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Abstract

We consider the problem of designing an overlay network and routing mechanism that per-
mits finding resources efficiently in a peer-to-peer system. We argue that many existing ap-
proaches to this problem can be modeled as the construction of a random graph embedded in a
metric space whose points represent resource identifiers, where the probability of a connection
between two nodes depends only on the distance between them in the metric space. We study
the performance of a peer-to-peer system where nodes are embedded at grid points in a simple
metric space: a one-dimensional real line. We prove upper and lower bounds on the message
complexity of locating particular resources in such a system, under a variety of assumptions
about failures of either nodes or the connections between them. Our lower bounds in particular
show that the use of inverse power-law distributions in routing, as suggested by Kleinberg [10],
is close to optimal. We also give efficient heuristics to dynamically maintain such a system
as new nodes arrive and old nodes depart. Finally, we give experimental results that suggest
promising directions for future work.

1 Introduction

Peer-to-peer systems are distributed systems without any central authority and with varying com-
putational power at each machine. We study the problem of locating resources in such a large
network of heterogeneous machines that are subject to crash failures. We describe how to con-
struct distributed data structures that have certain desirable properties and allow efficient resource
location.

Decentralization is a critical feature of such a system as any central server not only provides a
vulnerable point of failure but also does not take advantage of the power of the clients. Equally
important is scalability: the cost borne by each node must not depend too much on the network
size and should ideally be proportional, within polylogarithmic factors, to the amount of data the
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node seeks or provides. Since we expect nodes to arrive and depart at a high rate, the system
should be resilient to both link and node failures. Furthermore, disruptions to parts of the data
structure should self-heal to provide self-stabilization.

Our approach provides a hash table-like functionality, based on keys that uniquely identify the
system resources. To accomplish this, we map resources to points in a metric space either directly
from their keys or from the keys’ hash values. This mapping dictates an assignment of nodes
to metric-space points. We construct and maintain a random graph linking these points and use
greedy routing to traverse its edges to find data items. The principle we rely on is that failures leave
behind yet another (smaller) random graph, ensuring that the system is robust even in the face of
considerable damage. Another compelling advantage of random graphs is that they eliminate the
need for global coordination. Thus, we get a fully-distributed, egalitarian, scalable system with no
bottlenecks.

We measure performance in terms of the number of messages sent by the system for a search
or an insert operation. The self-repair mechanism may generate additional traffic, but we expect
to amortize these costs over the search and insert operations. Given the growing storage capacity
of machines, we are less concerned with minimizing the storage at each node; but in any case the
space requirements are small. The information stored at a node consists only of a network address
for each neighbor.

The rest of the paper is organized as follows. Section 2 explains our abstract model in detail,
and Section 3 describes some existing peer-to-peer systems. We prove our results for routing in
Section 4. In Section 5, we present a heuristic method for constructing the random graph and
provide experimental results that show its performance in practice. Section 6 describes results
of experiments we performed to test the routing performance of our constructed distributed data
structure. Conclusions and future work are discussed in Section 7.

2 Our approach

The idea underlying our approach consists of three basic parts: (1) embed resources as points in a
metric space, (2) construct a random graph by appropriately linking these points, and (3) efficiently
locate resources by routing greedily along the edges of the graph. Let R be a set of resources spread
over a large, heterogeneous network N . For each resource r ∈ R, owner(r) denotes the node in N
that provides r and key(r) denotes the resource’s key. Let K be the set of all possible keys. We
assume a hash function h : K → V such that resource r maps to the point v = h(key(r)) in a metric
space (V, d), where V is the point set and d is the distance metric as shown in Figure 1. The hash
function is assumed to populate the metric space evenly. Note that via this resource embedding, a
node n is mapped onto the set Vn = {v ∈ V : ∃r ∈ R, v = h(key(r)) ∧ (owner(r) = n)}, namely
the set of metric-space points assigned to the resources the node provides.

Our next step is to carefully construct a directed random graph from the points embedded in
V . We assume that each newly-arrived node n is initially connected to some other node in N . Each
node n generates the outgoing links for each vertex v ∈ Vn independently. A link (v, u) ∈ Vn × Vm

simply denotes that n knows that m is the network node that provides the resource mapped to
u; hence, we can view the graph as a virtual overlay network of information, pieces of which are
stored locally at each node. Node n constructs each link by executing the search algorithm to
locate the resource that is mapped to the sink of that link. If the metric space is not populated
densely enough, the choice of a sink may result in a vertex corresponding to an absent resource.
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Figure 1: An example of the metric-space embedding.

In that case, n chooses the neighbor present closest to the original sink. Moving to nearby vertices
will introduce some bias in the link distribution, but the magnitude of error does not appear to be
large. A more detailed description of the graph construction is given in Section 5.

Having constructed the overlay network of information, we can now use it for resource location.
As new nodes arrive, old nodes depart, and existing ones alter the set of resources they provide or
even crash, the resources available in the distributed database change. At any time t, let Rt ⊆ R
be the set of available resources and It be the corresponding overlay network. A request by node n
to locate resource r at time t is served in a simple, localized manner: n calculates the metric-space
point v that corresponds to r, and a request message is then routed over It from the vertex in Vn

that is closest to v itself.1 Each node needs only local information, namely its set of neighbors in It,
to participate in the resource location. Routing is done greedily by forwarding the message to the
node mapped to a metric-space point as close to v as possible. The problem of resource location is
thus translated into routing on random graphs embedded in a metric space.

To a first approximation, our approach is similar to the “small-world” routing work by Klein-
berg [10], in which points in a two-dimensional grid are connected by links drawn from a normalized
power-law distribution (with exponent 2), and routing is done by having each node route a packet
to its neighbor closest to the packet’s destination. Kleinberg’s approach is somewhat brittle be-
cause it assumes a constant number of links leaving each node. Getting good performance using his
technique depends both on having a complete two-dimensional grid of nodes and on very carefully
adjusting the exponent of the random link distribution. We are not as interested in keeping the
degree down and accept a larger degree to get more robustness. We also cannot assume a complete
grid: since fault-tolerance is one of our main objectives, and since nodes are mapped to points in
the metric space based on what resources they provide, there may be missing nodes.

The use of random graphs is partly motivated by a desire to keep the data structure scalable
and the routing algorithm as decentralized as possible, as random graphs can be constructed locally
without global coordination. Another important reason is that random graphs are by nature robust
against node failures: a node-induced subgraph of a random graph is generally still a random graph;
therefore, the disappearance of a vertex, along with all its incident links (due to failure of one of

1Note that since Rt generally changes with time, and may specifically change while the request is being served,
the request message may be routed over a series of different overlay networks It1 , It2 , . . . , Itk .
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the machines implementing the data structure) will still allow routing while the repair mechanism
is trying to heal the damage. The repair mechanism also benefits from the use of random graphs,
since most random structures require less work to maintain their much weaker invariants compared
to more organized data structures.

Embedding the graph in a metric space has the very important property that the only infor-
mation needed to locate a resource is the location of its corresponding metric-space point. That
location is permanent, both in the sense of being unaffected by disruption of the data structure, and
easily computable by any node that seeks the resource. So, while the pattern of links between nodes
may be damaged or destroyed by failure of nodes or of the underlying communication network, the
metric space forms an invulnerable foundation over which to build the ephemeral parts of the data
structure.

3 Related work

Most of the peer-to-peer systems in widespread use are not scalable. Napster [15] has a central
server that services requests for shared resources even though the actual resource transfer takes
place between the peer requesting the resource and the peer providing it, without involving the
central authority. However, this has several disadvantages including a vulnerable single point of
failure, wasted computational power of the clients as well as not being scalable. Gnutella [6] floods
the network to locate a resource. Flooding creates a trade-off between overloading every node in the
network for each request and cutting off searches before completion. While the use of super-peers
[13] ameliorates the problem somewhat in practice, it does not improve performance in the limit.

Some of these first-generation systems have inspired the development of more sophisticated ones
like CAN [18], Chord [20] and Tapestry [23]. CAN partitions a d-dimensional metric space into
zones. Each key is mapped to a point in some zone and stored at the node that owns the zone. Each
node stores O(d) information, and resource location, done by greedy routing, takes O(dn1/d) time.
Chord maps nodes to identities of m bits placed around a modulo 2m identifier circle. Resources
are stored at existing successor nodes of the nodes they are mapped to. Each node stores a routing
table with m entries such that the i-th entry stores the key of the first node succeeding it by at least
2i−1 on the identifier circle. Each resource is also mapped onto the identifier circle and stored at the
first node succeeding the location that it maps to. Routing is done greedily to the farthest possible
node in the routing table, and it is not hard to see that this gives an O(log n) delivery time with
n nodes in the system. Tapestry uses Plaxton’s algorithm [17], a form of suffix-based, hypercube
routing, as the routing mechanism: in this algorithm, the message is forwarded deterministically to
a node whose identifier is one digit closer to the target identifier. To this end, each node maintains
O(log n) pieces of information and delivery time is also O(log n).

Although these systems seem vastly different, there is a recurrent underlying theme in the use
of some variant of an overlay metric space in which the nodes are embedded. The location of
a resource in this metric space is determined by its key. Each node maintains some information
about its neighbors in the metric space, and routing is then simply done by forwarding packets
to neighbors closer to the target node with respect to the metric. In CAN, the metric space is
explicitly defined as the coordinate space which is covered by the zones and the distance metric
used is simply the Euclidean distance. In Chord, the nodes can be thought of being embedded on
grid points on a real circle, with distances measured along the circumference of the circle providing
the required distance metric. In Tapestry, we can think of the nodes being embedded on a real line
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and the identifiers are simply the locations of the nodes on the real line. Euclidean distance is used
as the metric distance for greedy forwarding to nodes with identifiers closest to the target node.
This inherent common structure leads to similar results for the performance of such networks.

The main contribution of this paper is twofold. We explain why most of these systems achieve
similar performance guarantees for greedy routing by describing a general setting for such overlay
metric spaces, although most of our results apply only in one-dimensional spaces. Perhaps more
importantly, we show why greedy routing might not be the best way to perform resource location
in peer-to-peer systems by providing lower bounds on the message complexity of locating particular
resources in a graph with nodes linked according to a fixed distribution. Indeed, second generation
peer-to-peer systems like Viceroy [12], Koorde [7], and the distance halving DHT of [14] do not
use greedy routing or fixed link distributions. As a result, they meet or beat the lower bounds
presented in this paper.

Barrière et al.[1] reached independently from this work one of the upper bounds presented here
(Theorem 12). While this upper bound was first presented by Kleinberg in [10], we use simpler
methodology from that in [10] and [1] to derive it. Furthermore, our results are orthogonal to those
in [1]. The authors of that work concentrate on bounds for inverse power-law distributions with
different exponents, for systems with one long-distance link and no failures. We establish bounds
for the power-law distribution with exponent 1 under different scenarios: for single or multiple long-
distance links, under no failures, or in the presence of node or link failures. Finally, with Theorem 10
we answer an open problem posed in [1], namely whether their lower bound of Ω(log2 n) for greedy
routing with power-law distributions extends to all distance-invariant distributions.

