` and n grow we have� ln(1 � a�1) = �(a�1) = �(`�1 ln�3 n). It is unlikelythat this term will 
ontribute mu
h.Turning to the se
ond term, let us use the fa
t thatln(1 + x) � x for x � 0. Thusln�1 + Lblnn= ln a
� � Lblnn= lna
= O�L(ln l+ ln lnn)lnn � ;

and the bound in (17) simpli�es to
 �ln2 n= (L(ln `+ ln lnn))�. We 
an further as-sume that ` = O(ln2 n), sin
e otherwise thebound degenerates to 
(1), and rewrite it simplyas 
 �ln2 n= (L ln lnn)� :For large L the approximation ln(1 + x) � 1 + lnxfor x � 0:59 is more useful. In this 
ase (17) simpli�esto T (lnn) = 
(lnn= ln `), whi
h has a natural interpre-tation in terms of the tree of su

essor nodes of somesingle starting node.We are not quite done with Theorem 2 yet, as westill need to plug our T and � into (8) to get a lowerbound on E[� ℄. But here we 
an simply observe that�T = O(ln�1 n), so the denominator in (8) goes rapidlyto 1. Our stated bounds are thus �nally obtained bysubstituting O(`) or O(`2) for L.
4.2.6 Possible strengthenings of the lower boundExamining the proof of Theorem 9, both the `2 thatappears in the bound (14) for two-sided routing andthe extra 
onditions imposed on the � distribution ariseonly as artifa
ts of our need to proje
t ea
h range S ontof1 : : : jSjg and thus redu
e the problem to tra
king asingle parameter. We believe that a more sophisti
atedargument that does not 
ollapse ranges together wouldshow a stronger result:Conje
ture 10. Let G, �, and ` be as in Theo-rem 9. Consider a greedy routing traje
tory starting ata point 
hosen uniformly from 1 : : : n and ending at 0.Then the expe
ted time to rea
h 0 is
� ln2 n` ln lnn� ;with either one-sided or two-sided routing, and no 
on-straints on the � distribution.We also believe that the bound 
ontinues to hold inhigher dimensions than 1. Unfortunately, the fa
t thatwe 
an embed the line in, say, a two-dimensional gridis not enough to justify this belief; divergen
e to oneside or the other of the line may 
hange the distributionof boundaries between segments and break the proof ofTheorem 9.
4.3 Upper BoundsIn this se
tion, we present our upper bounds on thedelivery time for settings that in
lude failure of nodesand links. Note that we use the term node here tomean the point in the metri
 spa
e and not the phys-i
al ma
hine as implied in earlier se
tions. To sim-plify the theoreti
al analysis, we assume an ideal pla
e-ment of one node at every point of the one-dimensionalline. Ea
h node is 
onne
ted to its immediate neigh-bors and has ` multiple long-distan
e links 
hosen in-dependently as follows: Pr[v is the ith neighbor of u℄= 1d(u;v)=Pw 6=u 1d(u;w) , where d(u; v) is the distan
e be-tween u and v.We �rst 
onsider an idealized model with no failures.Kleinberg [5℄ proved that with nd nodes embedded atgrid points in a d-dimensional grid, with ea
h node u