Similar models to the one presented here have been discussed before in the context of percolation
models, e.g., [2, 3, 4, 5]. They study random graphs embedded in a metric space Z

d in the cases
where the probability of an edge between two graph vertices falls off with exponent s and focus on
providing bounds for the graph diameter for different ranges of s in respect to d. In these papers,
it is shown that short paths in such random graphs exist, but as we show with this work, greedy
routing fails to find them.

4 Routing

In this section, we present our lower and upper bounds on routing. We consider greedy routing
in a graph embedded in a line where each node is connected to its immediate neighbors and to
multiple long-distance neighbors chosen according to a fixed link distribution. We give lower bounds
for greedy routing for any link distribution satisfying certain properties (Theorem 10). We also
present upper bounds in the same model where the long-distance links are chosen as per the inverse
power-law distribution with exponent 1 and analyze the effects on performance in the presence of
failures.

For both the upper and lower bounds we model the path taken by a search through the system
as a Markov chain. We can do so because (a) the outgoing links from each node are chosen
independently of the outgoing links from all other nodes, and (b) no node ever appears in the
same search path twice; these two facts together mean that we can treat each node that appears
in the search path as newly generated, and treat each step in the routing protocol as generated
by a new random choice of outgoing links from the current node. Condition (a) is assumed in our
basic model; condition (b) depends on the search always making progress, which we guarantee by
requiring that each node is always connected to its immediate neighbors.

5



Delta

Target

Delta

Target

Delta/2

Figure 2: One step of the aggregate chain after choosing a single link distance δ and either one-sided
routing (left picture) or two-sided routing (right picture). Tokens starting at distance δ or more
from the target drop by δ in either case. Tokens with initial distance between δ/2 and δ drop by
δ in the two-sided case (because this moves them closer to the target), but stay where they are in
the one-sided case. Closer tokens do not move in either case. In both cases, applying the length-δ
link splits the original range into two or more ranges, each of which is chosen with probability
proportional to its length.

The upper bounds can then be obtained by choosing particular link distributions and analyzing
the trajectories of the resulting Markov chain, whose expected lengths we bound using a well-known
bound on probabilistic recurrence relations due to Karp et al.[8].

The lower bounds are more difficult. Two issues arise: first, we must consider a wider variety
of possible link distributions, and cannot simply analyze a single Markov chain. Second, we can
no longer assume a fixed (but arbitrary) starting location as in the upper bound argument: if the
starting location and target are fixed, the designer of the link distribution can simply arrange for
there to be a direct link from the start to the finish with high probability.

The second issue is handled by assuming that the initial location is chosen uniformly at random
from some range of nodes at integer positions 1 to n, with the target at position 0. This yields n
parallel Markov processes, one for each of the starting points, and we track the trajectories of these
parallel Markov processes simultaneously, under a coupling assumption where the outgoing links
from the current node in each of these parallel processes have the same offsets. We show that this
assumption gives rise to a new aggregate Markov process whose states are ranges of nodes, where
the initial uniform distribution over nodes in the range 1 to n evolves at each step to a probabilistic
mixture over smaller ranges of nodes (see Figure 2). By tracking the maximum element of the
current range, we can detect when the target is reached, because the target is reached only when
this quantity hits zero.

To bound the time taken to reduce the maximum element to zero, we use an upside-down version
of the Karp et al. inequality for probabilistic recurrence relations, which we prove in Section 4.1.
The intuition behind the Karp et al. bound is that in a probabilistic recurrence relation of the
form T (n) = 1 + T (n − X), where X is a random variable, the expected value of X conditioned
on n acts like a “speed” at which the process passes n, and that the total time to reach 0 can be
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bounded above by integrating the inverse of this speed, subject to a monotonicity condition that
essentially shows that the speed at which the process passes some point n is at least the expected
drop from n, even if the process passes n starting from some larger point n′. We show that a similar
integral gives a lower bound on the time, for a suitable definition of the expected speed at each
point; this result is presented as Theorem 2. Our theorem does not require monotonicity; instead,
the “instantaneous speed” at each point is defined as the supremum of the expected drop from an
appropriate set of higher points.

Our lower bounds are then obtained by applying Theorem 2 to the logarithm of the maximum
element of the current range in the parallel-trajectories Markov process described earlier. The
intuition is that only links that jump distances within a small factor of the distance between the
current node n and the target will yield much progress in the logarithm. For one-sided routing,
where the search path cannot go past the target, a long link that jumps more than n units will not be
used; but a short link that jumps much fewer than n units will reduce lg n by only a small amount.
In order to make speedy progress, the link distribution must supply a link whose length is close to
n; but it must also continue to do so as n shrinks, to keep the process from getting stuck later.
Our proof shows that the best choice is to assign equal weight to each range of offsets after taking
their logarithms; this gives precisely the Θ(1/d) distribution originally used by Kleinberg [10].

This section is organized as follows. Section 4.1 describes the Karp et al. upper bound on
probabilistic recurrence relations, and gives our new lower bound. Section 4.2 contains the lower
bound argument. Section 4.3 gives upper bounds for various link distributions and failure patterns.

4.1 Probabilistic recurrence relations

Some of our upper bounds will be proved using a well-known upper bound of Karp et al.[8] on
probabilistic recurrence relations. We will restate this bound as Lemma 1, and then show how a
similar technique can be used to get lower bounds with some additional conditions in Theorem 2.

Lemma 1 ([8]) The time T (X0) needed for a nonincreasing real-valued Markov chain X0,X1,X2,X3 . . .
to drop to 1 is bounded by

T (X0) ≤
∫ X0

1

1

µz
dz, (1)

when µz = E[Xt − Xt+1 : Xt = z] is a nondecreasing function of z.

This bound has a nice physical interpretation. If it takes one second to jump down µx meters
from x, then we are traveling at a rate of µx meters per second during that interval. When we zip
past some position z, we are traveling at the average speed µx determined by our starting point
x ≥ z for the interval. Since µ is nondecreasing, using µz as our estimated speed underestimates
our actual speed when passing z. The integral computes the time to get all the way to zero if we
use µz as our instantaneous speed when passing position z. Since our estimate of our speed is low
(on average), our estimate of our time will be high, giving an upper bound on the actual expected
time.

We would like to get lower bounds on such processes in addition to upper bounds, and we
will not necessarily be able to guarantee that µz, as defined in Lemma 1, will be a nondecreasing
function of z. But we will still use the same basic intuition: The average speed at which we pass z is
at most the maximum average speed of any jump that takes us past z. We can find this maximum
speed by taking the maximum over all x > z; unfortunately, this may give us too large an estimate.
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Instead, we choose a threshold U for “short” jumps, compute the maximum speed of short jumps
of at most U for all x between z and z + U , and handle the (hopefully rare) long jumps of more
than U by conditioning against them. Subject to this conditioning, we can define an upper bound
mz on the average speed passing z, and use essentially the same integral as in (1) to get a lower
bound on the time. Some additional tinkering to account for the effect of the conditioning then
gives us our real lower bound, which appears in Theorem 2 below, as Inequality (9).

Theorem 2 Let X0,X1,X2, . . . be Markov process with state space S, where X0 is a constant. Let
f be a non-negative real-valued function on S such that

lim
t→∞

Pr[f(Xt) = 0] = 1 (2)

and, for all t,
Pr[f(Xt) − f(Xt+1) ≥ 0 : Xt] = 1. (3)

Let U and ǫ be constants such that for any x > 0,

Pr[f(Xt) − f(Xt+1) ≥ U : Xt = x] ≤ ǫ. (4)

Let
τ = min{t : f(Xt) = 0}. (5)

For each x with f(x) > 0, let µx > 0 satisfy

µx ≥ E[f(Xt) − f(Xt+1) : Xt = x, f(Xt) − f(Xt+1) < U ]. (6)

Now define
mz = sup {µx : x ∈ S, f(x) ∈ [z, z + U)} , (7)

and define

T (x) =

∫ f(x)

0

1

mz
dz. (8)

Then

E[τ ] ≥ T (X0)

ǫT (X0) + (1 − ǫ)
. (9)

Proof: Define

Yt =

{

T (Xt) if f(Xt′) − f(Xt′+1) < U for all t′ < t, or
0 otherwise.

(10)

The idea is that Yt drops to zero immediately if a long jump occurs. We will show that even with
such overeager jumping, Yt does not drop too quickly on average. The intuition is that the chance
of a long jump reduces Yt by at most an expected ǫYt ≤ ǫY0, while the effect of short jumps can be
bounded by applying the definition of T .
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Let Ft be the σ-algebra generated by X0,X1, . . . Xt. Let At be the event that f(Xt)−f(Xt+1) <
U , that is, that the jump from f(Xt) to f(Xt+1) is a short jump. Now compute

E [Yt − Yt+1 : Ft] = Pr
[

At : Ft

]

(Yt − 0) + (1 − Pr
[

At : Ft

]

) E [Yt − Yt+1 : Ft, At]

= Pr
[

At : Ft

]

(Yt − 0)

+(ǫ − Pr
[

At : Ft

]

) E [Yt − Yt+1 : Ft, At]

+(1 − ǫ) E [Yt − Yt+1 : Ft, At]

≤ Pr
[

At : Ft

]

Y0 + (ǫ − Pr
[

At : Ft

]

)Y0 + (1 − ǫ) E [Yt − Yt+1 : Ft, At]

= ǫY0 + (1 − ǫ) E [Yt − Yt+1 : Ft, At] . (11)

The inequality step uses the fact that Y0 ≥ Yt ≥ 0 for all t, so that Y0 is an upper bound on any
jump, and that ǫ − Pr

[

At : Ft

]

is nonnegative, which is just a restatement of (4).
Now let us bound E [Yt − Yt+1 : Ft, At]. Expanding the definitions (8) and (10) gives

E [Yt − Yt+1 : Ft, At] = E

[

∫ f(Xt)

f(Xt+1)

1

mz
dz : Ft, At

]

. (12)

Now, conditioning on At means that f(Xt+1) > f(Xt) − U and thus z > f(Xt) − U for the
entire range of the integral. It follows that f(Xt) lies in the half-open interval [z, z + U) for each
such z, from which we have mz ≥ µf(Xt) from (7). Inverting gives 1

mz
≤ 1

µf(Xt)
, and plugging this

inequality into (12) gives

E [Yt − Yt+1 : Ft, At] ≤ E

[

∫ f(Xt)

f(Xt+1)

1

µf(Xt)
dz : Ft, At

]

= E

[

1

µf(Xt)
(f (Xt+1) − f (Xt)) : Ft, At

]

=
1

µf(Xt)
E [f(Xt) − f(Xt+1) : Ft, At]

≤ 1

µf(Xt)
µf(Xt)

= 1. (13)

In the third step, we can pull the 1
µf(Xt)

term out of the expectation because Ft is generated by Xt

(among other variables) and thus 1
µf(Xt)

, a function of Xt, is measurable Ft.

Applying (13) to (11) gives

E[Yt − Yt+1 : Ft] ≤ ǫY0 + (1 − ǫ). (14)

We have now shown that Yt drops slowly on average. To turn this into a lower bound on the
time at which it first reaches zero, define Zt = Yt +min(t, τ) (ǫY0 + (1 − ǫ)). Conditioning on t < τ ,
observe that

E[Zt − Zt+1 : Ft, t < τ ] = E[Yt − Yt+1 : Ft, t < τ ] − (ǫY0 + (1 − ǫ))

≤ (ǫY0 + (1 − ǫ)) − (ǫY0 + (1 − ǫ))

= 0.
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Alternatively, if t ≥ τ we have Yt+1 = Yt = 0, min(t, τ) = min(t + 1, τ) = τ , and thus
Zt+1 = Zt = 0 + τ (ǫY0 + (1 − ǫ)). So in this case

E[Zt − Zt+1 : Ft, t ≥ τ ] = 0.

In either case, E[Zt − Zt+1 : Ft] ≤ 0, implying Zt ≤ E[Zt+1 : Ft]. In other words, {Zt,Ft} is a
submartingale.

Because {Zt,Ft} is a submartingale, and τ is a stopping time relative to {Ft}, we have Z0 =
Y0 ≤ E[Zτ ] = E [0 + τ (ǫY0 + (1 − ǫ))] = (ǫY0 + (1 − ǫ)) E[τ ]. Solving for E[τ ] then gives

E[τ ] ≥ Y0

ǫY0 + (1 − ǫ)
=

T (X0)

ǫT (X0) + (1 − ǫ)
.

4.2 Lower bounds on greedy routing

We will now describe our lower bounds on the expected time for greedy routing on a line. As
elsewhere, we assume that the graph consists of a sequence of nodes, each of which is connected
to at most expected ℓ other nodes, including its immediate neighbors on either side. For values
of ℓ up to O(log n), we consider two variants of the greedy routing algorithm: one-sided routing,
where the search is not allowed to go past the target and reverse direction, and two-sided routing,
where the search always chooses the nearest point to the target it can, regardless of which side
of the target this point appears on. For one-sided routing, we show that Ω(log2 n/(ℓ2 log log n))
expected steps are needed starting at a uniformly-chosen node, and for two-side routing, we show
that Ω(log2 n/(ℓ log log n)) steps are needed. These results are stated and proved in Theorem 10.
Details of the two routing variants are given in Section 4.2.1.

Lower bound for a superlogarithmic number of links For large values of ℓ, a lower bound
of Ω( lg n

lg ℓ ) on the worst-case routing time can be derived very simply, as shown in Theorem 3.

Theorem 3 Let ℓ ∈ (lg n, nc]. Then for any link distribution and any routing strategy, the delivery
time T = Ω( log n

log ℓ ).

Proof: With ℓ links for each node, we can reach at most ℓk nodes at step k. Assuming that
the minimum time to reach all n nodes is T, ℓT ≥ n. This gives a lower bound of Ω( log n

log ℓ ) on T .

Lower bound for a logarithmic number of links. For smaller numbers of links, the situation
is more interesting. We consider the case of the expected outdegree of each node falling in the range
[1, lg n]. The probability that a node at position x is connected to positions x−∆1, x−∆2, . . . , x−∆k

depends only on the set ∆ = {∆1, . . . ,∆k} and not on x and is independent of the choice of outgoing
links for other nodes.2 Since we assume that each node is connected to its immediate neighbors,
we require that ±1 appears in ∆.

We consider two variants of the greedy routing algorithm. Without loss of generality, we assume
that the target of the search is labeled 0. In one-sided greedy routing, the algorithm never traverses

2We assume that nodes are labeled by integers and identify each node with its label to avoid excessive notation.
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a link that would take it past its target. So if the algorithm is currently at x and is trying to reach
0, it will move to the node x−∆i with the smallest non-negative label. In two-sided greedy routing,
the algorithm chooses a link that minimizes the distance to the target, without regard to which
side of the target the other end of the link is. In the two-sided case the algorithm will move to a
node x − ∆i whose label has the smallest absolute value, with ties broken arbitrarily. One-sided
greedy routing can be thought of as modeling algorithms on a graph with a boundary when the
target lies on the boundary, or algorithms where all links point in only one direction (as in Chord).

Our results are stronger for the one-sided case than for the two-sided case. With one-sided
greedy routing, we show a lower bound of Ω(log2 n/(ℓ log log n)) on the time to reach 0 from a
point chosen uniformly from the range 1 to n that applies to any link distribution. For two-sided
routing, we show a lower bound of Ω(log2 n/(ℓ2 log log n)), with some constraints on the distribution.
We conjecture that these constraints are unnecessary, and that Ω(log2 n/(ℓ log log n)) is the correct
lower bound for both models.

A formal statement of these results appears as Theorem 10 in Section 4.2.5, but before we can
prove it we must develop machinery that will be useful in the proofs of both the one-sided and
two-sided lower bounds. We now give a quick roadmap of the proof:

• Section 4.2.1 gives notation for link distributions.

• Section 4.2.2 defines the aggregate Markov chain obtained by considering the parallel tra-
jectories of a range of initial points given the same link offsets at each step, describes how
the states of this aggregate chain evolve as a function of the link distribution (Lemmas 4),
shows that the aggregate chain correctly summarize the behavior of the original chain given
a uniformly random starting point (Lemma 5), and gives a simple bound on how quickly
the size of a range in the aggregate chain is likely to drop regardless of the link distribution
(Lemma 6).

• Section 4.2.3 introduces the effects of the link distribution, and characterizes (Lemma 7) the
number of boundary points—points in the range of initial locations at which the outgoing link
chosen changes—that appear within a given range as function of the link distribution and the
choice of one- or two-sided routing.

• Section 4.2.4 uses the boundary point definition of Section 4.2.3 to show that the speed at
which the log of the size of the range in the aggregate chain drops is directly related to how
many boundary points land in the central part of the range. Lemma 9, the main lemma in
this section, characterizes formally the intuition that progress can only be made by links close
to the size of the current range, and is used in the following section to bound the speed at
which the log of the size of the range drops as a function of the link distribution and the
current size.

• Finally, Section 4.2.5 contains the statement and proof of the main lower bound theorem,
Theorem 10. The proof is a direct application of Theorem 2, using the machinery developed
in the previous sections to show that the necessary technical conditions hold, and using a
partitioning argument to bound the resulting integral.

A further Section 4.2.6, suggests how, with a more sophisticated proof, it might be possible to
drop the extra conditions on the link distribution in Theorem 10.

11



4.2.1 Link sets: notation and distributions

First we describe some notation for ∆ sets. Write each ∆ as

{∆−s, . . . ∆−2,∆−1 = −1,∆1 = 1,∆2, . . . ∆t},

where ∆i < ∆j whenever i < j. Each ∆ is a random variable drawn from some distribution on
finite sets; the individual ∆i are thus in general not independent. Let ∆− consist of the s negative
elements of ∆ and ∆+ consist of the t positive elements. Formally define ∆−i = −∞ when i > s
and ∆i = +∞ when i > t.

For one-sided routing, we make no assumptions about the distribution of ∆ except that |∆|
must have finite expectation and ∆ always contains −1. This permits the algorithm always to make
progress toward zero, assuming that it starts at a positive location, even if subtracting every other
δ in ∆ would carry it past zero. For two-sided routing, we assume that ∆ is generated by including
each possible δ in ∆ with probability pδ, where p is symmetric about the origin (i.e., pδ = p−δ for
all δ), p1 = p−1 = 1, and p is unimodal, i.e. nonincreasing for positive δ and nondecreasing for
negative δ.3 We also require that the events [δ ∈ ∆] and [δ′ ∈ ∆] are pairwise independent for
distinct δ, δ′.

4.2.2 The aggregate chain St

For a fixed distribution on ∆, the trajectory of a single initial point X0 is a Markov chain
X0,X1,X2, . . ., with Xt+1 = s(Xt,∆t), where ∆t determines the outgoing links from the node
reached at time t and s is a successor function that selects the next node Xt+1 = Xt − ∆t

i ac-
cording to the routing algorithm. Note that the chain is Markov, because the presence of ±1 links
guarantees that no node ever appears twice in the sequence, and so each new node corresponds to
a new choice of links.

From the Xt chain we can derive an aggregate chain that describes the collective behavior of all
nodes in some range. Each state of the aggregate chain is a contiguous sets of nodes whose labels
all have the same sign; we define the sign of the state to be the common sign of all of its elements.
For one-sided routing each state is either {0} or an interval of the form {1 . . . k} for some k. For
two-sided routing the states are more general, and may consists of arbitrary contiguous intervals of
points that all share the same sign. The aggregate states are characterized formally in Lemma 4,
but before stating this lemma we still need a few definitions.

Given a contiguous set of nodes S and a set ∆, define

S∆i = {x ∈ S : s(x,∆) = x − ∆i}.

The intuition is that S∆i consists of all those nodes for which the algorithm will choose ∆i as the
outgoing link. Note that S∆i will always be a contiguous range because of the greediness of the
algorithm. Now define, for each σ ∈ {−, 0,+}:

S∆iσ = {x ∈ S∆i : sgn s(x,∆) = σ}.

Here we have simply split S∆i into those nodes with negative, zero, or positive successors.
For any set A and integer δ write A − δ for {x − δ : x ∈ A}.

3These constraints imply that p0 = 1; formally, we imagine that 0 is present in each ∆ but is ignored by the
routing algorithm.
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We will now build our aggregate chain by letting the successors of a range S be the ranges
S∆iσ −∆i for all possible ∆, i, and σ. As a special case, we define St+1 = {0} when St = {0}; once
we arrive at the target, we do not leave it. For all other St, we let

Pr
[

St+1 = St
∆iσ − ∆i : ∆

]

=
|St

∆iσ|
|St| , (15)

and define the unconditional transition probabilities by averaging over all ∆.
Lemma 4 justifies our earlier characterization of the aggregate state spaces:

Lemma 4 Let S0 = {1 . . . n} for some n. Then with one-sided routing, every St is either {0} or
of the form {1 . . . k} for some k; and with two-sided routing, every St is an interval of integers in
which every element has the same sign.