onne
ted to its immediate neighbors and one long-distan
e neighbor v 
hosen with probability inverselyproportional to d(u; v)d, any message 
an be deliveredin time polynomial in log n using greedy routing. Whilethis result 
an be dire
tly applied to our model withd = 1 and ` = 1 to give a O(log2 n) delivery time, wehave a mu
h simpler proof using Lemma 1, whi
h weomit for la
k of spa
e.The next interesting question to ask is if the per-forman
e improves by adding more long-distan
e links.We 
onsider two di�erent strategies for ` 2 [1; lg n℄ and(lg n; n
℄, 
 < 1. In [6℄, Kleinberg uses a group stru
tureto 
over the �rst 
ase with polylogarithmi
 links to getO(log n) delivery time. However, he uses a more 
om-pli
ated algorithm for routing while we obtain the samebound (for the 
ase of a line) using only greedy routing.We prove that with ` 2 [1; lg n℄, we get an expe
teddelivery time of O(lg2 n=`). The main idea behind theproof is that the delivery of a message is divided intophases. This is an extension of the idea used in [5℄. Amessage is said to be in phase j if the distan
e fromthe 
urrent node to the destination node is between 2jand 2j+1. There are at most (lg n+1) su
h phases. Weanalyze the expe
ted number of links present betweenany two phases and this number in
reases as ` in
reases.We prove that the expe
ted time spent in ea
h phase isat most O(lg n=`), thus giving a total upper bound onthe delivery time as O(lg2 n=`).For ` 2 (lg n; n
℄, we use a deterministi
 strategy.The lo
ation of ea
h node is identi�ed as a number to abase b. With O(b logb n) links per node, routing is doneby forwarding the message to a node with an identi-�er 
loser to the target identi�er by one digit. With atmost O(logb n) digits, we get the same delivery time.This strategy is similar in spirit to Plaxton's algorithm[10℄.Theorem 11. Choose an integer b > 1. With` = (b � 1)dlogb ne, let ea
h node link to nodesat distan
es 1x; 2x; 3x; : : : ; (b � 1)x, for ea
h x 2fb0; b1; : : : ; bdlogb ne�1g. Then the expe
ted delivery timeT (n) = O(logb n).
4.3.1 Failure of LinksWe get reasonable performan
e even with link fail-ures. We assume that ea
h long-distan
e link is presentindependently with probability p, but that ea
h nodeis always 
onne
ted to its immediate neighbors. Thisensures that a message will always be delivered even ifit takes a long time.With ` 2 [1; lg n℄, we use the same idea of deliveringmessages in phases. Intuitively, the expe
ted time inea
h phase in
reases inversely proportional to p and weget the following result.Theorem 12. Let ea
h node be 
onne
ted to its im-mediate neighbors (at distan
e 1) and ` 2 [1; lg n℄ long-distan
e neighbors 
hosen independently with repla
e-ment, with probability inversely proportional to the dis-tan
e between the nodes. Assume that the links to theimmediate neighbors are always present. If the proba-

bility of a long-distan
e link being present is p, then thedelivery time is O(lg2 n=p`).A similar intuition works for ` 2 (lg n; n
℄. If a linkfails, then the node has to take a shorter long-distan
elink, whi
h will not take the message as 
lose to thetarget as the initial failed link. Clearly as p de
reases,the message has to take shorter and shorter links whi
hin
reases the delivery time.Theorem 13. Let ea
h node have ` = O(logb n),long-distan
e links to distan
es b0; b1; b2; : : : ; bblogbn
.Assume that the links to the nearest neighbors are al-ways present. If the probability of a link being present isp, then the expe
ted delivery time T (n) = O(b lg n=p).
4.3.2 Failure of NodesThe analysis for node failures is not as simple as thatfor link failures be
ause we lose the important propertyof independen
e between links of di�erent nodes. It isno longer the 
ase that if one node 
annot 
ommuni
atewith some other node, it has a good 
han
e of doing soby passing the message to its neighbor. We analyze thesituation when a node forwards a message to its nextbest neighbor after it rea
hes a dead neighbor.To prove our result, we again use the formulation ofa message moving between phases to rea
h the target.The idea is that the jumps between phases are indepen-dent so on
e we move from phase j to phase j�1, furtherrouting no longer depends on any nodes in phase j. We
an 
ondition on the number of nodes being alive in thelower phase and estimate the time spent in ea
h phase.Intuitively, if a node is present with probability p, wewould expe
t to wait for a time inversely proportionalto p in anti
ipation of �nding a node in the lower phaseto jump to.Theorem 14. Let the model be as in Theorem 12.and let ea
h node be present with probability p. Thenthe expe
ted delivery time T (n) = O(lg2 n=p`).In 
ontrast, it appears that our deterministi
 routingstrategy 
an lead to very poor performan
e; we have notyet analyzed this situation formally.
5. CONSTRUCTION OF GRAPHSAs the group of nodes present in the network 
hanges,so does the graph of the virtual overlay network. In or-der for our routing te
hniques to be e�e
tive, the graphmust always exhibit the property that the likelihood ofany two verti
es v; u being 
onne
ted is 
(d(v; u)�1).We des
ribe brie
y a heuristi
 approa
h to 
onstru
tand maintain a graph with su
h an invariant.Sin
e the 
hoi
e of edges leaving ea
h vertex is inde-pendent of the 
hoi
es of other verti
es, we 
an assumethat points in the metri
 spa
e are added one at a time.Let v be the k-th point to be added. Point v 
hoosesthe sinks of its outgoing edges a