Proof: By induction on t. For one-sided routing, observe that St−1
∆i− is always empty, as

the routing algorithm is not allowed to jump to negative nodes. If St = St−1
∆i0 − ∆i, then St =

{∆i} − ∆i = {0}. Otherwise St = St−1
∆i+ − ∆i; but since St−1 = {1 . . . k} for some k, if it contains

any point x greater than ∆i it must contain ∆i + 1; thus min(St−1
∆i+) = ∆i + 1 and so min(St)

becomes 1.
The result for the two-sided case is immediate from the fact that St = St−1

∆iσ−∆i combined with
the definition of St−1

∆iσ.

Lemma 5 shows that moving to the aggregate chain does not misrepresent the underlying single-
point chain:

Lemma 5 Let X0 be drawn uniformly from the range S0. Let Y t be a uniformly chosen element
of St. Then for all x and t, Pr[Xt = x] = Pr[Y t = x].

Proof: Clearly the lemma holds for t = 0. Fix St−1, and consider two methods for generating
Y t. The first generates Y t directly from Y t−1 and shows that Y t generated in this way has the
same distribution as Xt. The second generates Y t from St as describe in the lemma and produces
the same distribution on Y t as the first.

In the first method, we choose Y t−1 uniformly from St−1, choose a random ∆t−1, and compute
s(Y t−1,∆t−1). Here the transition rule applied to Y t−1 is the same as for Xt−1, so under the
induction hypothesis that Y t−1 and Xt−1 are equal in distribution, so are Y t and Xt.

In the second method, we again choose a random ∆t−1 and then choose St by choosing some
St−1

∆iσ in proportion to its size, let St = St−1
∆iσ −∆i, and then let Y t be a uniformly chosen element of

St. We can implement the choice of St−1
∆iσ by choosing some Y t−1 uniformly from St−1 and picking

St−1
∆iσ as the subrange that contains Y t−1; and we can simplify the task of choosing Y t by setting

it equal to Y t−1 − ∆i, since conditioning on Y t−1 ∈ St−1
∆iσ leaves Y t−1 with a uniform distribution.

But by implementing the second method in this way, we have reduced it to the first, and the lemma
is proved.

The advantage of the aggregate chain over the single-point chain is that, while we cannot do
much to bound the progress of a single point with an arbitrary distribution on ∆, we can show
that the size of St does not drop too quickly given a bound ℓ on E[|∆|]. The intuition is that each
successor set of size a−1|St| or less occurs with probability at most a−1, and there are at most 3ℓ
such sets on average.
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Lemma 6 Let E[|∆|] ≤ ℓ. Then for any a ≥ 1, in either the one-sided or two-sided model,

Pr
[

|St+1| ≤ a−1|St| : St
]

≤ 3ℓa−1. (16)

Proof:
Fix St. First note that if a−1|St| < 1, then Pr

[

|St+1| ≤ a−1|St| : St
]

= 0. So we can assume
that a−1|St| ≥ 1 and in particular that a ≤ |St|.

Conditioning on ∆, there are at most 3|∆| non-empty sets St
∆iσ. If |St

∆iσ| ≤ a−1|St|, then |St
∆iσ|

is chosen with probability at most a−1 by (15). Thus the probability of choosing any of the at most
3|∆| sets St

∆iσ of size at most a−1|St| is at most 3|∆|a−1.
Now observe that

Pr
[

|St+1| ≤ a−1|St| : St
]

≤
∑

d

Pr [|∆| = d] 3da−1

= 3a−1
E [|∆|]

≤ 3ℓa−1.

Another way to write (16) is to say that Pr
[

ln |St| − ln |St+1| ≥ ln a : St
]

≤ 3ℓa−1, which will
give the bound (4) on the probability of large jumps when it comes time to apply Theorem 2.

4.2.3 Boundary points

Lemma 6 says that |St| seldom drops by too large a ratio at once, but it doesn’t tell us much about
how quickly |St| drops in short hops. To bound this latter quantity, we need to get a bound on
how many subranges St splinters into through the action of s(·,∆). We will do so by showing that
only certain points can appear as the boundaries of these subranges in the direction of 0.

For fixed ∆, define for each i > 0

βi =

⌈

∆i + ∆i+1

2

⌉

and

β−i =

⌊

∆−i + ∆−i−1

2

⌋

.

Let β be the set of all finite βi and β−i.

Lemma 7 Fix S and ∆ and let β be defined as above. Suppose that S is positive. Let M =
{min(S∆iσ) : S∆iσ 6= ∅} be the set of minimum elements of subranges S∆iσ of S. Then M is a
subset of S and contains no elements other than

1. min(S),

2. ∆i for each i > 0,

3. ∆i + 1 for each i > 0, and

4. at most one of βi or βi + 1 for each i > 0,

14



where the last case holds only with two-sided routing.
If S is negative, the symmetric condition holds for M = {max(S∆iσ) : S∆iσ 6= ∅}.

Proof: Consider some subrange S∆iσ of S. If S∆iσ contains min(S), the first case holds.
Otherwise: (a) if S∆iσ = S∆i0, the second case holds; (b) if S∆iσ = S∆i+, the third case holds;
(c) if S∆iσ = S∆i−, the fourth case holds, with min(S∆i−) = βi−1 if ∆i−1 + ∆i is odd, and either
βi−1 or βi−1 + 1 if ∆i−1 + ∆i is even, depending on whether the tie-breaking rule assigns βi−1 to
S∆(i−1)+ or S∆i−.

We will call the elements of M boundary points of S.

4.2.4 Bounding changes in ln |St|
Now we would like to use Lemmas 6 and Lemma 7 to get an upper bound on the rate at which
ln |St| drops as a function of the ∆ distribution.

The following lemma is used to bound a sum that arises in Lemma 9.

Lemma 8 Let c ≥ 0. Let
∑n

i=1 xi = M where each xi ≥ 0 and at least one xi is greater than c.
Let B be the set of all i for which xi is greater than c. Then

∑

i∈B xi ln xi
∑

i∈B xi
≥ ln

(

max

(

c,
M

n

))

. (17)

Proof: If M
n < c, we still have xi > c for all i ∈ B, so the left-hand side cannot be less than

ln c. So the interesting case is when M
n > c.

Let B have b elements. Then
∑

i/∈B xi < (n − b)c and
∑

i∈B ≥ M − (n − b)c = M − nc + bc.
Because xi ln xi is convex, its sum over B is minimized for fixed

∑

i∈B xi by setting all such xi

equal, in which case the left-hand side of (17) becomes simply ln(xi) for any i ∈ B.
Now observe that setting all xi in B equal gives xi = M−nc+bc

b = M−nc
b + c ≥ M−nc

n + c = M
n .

Lemma 9 Fix a > 1, and let S = St be a positive range with |S| ≥ a. Define β as in Lemma 7.
Let S′ = [min(S) +

⌈

a−1|S|
⌉

− 1,max(S) − 1]. Let A be the event
[

ln |St| − ln |St+1| < ln a
]

. Then

E
[

ln |St| − ln |St+1| : St, A
]

≤ ln
1

1 − a−1
+

lnE[1 + Z : St]

Pr[A : St]
, (18)

where Z = 2|∆ ∩ S′| with one-sided routing and Z = 2|∆ ∩ S′| + |β ∩ S′| with two-sided routing.

Proof: Call a subrange S∆iσ large if |S∆iσ| > a−1|S| and small otherwise; the intent is that
the large ranges are precisely those that yield ln |St| − ln |St+1| < ln a. Observe that for any large
S∆iσ, |S∆iσ| > a−1|S| ≥ 1, implying any large set has at least two elements.

For any large S∆iσ, max(S∆iσ) ≥ min(S) +
⌈

a−1|S|
⌉

− 1. Similarly min(S∆iσ) ≤ max(S) − 1.
So any large S∆iσ intersects S′ in at least one point.

Let T = {T1, T2, . . . , Tk} be the set of subranges S∆iσ, large or small, that intersect S′. It is
immediate from this definition that

⋃

T ⊇ S′ and thus
∑ |Tj | ≥ |S′|.

Using Lemma 7, we can characterize the elements of T as follows.

1. There is at most one set Tj that contains min(S′).
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2. There is at most one set Tj that has min(Tj) = ∆i for each ∆i in S′.

3. There is at most one set Tj that has min(Tj) = ∆i + 1 for each ∆i in S′.

4. With two-sided routing, there is at most one set Tj that has min(Tj) = βi or min(Tj) = βi +1
for each βi in S′. Note that there may be a set whose minimum element is βi + 1 where
βi = min(S′) − 1, but this set is already accounted for by the first case.

Thus T has at most 1 + Z = 1 + 2|∆ ∩ S′| elements with one-sided routing and at most
1 + Z = 1 + 2|∆ ∩ S′| + |β ∩ S′| elements with two-sided routing.

Conditioning on |St+1| > a−1|S|, |St+1| is equal to |S∆iσ| for some large S∆iσ and thus for some
large Tj ∈ T . Which large Tj is chosen is proportional to its size, so for fixed T , we have

E[ln St+1 : T,A] =

∑|T |
j=1 |Tj | ln |Tj |
∑|T |

j=1 |Tj|

≥ ln

(

max

(

a−1|S|, |
⋃

T |
|T |

))

≥ ln

( |S′|
|T |

)

,

where the first inequality follows from Lemma 8. Now let us compute

E[ln |St| − ln |St+1| : St, A] = ln |St| − E[ln |St+1| : St, A]

≤ ln |St| − E[ln |S′| − ln |T | : St, A]

= ln
|St|
|S′| + E[ln |T | : St, A]

≤ ln
|St|
|S′| +

E[ln |T | : St]

Pr[A : St]

≤ ln
1

1 − a−1
+

ln E[|T | : St]

Pr[A : St]
.

In the second-to-last step, we use E[ln |T | : St, A] ≤ E[ln |T | : St]/Pr[A : St], which follows from

E[ln |T | : St] = E[ln |T | : St, A] Pr[A : St] + E[ln |T | : St,¬A] Pr[¬A : St]. In the last step, we use

E[ln |T | : St, A] ≤ ln E[|T | : St, A], which follows from the concavity of ln and Jensen’s inequality.

4.2.5 Putting the pieces together

We now have all the tools we need to prove our lower bound.

Theorem 10 Let G be a random graph whose nodes are labeled by the integers. Let ∆x for each
x be a set of integer offsets chosen independently from some common distribution, subject to the
constraint that −1 and +1 are present in every ∆x, and let node x have an outgoing link to x − δ
for each δ ∈ ∆x. Let ℓ = E[|∆|]. Consider a greedy routing trajectory in G starting at a point
chosen uniformly from 1 . . . n and ending at 0.
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With one-sided routing, the expected time to reach 0 is

Ω

(

log2 n

ℓ log log n

)

. (19)

With two-sided routing, the expected time to reach 0 is

Ω

(

log2 n

ℓ2 log log n

)

, (20)

provided ∆ is generated by including each δ in ∆ with probability pδ, where (a) p is unimodal, (b)
p is symmetric about 0, and (c) the choices to include particular δ, δ′ are pairwise independent.

Proof: Let S0 = {1 . . . n}.
We are going to apply Theorem 2 to the sequence S0, S1, S2, . . . in the aggregate chain defined

in Section 4.2.2, while defining f(S) = ln |S|. We have chosen f so that when we reach the target,
f(S) = 0 (by Lemma 4: when we reach the target, S = {0}). We assume that the target is reached
at a finite time with probability 1, so that f(St) = ln |St| satisfies (2); if this is not the case, then
the lower bound on the expected time to reach the target is ∞. It is also immediate from the
definition of the chain that |St| never increases, so that f(St) satisfies (3). Finally, we know from
Lemma 5 that the behavior of the aggregate chain models the behavior of the original routing
algorithm given a uniform starting position. Thus, a lower bound on τ gives a lower bound on
the expected time of the routing algorithm. To apply the theorem, we need to show that (a) the
probability that ln |S| drops by a large amount is small, and (b) that the integral in (8) is large.

Let a = 3ℓ ln3 n. By Lemma 6, for all t, Pr
[

|St+1| ≤ a−1|St| : St
]

≤ 3ℓa−1 = ln−3 n, and thus
Pr[ln |St| − ln |St+1| ≥ ln a : St] ≤ ln−3 n. This satisfies (4) with U = ln a and ǫ = ln−3 n.

For the second step, Theorem 2 requires that we bound the speed of the change in f(S) solely
as a function of f(S). For one-sided routing this is not a problem, as Lemma 4 shows that f(S),
which reveals |S|, characterizes S exactly except when |S| = 1 and the lower bound argument is
done. For two-sided routing, the situation is more complicated; there may be some St which is not
of the form {1 . . . |St|} or {0}, and we need a bound on the speed at which ln |St| drops that applies
equally to all sets of the same size.

It is for this purpose that we use the monotonicity assumptions on the distribution ∆. The
essential idea is that f(S) drops no faster when S is of the form {x + 1 . . . x + k} than it does
when S is {1 . . . k}, because moving S further away from the origin decreases its probability of
being split. A complication is that it is not enough to look at where the elements of ∆ land, as
we do with one-sided routing, because (as described in Section 4.2.3), the sets S∆iσ may also split
across boundary points that are midpoints (appropriately rounded) of adjacent elements of ∆. The
additional constraints on the ∆ distribution are used below to get an upper bound on the number
of such boundary points in S that is non-decreasing S shifts away from zero. The upper bound
is rather crude, as it counts the midpoints of every pair of points in ∆, whether or not they are
adjacent. This crude estimate accounts for the squaring of ℓ in the two-sided lower bound, and it
may be that a more sophisticated argument could eliminate this difference between the one-sided
and two-sided lower bounds.

We now show the promised bound, nonincreasing with distance from the origin, on the proba-
bility that a given point is a member of the set of boundary points β. Suppose that the conditions
on ∆ for two-sided routing hold, i.e., that each δ appears in ∆ with probability pδ, that these
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probabilities are pairwise-independent, and that the sequence p is symmetric and unimodal. Let
β̂ =

{

absceil
(x+y

2

)

: x, y ∈ ∆, x 6= y
}

, where absceil (z), the absolute ceiling of z, is ⌈z⌉ when z ≥ 0

and ⌊z⌋ when z ≤ 0. Observe that β̂ ⊇ β, because β consists precisely of those elements of β̂ for
which there is no element of ∆ between x and y. We will now show that the probability qδ that δ
appears in β̂ is non-decreasing in |δ|.

Rather than deal with the division by 2 and rounding immediately, we instead begin by counting
the number of pairs x, y ∈ ∆ that sum to each given value z. For each z, the expected number of
distinct pairs x, y with x + y = z and x, y ∈ ∆ is at most bz =

∑∞
i=−∞ pz−ipi. The sequence bz is

thus a convolution of the non-negative, symmetric, and unimodal p sequence with itself, and so it is
also symmetric and unimodal. It follows that for all 0 ≤ z < z′, bz ≥ bz′ , and similarly b−z ≥ b−z′ .

To go from b to q, we must take into account the mapping of x+y to absceil
(x+y

2

)

. Observe that

for each δ 6= 0, absceil
(x+y

2

)

= δ if and only if x+y is either 2δ− sgn δ or 2δ. So qδ = b2δ−sgn δ + b2δ

is an upper bound on the expected number of distinct pairs x, y that put δ in β, which is in turn
an upper bound on Pr[δ ∈ β]. From symmetry and unimodularity of b, we have that qδ ≥ qδ′ and
q−δ ≥ q−δ′ whenever 0 < δ < δ′. This gives us our desired monotonicity property for q.

Though q grossly overcounts the elements of β (in particular, it gives a bound on E[|β|] of ℓ2),
its ordering property means that we can bound the expected number of elements of β that appear in
some subrange of any positive St by using q to bound the expected number of elements that appear
in the corresponding subrange of {1 . . . |St|}, and similarly for negative St and {−1 . . . − |St|}.
Because pi already satisfies a similar ordering property, we can thus bound the number of elements
of both ∆ and β that hit a fixed subrange of St given only |St|, by summing up pi and qi over
the range 1 to |St|. This allows us to proceed in essentially the same way as in the one-sided case,
considering only |St| without regard to the actual position of St.

For convenience, formally define pi = Pr[i ∈ ∆] and qi = 0 for one-sided routing. This permits
writing a single argument in terms of the pi and qi that covers both the one-sided and two-sided
cases, which we now proceed to do.

We will simplify some of the summations by first summing the pi and qi over certain pre-
defined intervals. For each integer i > 0 let Ai = {k ∈ Z : ai − 1 ≤ k < ai+1 − 1} = {k ∈ Z :
⌊lna k + 1⌋ = i}. Let γi =

∑

k∈Ai
2pi + qi. Note that γi ≥ 2E[|Ai ∩ ∆|] for one-sided routing and

γi ≥ 2E[|Ai ∩ ∆|] + E[|Ai ∩ β|] for two-sided routing. Observe also that
∑∞

i=0 γi is at most 2ℓ for
one-sided routing and at most 2ℓ + ℓ2 for two-sided routing.

Consider some S = St. Let A be the event
[

ln |St| − ln |St+1| < ln a
]

. If |S| ≥ a, then by
Lemma 9 we have

E
[

ln |St| − ln |St+1| : St, A
]

≤ ln
1

1 − a−1
+

ln E
[

1 + Z : St
]

Pr[A : St]
, (21)

where Z = 2|∆ ∩ S′| with one-sided routing and Z = 2|∆ ∩ S′| + |β ∩ S′| with two-sided routing,
with S′ = [min(S) +

⌈

a−1|S|
⌉

− 1,max(S) − 1] in each case, as in Lemma 9.
As we observed earlier, our choice of a and Lemma 6 imply Pr[ln |St| − ln |St+1| ≥ ln a : St] ≤

ln−3 n, so Pr[A : St] = 1−Pr[ln |St| − ln |St+1| ≥ ln a : St] ≥ 1− ln−3 n ≥ 1
2 for sufficiently large n.

So we can replace (21) with

E
[

ln |St| − ln |St+1| : St, A
]

≤ ln
1

1 − a−1
+ 2 ln E

[

1 + Z : St
]

, (22)

Let us now obtain a bound on lnE[1+Z] in terms of |S| and the pi and qi. For one-sided routing,
we use the fact that |S| > 1 implies S = {1 . . . |S|}. For two-sided routing, we use monotonicity of
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the pi and qi to replace S with {1 . . . |S|}; in particular, to replace a sum of 2pi + qi over a subrange
of S with a sum over subrange of {1 . . . |S|} that is at least as large. In either case, we get that

ln E[1 + Z] ≤ ln



1 +

|S|−1
∑

i=⌈a−1|S|⌉−1

2pi + qi



 , (23)

and thus E
[

ln |St| − ln |St+1| : St, A
]

is bounded by

µln |S| = ln
1

1 − a−1
+ 2 ln



1 +

|S|−1
∑

i=⌈a−1|S|⌉−1

2pi + qi



 , (24)

provided |S| ≥ a. For |S| < a, set µln |S| = ln a.
Let us now compute mz, as defined in (7). For z < ln a, mz = ln a. For larger z, observe that

mz = sup
{

mln |S| : ez ≤ |S| < aez
}

. Now if ez ≤ |S| < aez, then the bounds on the sum in (24)
both lie between

⌈

a−1ez
⌉

− 1 and aez − 1, so that

mz ≤ ln
1

1 − a−1
+ 2 ln



1 +

⌊aez−1⌋
∑

i=⌈a−1ez⌉−1

2pi + qi





≤ ln
1

1 − a−1
+ 2 ln(1 + γz′ + γz′+1 + γz′+2),

where z′ = ⌊z/ ln a⌋ − 1.
Finally, compute

T (ln n) =

∫ ln n

0

1

mz
dz

≥
∫ ln n

ln a

1

ln 1
1−a−1 + 2 ln(1 + γz′ + γz′+1 + γz′+2)

dz

≥
⌊lnn/ ln a⌋−1

∑

i=0

ln a

ln 1
1−a−1 + 2 ln(1 + γi + γi+1 + γi+2)

.

To get a lower bound on the sum, note that

⌊ln n/ ln a⌋−1
∑

i=0

(γi + γi+1 + γi+2) ≤ 3

⌊ln n/ lna⌋+1
∑

i=0

γi ≤ 3

∞
∑

i=0

γi,

which is at most L = 6ℓ for one-sided routing and at most L = 6ℓ + 3ℓ2 for two-sided routing. In
either case, because 1

c+2 ln(1+x) is convex and decreasing, we have

T (ln n) ≥
⌊ln n/ lna⌋−1

∑

i=0

ln a

ln 1
1−a−1 + 2 ln(1 + γi + γi+1 + γi+2)

≥
⌊ln n/ lna⌋−1

∑

i=0

ln a

ln 1
1−a−1 + 2 ln

(

1 + L
⌊ln n/ lna⌋

)

=
ln a ⌊lnn/ ln a⌋

ln 1
1−a−1 + 2 ln

(

1 + L
⌊lnn/ ln a⌋

) . (25)
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We will now rewrite our bound on T (ln n) in a more convenient asymptotic form. We will ignore
the 1 and concentrate on the large fraction. Recall that a = 3ℓ ln3 n, so ln a = Θ(ln ℓ + ln ln n).
Unless ℓ is polynomial in n, we have ln n/ ln a = ω(1) and the numerator simplifies to Θ(ln n).