ording to the inverse-distan
e distribution and 
onne
ts to them by runningthe sear
h algorithm. If a desired sink u is not present,v 
onne
ts to u's 
losest, present neighbor. In e�e
t,



ea
h of the k� 1 points already present before v is sur-rounded by a basin of attra
tion, 
olle
ting probabilitymass in proportion to its length. Sin
e we assume thehash fun
tion populates the metri
 spa
e evenly, andbe
ause of absolute symmetry, the basin length L hasthe same distribution for all points. It is easy to see thatwith high probability, L will not be mu
h smaller thanits expe
tation: Prob(L � 
 �k�1) = 1� (1�
 �k�1)k�1.A lower bound on the probability that the edge (v; u) ispresent is 
0 � k�1 � d(v; f)�1, where f is the point in u'sbasin that is the farthest from v.3 However, the boundholds only if u is amongst the k � 1 points added be-fore v. Otherwise, the aforementioned probability is 0,whi
h means that we need to amend our linking strategyso as to transfer probability mass from the former 
aseto the latter one. We des
ribe next how to a

omplishthis task.Let u be a new point. We give earlier points the op-portunity to obtain outgoing edges to u by having u (1)
al
ulate the number of in
oming edges it \should" havefrom points added before it arrived, and (2) 
hoose su
hpoints a

ording to an appropriate distribution �.4 If` is the number of outgoing edges for ea
h point, then` will also be the expe
ted number of in
oming edgesthat u has to estimate in step (1). For graphs with alarge number of points n, ea
h point has roughly 1=n
han
e of ending at u be
ause of symmetry. The num-ber of links ending at u is thus distributed a

ordingto a Poisson distribution with rate `, that is, the prob-ability that u has k in
oming edges is e�llkk! , and theexpe
tation of the distribution is `. After step (2) is
ompleted by u, ea
h 
hosen point v responds to u'srequest by using a distribution � to 
hoose one of itsexisting outgoing edges to repla
e with an edge to u.It is easy to show that if � and � are proportional tothe inverse of the distan
e between points, the resultinggraph has the property we want. This pro
edure 
anbe repeated to allow for regeneration of links when anetwork node 
rashes.We believe that our method will give a distribution
lose enough to the desired distribution for the rout-ing algorithm to work. Unfortunately, the 
onstru
tionpro
ess intera
ts in a 
ompli
ated way with the routingalgorithm, whi
h makes analysis diÆ
ult. We are 
ur-rently 
ondu
ting simulations to assess the e�e
tivenessof 
onstru
ting a graph using our heuristi
.There has re
ently been related work [9℄ on how to
onstru
t, with the support of a 
entral server, randomgraphs with many desirable properties, su
h as smalldiameter and guaranteed 
onne
tivity with high prob-ability. Although it is not 
lear what kind of fault-toleran
e properties this approa
h o�ers if the 
entralserver 
rashes, or how the 
onstru
ted graph 
an beused for eÆ
ient routing, it is likely that similar te
h-niques 
ould be useful in our setting.3The 
onstant 
0 has absorbed 
 and the normalizing
onstant for the distribution.4All this 
an be easily 
al
ulated by u sin
e the linkprobabilities are symmetri
.