Now let us look at the denominator. Consider first the term ln 1
1−a−1 . We can rewrite this

term as − ln(1 − a−1); since a−1 goes to zero as ℓ and n grow we have − ln(1 − a−1) = Θ(a−1) =
Θ(ℓ−1 ln−3 n). It is unlikely that this term will contribute much.

Turning to the second term, let us use the fact that ln(1 + x) ≤ x for x ≥ 0. Thus

2 ln

(

1 +
L

⌊ln n/ ln a⌋

)

≤ 2
L

⌊ln n/ ln a⌋

= O

(

L(log l + log log n)

log n

)

,

and the bound in (25) simplifies to Ω
(

log2 n/ (L(log ℓ + log log n))
)

. We can further assume
that ℓ = O(log2 n), since otherwise the bound degenerates to Ω(1), and rewrite it simply as
Ω

(

log2 n/ (L log log n)
)

.
For large L, the approximation ln(1 + x) ≤ 1 + ln x for x ≥ 0.59 is more useful. In this case

(25) simplifies to T (ln n) = Ω(ln n/ ln ℓ), which has a natural interpretation in terms of the tree of
successor nodes of some single starting node and gives essentially the same bound as Theorem 3.

We are not quite done with Theorem 2 yet, as we still need to plug our T and ǫ into (9) to get
a lower bound on E[τ ]. But here we can simply observe that ǫT = O(1/ log n), so the denominator
in (9) goes rapidly to 1, so that (9) simplifies to

T (ln n) = Ω

(

log2 n

L log log n

)

. (26)

Our stated bounds are thus finally obtained by substituting O(ℓ) or O(ℓ2) for L, depending on
whether we assume one-sided or two-sided routing.

4.2.6 Possible strengthening of the lower bound

Examining the proof of Theorem 10, both the ℓ2 that appears in the bound (20) for two-sided
routing and the extra conditions imposed on the ∆ distribution arise only as artifacts of our need
to project each range S onto {1 . . . |S|} and thus reduce the problem to tracking a single parameter.
We believe that a more sophisticated argument that does not collapse ranges together would show
a stronger result:

Conjecture 11 Let G, ∆, and ℓ be as in Theorem 10. Consider a greedy routing trajectory starting
at a point chosen uniformly from 1 . . . n and ending at 0.

Then the expected time to reach 0 is

Ω

(

log2 n

ℓ log log n

)

,

with either one-sided or two-sided routing, and no constraints on the ∆ distribution.

We also believe that the bound continues to hold in higher dimensions than 1. Unfortunately,
the fact that we can embed the line in, say, a two-dimensional grid is not enough to justify this
belief; divergence to one side or the other of the line may change the distribution of boundaries
between segments and break the proof of Theorem 10.
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4.3 Upper bounds

In this section, we present upper bounds on the delivery time of messages in a simple metric space:
a one-dimensional real line. To simplify theoretical analysis, the system is set up as follows.

• Nodes are embedded at grid points on the real line.

• Each node u is connected to its nearest neighbor on either side and to one or more long-
distance neighbors.

• The long-distance neighbors are chosen as per the inverse power-law distribution with expo-
nent 1, i.e., each long-distance neighbor v is chosen with probability inversely proportional to
the distance between u and v. Formally, Pr[v is the ith neighbor of u] = ( 1

d(u,v))/(
∑

v′ 6=u
1

d(u,v′)),

where d(u, v) is the distance between nodes u and v in the metric space.

• Routing is done greedily by forwarding the message to the neighbor closest to the target node.

We analyze the performance for the cases of a single long-distance link and of multiple ones,
both in a failure-free network and in a network with link and node failures. Note that when we say
node, we actually refer to a vertex in the virtual overlay network and not a physical node as in the
earlier sections.

4.3.1 Single long-distance link

We first analyze the delivery time in an idealized model with no failures and with one long-distance
link per node. Kleinberg [10] proved that with nd nodes embedded at grid points in a d-dimensional
grid, with each node u connected to its immediate neighbors and one long-distance neighbor v chosen
with probability proportional to 1/d(u, v)d, any message can be delivered in time polynomial in
log n using greedy routing. While this result can be directly applied to our model with d = 1 and
l = 1 to give a O(log2 n) delivery time, we get a much simpler proof by use of Lemma 1. We include
the proof below for completeness.

Theorem 12 Let each node be connected to its immediate neighbors (at distance 1) and 1 long-
distance neighbor chosen with probability inversely proportional to its distance from the node. Then
the expected delivery time with n nodes in the network is T (n) = O(log2 n).

Proof: Let the destination node be t, and let µk be the expected number of nodes crossed
when the message is at a node s, at distance k from t. Clearly, µk is non-decreasing. To calculate
a lower bound for it, we consider the following possibilities for the one long-distance link of s:

1. The link points to a node closer to t than s is without overshooting t.

2. The link points to a node in the direction opposite to t’s. Let that node be at distance d1

from t.

3. The link overshoots t by distance at most k.

4. The link overshoots t by distance greater than k, say d2.
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Since we are using two-sided routing, the long-distance link is taken only in cases (1) and (3), while
in (2) and (4) the link of length 1 to the immediate neighbor in the direction of t is used. We can
now express µk as follows.

µk =

∑k
i=1

1
i · i

S
+

∑d1−k
i=1

1
i · 1

S
+

∑k−1
i=1

1
2k−i · i
S

+

∑d2+k
i=2k

1
i · 1

S
,

where

S =

d1−k
∑

i=1

1

i
+

d2+k
∑

i=1

1

i
= Hd1−k + Hd2+k < 2Hn.

Then

µk >
1

S
[k + Hd1−k + 0 + (Hd2+k − H2k)] >

k

S
>

k

2Hn
.

Since µk is non-decreasing, we can use Lemma 1 to get

T (n) ≤
n

∑

k=1

1

µk
<

n
∑

k=1

2Hn

k
= O(log2n).

Thus with this distribution, the delivery time is polylogarithmic in the number of nodes.

4.3.2 Multiple long-distance links

The next interesting question is whether we can improve the O(log2 n) delivery time by using multi-
ple long-distance links instead of a single one. In addition to improvement in performance, multiple
links give provide robustness in the face of failures. We first look at improvement in performance
by using multiple links in the system and then go onto analysis of failures in Section 4.3.3.

Suppose that there are ℓ long-distance links from each node. Figure 4.3.2 shows an example
of a node’s long-distance links for ℓ=3. We partition the set of possible values for ℓ in two ranges
[1, lg n] and (lg n, nc] and consider different strategies for generating links and for routing for each
range.

In [11], Kleinberg uses a group structure to get a delivery time of O(log n) for the case of a
polylogarithmic number of links. However, he uses a more complicated algorithm for routing while
we obtain the same bound (for the case of a line) using only greedy routing.

1
2

s

3
ℓ = 3

Figure 3: Multiple long-distance links for each node.
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4.3.2.1 Upper Bound Let us first consider a randomized strategy for link distribution when
ℓ ∈ [1, lg n].

Theorem 13 Let each node be connected to its immediate neighbors (at distance 1) and ℓ long-
distance neighbors chosen independently with replacement with probability proportional to their dis-
tances from the node. Let ℓ ∈ [1, lg n]. Then the expected delivery time is T (n) = O(log2 n/ℓ).

Proof: The basic idea for this proof comes from Kleinberg’s model [10]. Kleinberg considers
a two-dimensional grid with nodes at every grid point. The delivery of the message is divided into
phases. A message is said to be in phase j if the distance from the current node to the destination
node is between 2j and 2j+1. There are at most (lg n+1) such phases. He proves that the expected
time spent in each phase is at most O(log n), thus giving a total upper bound of O(log2 n) on the
delivery time. We use the same phase structure in our model, and this proof is along similar lines.

In our multiple-link model, each node has ℓ long-distance neighbors chosen with replacement.
The probability that u chooses a node v as its long-distance neighbor is 1 − (1 − q)ℓ, where q =

d(u,v)−1
P

u 6=v d(u,v)−1 . We can get a lower bound on this probability as follows:

1 − (1 − q)ℓ > 1 − (1 − qℓ +
ℓ(ℓ − 1)

2
q2)

= qℓ − ℓ(ℓ − 1)

2
q2 = qℓ

[

1 − (ℓ − 1)q

2

]

= qℓ

[

1 − ℓq

2
+

q

2

]

≥ qℓ

[

1 − ℓq

2

]

.

Notice that ℓq < 1, because q < 1
lg n and ℓ ≤ lg n. So, the probability that u chooses v as its

long-distance neighbor is at least

qℓ

[

1 − ℓq

2

]

≥ qℓ

[

1 − 1

2

]

=
qℓ

2
= ℓ[2d(u, v)Hn]−1.

Now suppose that the message is currently in phase j. To end phase j at this step, the message
should enter a set of nodes Bj at a distance ≤ 2j of the destination node t. There are at least 2j

nodes in Bj , each within distance 2j+1 + 2j < 2j+2 of u. So the message enters Bj with probability
≥ 2jℓ 1

2Hn2j+2 = ℓ
8Hn

Let Xj be the total number of steps spent in phase j. Then

E[Xj ] =
∞
∑

i=1

Pr[Xj ≥ i] ≤
∞
∑

i=1

(

1 − ℓ

8Hn

)i−1

=
8Hn

ℓ
.

Now if X denotes the total number of steps, then X =
∑lg n

j=0 Xj, and by linearity of expectation,

we get EX ≤ (1 + lg n)(8Hn/ℓ) = O(log2 n/ℓ).

For ℓ ∈ (lg n, nc], we adopt a different linking model: the location of each node is represented as
a number in a base b ≥ 2, and links are generated to nodes at distances 1x, 2x, 3x, . . . , (b− 1)x, for
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each x ∈ {b0, b1, . . . , b⌈logb n⌉−1}. The routing strategy is now deterministic and works by eliminating
the most significant digit of the distance at each step. As this distance can be at most b⌈logb n⌉, we
get T (n) = O(logb n). This kind of routing is similar in spirit to Plaxton’s algorithm [17]. The base
b is a parameter of the model and can be used to control the tradeoff between number of links and
search time, if the value of n is known or can be estimated.

Some special cases are instructive. Let ℓ = O(log n) and let each node link to nodes in both
directions at distances 2i, 1 ≤ i ≤ 2log n−1, provided nodes are present at those distances. This
gives T (n) = O(log n). Similarly let ℓ = O(

√
n). Links are established in both directions to

existing nodes at distances 1, 2, 3, . . . ,
√

n, 2
√

n, 3
√

n, . . . ,
√

n(
√

n−1), giving T (n) = O(1). In fact,
T (n) = O(1) when b = nc, for any fixed c.

Theorem 14 Choose an integer b > 1. With ℓ = (b − 1)⌈logb n⌉, let each node link to nodes at
distances 1x, 2x, 3x, . . . , (b − 1)x, for each x ∈ {b0, b1, . . . , b⌈logb n⌉−1}. Then the delivery time is
T (n) = O(logb n).