6. EXPERIMENTAL RESULTSWe simulated a network at the appli
ation level withn = 217 nodes. Ea
h node has lg n = 17 links 
ho-sen using the randomized rule explained in Se
tion 4.3.Routing is done greedily by forwarding a message tothe neighbor 
losest to its target node. In ea
h sim-ulation, the network is set up afresh and a fra
tion pof the nodes fail. We 
hoose random sour
e and des-tination nodes whi
h have not failed and route a mes-sage between them. For ea
h value of p, we ran 1000simulations delivering 100 messages in ea
h simulation,and averaged the number of delivery hops for su

essfulsear
hes and number of failed sear
hes.With node failures, a node may not be able to �nda live neighbor that is 
loser to the target node thanitself. We studied three possible strategies to over
omethis problem as follows: (i) Terminate the sear
h. (ii)Randomly 
hoose another node, deliver the message tothis new node and then try to deliver the message fromthis node to the original destination node (similar to thehyper
ube routing strategy as explained in [13℄). (iii)Keep tra
k of a �xed number (in our simulations, 5)of nodes through whi
h the message is last routed andba
ktra
k. When the sear
h rea
hes a node from whereit 
annot pro
eed, it ba
ktra
ks to the most re
entlyvisited node from this list and 
hooses the next bestneighbor to route to. For all these strategies we notethat on
e a node 
hooses its best neighbor, it does notsend the message to any other link if it �nds out thatthe best neighbor has failed.
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Figure 2: Fra
tion of failed sear
hesFigure 2 shows the fra
tion of messages that fail to bedelivered versus the fra
tion of failed nodes. Figure 3shows the number of hops for su

essful sear
hes versusthe fra
tion of failed nodes. It is very interesting tosee how well the system behaves even with su
h a largenumber of failed nodes. In addition, ba
ktra
king givesa signi�
ant improvement in redu
ing the number offailures as 
ompared to the other two methods, althoughit may take a longer time for delivery.Our results may not be dire
tly 
omparable to thoseof CAN[11℄ and Chord[12℄ sin
e they use di�erent sim-ulators for their results. However, we see that we getresults as good as theirs. Even if we just terminatethe sear
h, we get less than p fra
tion of failed sear
heswith p fra
tion of failed nodes. Chord[12℄ has roughly
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Figure 3: Delivery timethe same performan
e after their network stabilizes fromsome repair me
hanism. Further, with ba
ktra
king wesee that with 80% failed nodes, we still get less than30% failed sear
hes. These results are very promisingand it would be very interesting to study ba
ktra
kinganalyti
ally.
7. CONCLUSIONS AND FUTURE

WORKThe following table summarizes our upper and lowerbounds5:Model # Links ` Upper Bound Lower BoundNofailures 1 O(lg2 n) 
( ln2 nln lnn )[1; lg n℄ O( lg2n` ) 
( ln2 n` ln lnn )[lg n; n
℄ O( lg nlg b ) 
( lgnlg ` )Pr[Linkpresent℄=p [1; lg n℄ O( lg2 np` ) -[lg n; n
℄ O( b lgnp ) -Pr[Nodepresent℄=p [1; lg n℄ O( lg2 np` ) -We have shown that greedy routing in an overlay net-work organized as a random graph in a metri
 spa
e 
anbe a nearly optimal me
hanism for sear
hing a peer-to-peer system with low message 
omplexity, even inthe presen
e of many faults. We see this as an im-portant �rst step in the design of eÆ
ient algorithmsfor su
h networks, but many issues still need to be ad-dressed. Our results mostly apply to one-dimensionalmetri
 spa
es like the line or a 
ir
le. One interestingpossibility is whether similar strategies would work forhigher-dimensional spa
es, parti
ularly ones in whi
hsome of the dimensions represent the a
tual physi
aldistribution of the nodes in real spa
e; good network-building and sear
h me
hanisms for this model mightallow eÆ
ient lo
ation of nearby instan
es of a resour
e5In the upper bound with (lg n; n
℄ links, the num-ber of links ` = O(b logb n). Also, the deterministi
strategy used for links ` 2 (lg n; n
℄, with link failuresis slightly di�erent that the one with no failures, and` = O(logb n). In the lower bound 
olumn, the boundfor [1; lg n℄ links is for one-sided routing.

without having to resort to lo
al 
ooding (as in [4℄).Another promising dire
tion would be to study the se-
urity properties of greedy routing s
hemes, to see howthey 
an be adapted to provide desirable properties likeanonymity or robustness against Byzantine failures.
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