Proof: Let d1, d2, . . . dt be the distances of the successive nodes in the delivery path from the
target t, where d1 is the distance of the source node and dt = 0. For each di,∃ki ∈ {0, 1, . . . , ⌊logb n⌋}
such that

bki ≤ di < bki+1.

Hence

1 ≤ ⌊ di

bki
⌋ < b.

Now each node is connected to the node at distance bki⌊ di

bki
⌋. We get

di+1 = di − bki⌊ di

bki
⌋ = di mod bki < bki .

Thus ki drops by at least 1 at every step. As k1 ≤ ⌈logb n⌉, we get T (n) = O(logb n).

4.3.3 Failure of links

It appears that our linking strategies may fail to give the same delivery time in case the links fail.
However, we show that we get reasonable performance even with link failures. In our model, we
assume that each link is present independently with probability p. Let us first look at the random-
ized strategy for number of links ℓ ∈ [1, lg n].

LINK PRESENT
WITH PROB. p

s

ABSENT LINK

Figure 4: Each long-distance link is present with probability p.

Our proof is along similar lines as our proof for the case of no failures. Intuitively, since some
of the links fail, we expect to spend more time in each phase and this time should be inversely
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proportional to the probability with which the links are present. We prove that the expected time
spent in one phase is O(log n/pℓ), which gives a total delivery time of O(log2 n/pℓ). We assume
that the links to the immediate neighbors are always present so that a message is always delivered
even if it takes very long. In some cases, this may not be a reasonable assumption; however, to
remove it we must provide a mechanism that will allow the search to continue even if a node cannot
find a live neighbor closer to the target than itself. Two possible mechanisms, namely backtracking
and random re-route, are described in Section 6, where we also give experimental results of their
application.

Theorem 15 Let the model be as in Theorem 13. Assume that the links to the immediate neighbors
are always present. If the probability of a long-distance link being present is p, then the expected
delivery time is O(log2 n/pℓ).

Proof: Recall that in case of no link failures, the probability that u chooses a node v as its

long-distance neighbor is at least qℓ/2 where q = d(u,v)−1
P

u 6=v d(u,v)−1 .

Now when we consider link failures, given that u chose v as its long-distance neighbor, the
probability that there is a link present between u and v is p. So, the probability that u chooses a
node v as its long-distance neighbor is at least pqℓ/2 = pℓ[2d(u, v)Hn]−1.

The rest of the proof is the same as the proof for theorem 13. Let Xj be the number of steps
spent in phase j. Then

E[Xj ] =
∞
∑

i=1

Pr[Xj ≥ i] =
8Hn

pℓ
.

If X denotes the total number of steps, then by linearity of expectation, we get EX ≤ (1 +
lg n)(8Hn/pℓ) = O(log2 n/pℓ).

We turn to the deterministic strategy with ℓ ∈ (lg n, nc] links. A similar intuition holds for
ℓ ∈ (lg n, nc]. If a link fails, then the node has to take a shorter long-distance link, which will not
take the message as close to the target as the initial failed link. Clearly as p decreases, the delivery
time increases since the message has to take shorter and shorter links.

To make the analysis simpler, we change the link model a bit and let each node be connected
to other nodes at distances b0, b1, b2, . . . , b⌊logb n⌋. Once again, we compute the expected distance
covered from the current node and use Lemma 1 to get a delivery time of O(b log n/p). As p
decreases, the delivery time increases; whereas as b decreases, the delivery time also decreases, but
the information stored at each node increases.

Theorem 16 Let the number of links be O(logb n), and let each node have a link to distances
b0, b1, b2, . . . , b⌊logb n⌋. Assume that the links to the nearest neighbors are always present. If the
probability of a link being present is p, then the delivery time T (n) = O(bHn/p).

Proof: Let the distance of the current node from the destination be k. Let µk represent the
distance covered starting from this node. Then with probability p, there will be a link covering
distance b⌊logb k⌋. If this link is absent with probability q = 1 − p, then we can cover a distance
b⌊logb k⌋−1 with a single link with probability pq and so on. In general, the average distance µk
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covered when the message is at distance k from the destination is

µk = pb⌊logb k⌋ + pqb⌊logb k⌋−1 + . . . + pq⌊logb k⌋−1b1 + q⌊logb k⌋b0

≥
⌊logb k⌋
∑

i=0

pb⌊logb k⌋−iqi

= pb⌊logb k⌋

⌊logb k⌋
∑

i=0

(q

b

)i

= pb⌊logb k⌋ 1 − (q/b)⌊logb k⌋+1

1 − (q/b)

=
p(b⌊logb k⌋+1 − q⌊logb k⌋+1)

b − q

≥ p(bk/b − 1)

b − q

≥ p(k − 1)

2(b − q)
.

Using Lemma 1, we get

T (n) ≤
n

∑

k=1

1

µk
= 1 +

n
∑

k=2

2(b − q)

p(k − 1)
= 1 +

2(b − q)

p

[

n
∑

k=2

1

(k − 1)

]

= O(bHn/p).

4.3.4 Failure of nodes

We consider two different cases of node failures. In the first case, as described in Section 4.3.4.1,
some of the nodes may fail and then the remaining nodes link to each other as per the link distri-
bution. In the second case, analyzed in Section 4.3.4.2, the nodes first link to their neighbors and
then some of the nodes may fail.

4.3.4.1 Binomially Distributed Nodes Let p be the probability that a node is present at any
point. Here also, each node is connected to its nearest neighbors and one long-distance neighbor.
In addition, the probability of choosing a particular node as a long-distance neighbor is conditioned
on the existence of that node.

Theorem 17 Let the model be as in Theorem 12. Let each node be present with probability p and
all nodes link only to existing nodes. Then the worst-case expected delivery time is O(log2 n).

Proof: Recall the setting of the proof for Theorem 12. The methodology and definitions carry
over to this proof without any change except for a slight adjustment in the computation of the
expected drop µk to account for the probability of failure:
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µk =

∑k
i=1

1
i · i · p

p · S +

∑d1−k
i=1

1
i · 1 · p

p · S +

∑k−1
i=1

1
2k−i · i · p
p · S +

∑d2+k
i=2k

1
i · 1 · p

p · S
>

1

S
[k + Hd1−k + 0 + (Hd2+k − H2k)]

>
k

S
>

k

2Hn
.

As before, using Lemma 1, we get T (n) ≤ ∑n
k=1 1/µk = O(H2

n).

This result is identical to the one we derive for the case of no node failures in Section 4.3.1.
Such agreement is not surprising: if nodes link only to other existing nodes, the only difference is
that we get a smaller random graph, without any effect on the routing algorithm or the delivery
time. Thus, we get the same upper bound even if we assume that the nodes do not populate all
grid points on the line but instead are binomially distributed on them.

4.3.4.2 General Failures The analysis for node failures is not as simple as that for link failures
because we no longer have the important property of independence that we have in the latter case.
In the case of link failures, the nodes first choose their neighbors and then it is possible that some of
these links fail; thus, the event that a node is connected to another node is completely independent
of the event that, say, its neighbor is connected to the same node. Each link fails independently,
and so the accessibility of a target node from any other node depends only on the presence of the
link between the two nodes in question.

In case of node failures, this important independence property is no longer present. Suppose
that a node u cannot communicate with some other node v (because v failed), even though there
may be a functional link between u and v. Now the probability of a third node w being able to
communicate with v is not independent of the probability that u can communicate with v because
the probability of v being absent is common in both cases. This complicates the performance
analysis because it is no longer the case that if one node cannot communicate with some other
node, it has a good chance of doing so by passing the message to its neighbor.

Another source of dependence between overlay node failures might be that physical node failures
generally occur in a correlated fashion. However, we assume that the overlay network is sparsely
populated and that, through hashing, the location of resources in the physical network is not
correlated with the placement of the same resources in the overlay network.

For our analysis, we consider jumps only to one phase lower rather than jumping over several
phases. The idea is that the jumps between phases are independent, so once we move from phase
j to phase j − 1, further routing no longer depends on any nodes in phase j. We can condition
on the number of nodes being alive in the lower phase and estimate the time spent in each phase.
Intuitively, if a node is present with probability p, we would expect to wait for a time inversely
proportional to p in anticipation of finding a node in the lower phase to jump to.

Theorem 18 Let the model be as in Theorem 13 and let each node fail with probability p. Then
the expected delivery time for successful queries is O(log2 n/(1 − p)ℓ).

Proof: Let T be the time taken to drop down from layer j to layer j − 1. Let m out of N
nodes be alive in layer j − 1 and let q be the probability that a node in layer j is connected to
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some node in layer j − 1. Then the expected time to drop to layer j − 1, given that there are m
live nodes in it, is given by

E[T |m] = 1 +

[

(1 − q) +
q(N − m)

N

]

E[T |m]

=
N

qm
.

Now m can vary between 1 and N . (Note that m cannot be 0 because if there are no live nodes in
the lower layer, the routing fails at this point.) We get

E[T ] =

N
∑

m=1

N

qm

[

pN−m(1 − p)m
(

N

m

)]

=
N

q

N
∑

m=1

1

m
pN−m(1 − p)m

(

N

m

)

≤ N

q

N
∑

m=1

2

m + 1
pN−m(1 − p)m

(

N

m

)

=
2N

q(N + 1)(1 − p)

N
∑

m=1

pN−m(1 − p)m+1

(

N + 1

m + 1

)

≤ 2N

q(N + 1)(1 − p)
[p + (1 − p)]N+1

=
2N

q(N + 1)(1 − p)
.

Not surprisingly, the expected waiting time in a layer is inversely proportional to the probability
of being connected to a node in the lower layer and to the probability of such a node being alive.

For our randomized routing strategy with [1, lg n] links, q ≈ ℓ/(Hn). Since there are at most
(lg n + 1) layers, we get an expected delivery time of O(log2 n/(1 − p)ℓ).

In contrast, for our deterministic routing strategy, certain carefully chosen node failures can
lead to dismal situations where a message can get stuck in a local neighborhood with no hope of
getting out of it or eventually reaching the destination node. We conjecture that this should be a
very low probability event, so its occurrence will not affect the delivery time considerably. We have
not yet analyzed this situation formally.

5 Construction of graphs

As the group of nodes present in the network changes, so does the graph of the virtual overlay
network. In order for our routing techniques to be effective, the graph must always exhibit the
property that the likelihood of any two vertices v, u being connected is Ω(1/d(v, u)). We describe
a heuristic approach to construct and maintain a random graph with such an invariant.

As explained below, we allow each node u that joins the network before another node v to
connect to v when v joins the network. As soon as a node is connected to one neighbor in the
network, it is considered to be added to the network as it can be reached using the search process.
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Thus, if multiple nodes are added at the same time, they can still connect to each other as each node
chooses multiple neighbors to link to. Since the choice of links leaving each vertex is independent
of the choices of other vertices, we can assume that points in the metric space are added one at a
time.

Let v be the k-th point to be added. Point v chooses the sinks of its outgoing links according
to the inverse power law distribution with exponent 1 and connects to them by running the search
algorithm. If a desired sink u is not present, v connects to u’s closest live neighbor. In effect, each of
the k−1 points already present before v is surrounded by a basin of attraction, collecting probability
mass in proportion to its length. Since we assume the hash function populates the metric space
evenly, and because of absolute symmetry, the basin length L has the same distribution for all
points. It is easy to see that with high probability, L will not be much smaller than its expectation:
Prob[L ≤ c · k−1] = 1 − (1 − c · k−1)k−1. A lower bound on the probability that the link (v, u) is
present is c′ ·k−1 ·d(v, f)−1, where f is the point in u’s basin that is the farthest from v.4 However,
the bound holds only if u is among the k− 1 points added before v. Otherwise, the aforementioned
probability is 0, which means that we need to amend our linking strategy to transfer probability
mass from the case of u having arrived before v to the case of u having arrived after v. We describe
next how to accomplish this task.

Let v be a new point. We give earlier points the opportunity to obtain outgoing links to v by
having v (1) calculate the number of incoming links it “should” have from points added before it
arrived, and (2) choose such points according to the inverse power-law distribution with exponent
1.5 If ℓ is the number of outgoing links for each point, then ℓ will also be the expected number of
incoming links that v has to estimate in step (1). We approximate the number of links ending at
v by using a Poisson distribution with rate ℓ.

After step (2) is completed by v, each chosen point u responds to v’s request by choosing one
of its existing links to be replaced by a link to v. The choice of the link to replace can vary. We
use a strategy that builds on the work of Sarshar et al.[19]. In that work, the authors use ideas
of Zhang et al.[22] to build a graph where each node has a single long-distance link to a node at
distance d with probability 1/d. When a node with a long-distance link at distance d1 encounters
a new node at distance d2, either due to its arrival or due to a data request, it replaces its existing
link with probability p2/(p1 + p2), where pi = 1/di, and links to the new node. We extend this
idea to our case of multiple long-distance links. Consider a node u with ℓ neighbors at distances
d1, d2, . . . , dℓ. When a new node v at distance dℓ+1 requests an incoming link from u, u replaces
one of its existing links with a link to v with probability pℓ+1/

∑ℓ+1
j=1 pj. This is a trivial extension

of the formula p2/(p1 + p2) of [19]. However, this probability must now be distributed among u’s ℓ
existing long-distance links since u needs to choose one of them to redirect to v. We choose to do
that according to the inverse power-law distribution with exponent 1, that is, u chooses to replace
its link to the node at distance di, 1 ≤ i ≤ ℓ, with probability (pi/

∑ℓ
j=1 pj). Hence, the probability

that u decides to link to v and decides to replace its existing link to the node at distance di with a
link to v is equal to (pi/

∑ℓ
j=1 pj) · (pk+1/

∑ℓ+1
j=1 pj). Notice that u may decide not to redirect any of

its existing links to v with probability 1− pℓ+1/
∑ℓ+1

j=1 pj. The intuition for using such replacement
strategy comes from the invariant that we want to maintain dynamically as new nodes arrive: u has
a link to a node i at distance di with probability inversely proportional to di; hence, conditioning

4The constant c′ has absorbed c and the normalizing constant for the distribution.
5All this can be easily calculated by v since the link probabilities are symmetric.
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on u having ℓ long-distance links, the following equation must hold.

Prob[u replaces link to i with link to v] = Prob[u has a link to i before v arrives]

− Prob[u has a link to i after v arrives]

=
pi

∑ℓ
j=1 pj

− pi
∑ℓ+1

j=1 pj

=
pi

∑ℓ
j=1 pj

· pℓ+1
∑ℓ+1

j=1 pj

.

The same heuristic can be used for regeneration of links when a node crashes. Every node
periodically checks to see that all of its neighbors are alive. When a node detects that a neighbor
is not responding, it replaces its link to that neighbor by a link to a new node. The probability
distribution used to choose the new neighbor is as given in the formula above.

To analyze the performance of the heuristic in practice, we used it to construct a network of
215 nodes with 15 links each, ten separate times. The nodes were mapped uniformly at random to
a real line segment with each node at a grid point. The length of a link corresponds to the number
of grid points between the end-points of the link.

After averaging the results over the ten networks, we plotted the distribution of long-distance
links derived from the heuristic, along with the ideal inverse power-law distribution with exponent
1, as shown in Figure 5(a). We see that the derived distribution tracks the ideal one very closely,
with the largest absolute error being roughly equal to 0.022 for links of length 2, as shown in
the graph of Figure 5(b). We also performed some experiments to compare the performance of
the heuristic network to the ideal network with respect to the number of failed searches and the
number of routing hops with node failures. We present those results in Section 6.

We also performed experiments for an alternative link replacement strategy: a node chooses its
oldest link to replace with a link to the new node. The performance of this strategy is almost as
good as the performance of our replacement strategy described previously. We omit those results
because it is difficult to distinguish between the results of the two strategies on the scale used for
our graphs.

There has also been other related work [16] on how to construct, with the support of a central
server, random graphs with many desirable properties, such as small diameter and guaranteed
connectivity with high probability. Although it is not clear what kind of fault-tolerance properties
this approach offers if the central server crashes, or how the constructed graph can be used for
efficient routing, it is likely that similar techniques could be useful in our setting.

6 Experimental results

We simulated both ideal and heuristic networks of n = 215 nodes at the application level. In both
the networks, each node is connected to its immediate neighbors and has lg n = 15 long-distance
links. In the ideal network, the links are chosen as per the inverse power-law distribution with
exponent 1 as explained in Section 4.3. In the heuristic network, the links are chosen as per the
heuristic described in detail in Section 5. Routing is done greedily by forwarding a message to the
neighbor closest to its target node. In each simulation, the network is set up afresh, and a fraction
p of the nodes fail. We then repeatedly choose random source and destination nodes that have not
failed and route a message between them. For each value of p, we ran 10 simulations, delivering
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Figure 5: (a) The distribution of long-distance links produced by the inverse-distance heuristic
(DERIVED) compared to the ideal inverse power-law distribution with exponent 1 (IDEAL). (b)
The absolute error between the derived distribution and the ideal inverse power-law distribution
with exponent 1.

1000 messages in each simulation, and averaged the number of hops for successful searches and the
number of failed searches.

With node failures, a node may not be able to find a live neighbor that is closer to the target
node than itself. We studied three possible strategies to overcome this problem as follows.

1. Terminate the search.

2. Randomly choose another node, deliver the message to this new node and then try to deliver
the message from this node to the original destination node (similar to the hypercube routing
strategy explained in [21]).

3. Keep track of a fixed number (in our simulations, 5) of nodes through which the message is
last routed and backtrack. When the search reaches a node from where it cannot proceed, it
backtracks to the most recently visited node from this list and chooses the next best neighbor
to route the message to.

For all these strategies we note that once a node chooses its best neighbor, it does not send the
message to any other neighbor if it finds out that the best neighbor has failed.

Figures 6(a) and 7(a) show the fraction of messages that fail to be delivered and the average
number of routing hops versus the fraction of failed nodes in an ideal network. We see that this
system behaves well even with a large number of failed nodes. In addition, backtracking gives a
significant improvement in reducing the number of failures as compared to the other two methods,
although it may take a longer time for delivery. These results are very promising and it would be
interesting to study backtracking analytically. We see that in the case of random rerouting, the
average delivery time does not increase too much as the probability of node failure increases. This
happens because quite a few of the searches fail, so the ones that succeed (with a few hops) lead
to a small average delivery time.
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Figure 6: The fraction of messages that fail to be delivered as a function of the fraction of failed
nodes (a) in an ideal network and (b) in a heuristic network.
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Figure 7: The average number of routing hops for successful searches as a function of the fraction
of failed nodes (a) in an ideal network and (b) in a heuristic network.
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Figures 6(b) and 7(b) show the fraction of messages that fail to be delivered and the average
number of routing hops versus the fraction of failed nodes in a heuristic network. We see that the
heuristic network does not perform as well as the ideal network with respect to the number of failed
searches, although we see similar trends like a significant improvement by using backtracking, and
only a marginal improvement by using random rerouting instead of just terminating the search
when it reaches a dead node. We believe that the heuristic network does not perform as well
because many nodes may get isolated from the other nodes leading to a larger number of failed
searches and shorter routing paths when the searches succeed. It would be interesting to study if
using a different heuristic can give better performance in the network.

7 Conclusions and future work

Model Number of Links ℓ Upper Bound Lower Bound

No failures
1 O(log2 n) Ω( log2 n

log log n)

[1, lg n] O( log2 n
ℓ ) Ω( log2 n

ℓ log log n)

[lg n, nc] O( log n
log b ) Ω( log n

log ℓ )

Pr[Link present]=p
[1, lg n] O( log2 n

pℓ ) -

[lg n, nc] O( b log n
p ) -

Pr[Node present]=p [1, lg n] O( log2 n
pℓ ) -

Table 1: Summary of upper and lower bounds for routing.6

Table 1 summarizes our upper and lower bounds. We have shown that greedy routing in an
overlay network organized as a random graph in a metric space can be a nearly optimal mechanism
for searching in a peer-to-peer system, even in the presence of many faults. We see this as an
important first step in the design of efficient algorithms for such networks, but many issues still
need to be addressed. Our results mostly apply to one-dimensional metric spaces like the line or a
circle. One interesting possibility is whether similar strategies would work for higher-dimensional
spaces, particularly ones in which some of the dimensions represent the actual physical distribution
of the nodes in real space; good network-building and search mechanisms for this model might
allow efficient location of nearby instances of a resource without having to resort to local flooding
(as in [9]). Furthermore, we simplified our analysis of node failures by assuming that physical node
failures are not correlated with overlay node failures. Such correlation may seem unnatural, but
since it is obscured by hashing we expect our results will not change significantly if the assumption
is lifted. It is an interesting open problem to study such scenario analytically.

Other promising directions would be to study the security properties of greedy routing schemes
to see how they can be adapted to provide desirable properties like anonymity or robustness against

6In the upper bound with (lg n, nc] links, the number of links ℓ = O(b logb n). Also, the deterministic strategy
used for links ℓ ∈ (lg n, nc], with link failures is slightly different that the one with no failures, and ℓ = O(logb n). In
the lower bound column, the bound for [1, lg n] links is for one-sided routing.
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Byzantine failures. We would also be very interested in a matching upper bound for the lower bound
of Section 4.2 as well as in any other applications of the technical result of Theorem 2.
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