
On the Power of Anonymous One-Way Communication

Dana Angluin1, James Aspnes1?, David Eisenstat2, and Eric Ruppert3??

1 Yale University, Department of Computer Science
2 University of Rochester, Department of Computer Science

3 York University, Department of Computer Science and Engineering

Abstract. We consider a population of anonymous processes communicating
via anonymous message-passing, where the recipient of each message is cho-
sen by an adversary and the sender is not identified to the recipient. Even with
unbounded message sizes and process states, such a system can compute only
limited predicates on inputs held by the processes. In the finite-state case, we
show how the exact strength of the model depends critically on design choices
that are irrelevant in the unbounded-state case, such as whether messages are de-
livered immediately or after a delay, whether a sender can record that it has sent
a message, and whether a recipient can queue incoming messages, refusing to
accept new messages until it has had a chance to send out messages of its own.
These results may have implications for the design of distributed systems where
processor power is severely limited, as in sensor networks.

1 Introduction

We introduce and study certain variants of the population protocol model [2, 3] modi-
fied to use forms of one-way communication progressively more similar to those of tra-
ditional asynchronous message-passing. In the population protocol model, finite-state
agents interact in pairs, updating their states according to a joint transition function
whose value depends upon the previous states of both agents. Because the new state
of both agents may depend on the prior state of the other, we call such an interaction
a bidirectional interaction . Protocols in this model must work correctly regardless of
the order in which these bidirectional interactions occur. Motivating scenarios include
models of the propagation of trust in populations of agents [10] and interactions of
passively mobile sensors [3]. Similar models of pairwise interaction have been used to
study the propagation of rumors in a population of agents [9] and to justify the Chem-
ical Master Equation [13], suggesting that the model of population protocols may be
fundamental in several fields.

Because the agents in a population protocol have only a constant number of states, it
is impossible for them to adopt distinct identities, making them effectively anonymous.
An agent encountering another agent cannot tell in general whether it has interacted
with that agent before. Despite these limitations, populations of such agents can com-
pute surprisingly powerful predicates on their initial states under a reasonable global
fairness condition. When each agent may interact with every other agent, any predicate

? Supported in part by NSF grants CNS-0305258 and CNS-0435201.
?? Supported in part by the Natural Sciences and Engineering Research Council of Canada.

over the counts of initial states definable in Presburger arithmetic is computable [3].
When each agent has only a bounded set of neighbors with which it can interact, linear
space computable predicates are computable [2].

The assumption of bidirectional interaction, however, may be unrealistic in the con-
text of sensor networks, where radio communication, even between nearby sensors, may
not be bidirectional. Moreover, one-way message-passing primitives may be easier to
implement in practice. In this paper, we study how the power of the population protocol
model changes when the assumption of bidirectional interaction is replaced by certain
forms of one-way communication. The pairwise interactions are split into separate send
and receive events that each may affect only a single agent.

We consider the effect of two primary attributes of the models: (1) send and re-
ceive events may occur simultaneously (immediate delivery) or may involve delayed
messages subject to various constraints (delayeddelivery andqueueddelivery), and
(2) a sender may be allowed to change its state as a result of sending a message
(transmission), or not (observation). The transmission model is more typical in dis-
tributed computing. A web page that increments its counter in response to a visit is an
example of such an interaction. Examples of interactions that fit the observation model,
where the receiver observes an unknowing sender, include a person reading a post to
a discussion forum or a device reading a passive RFID (radio frequency identification)
tag. (Of course to preserve the anonymity of our model, the device would not get a
unique identity from the tag.) For models with delayed messages, we also consider
whether the number of messages in transit is linearly bounded in the population size.
Precise definitions are given in Sect. 2.

1.1 Comparing the Models

Comparing the computational power of the resulting models highlights the differences
between the forms of one-way communication we consider. As in [3], we assume that
every pair of agents eventually come into contact with each other, and seek to character-
ize the class of predicates on multisets of inputs that are stably computable by protocols
in each model. Let#(a) denote the number of agents assigned inputa in the initial con-
figuration. We consider three kinds of predicates: (1) Threshold:#(a) ≥ t, (2) Modulo:
#(a) ≡ j (mod k), and (3) Comparison:#(a) ≥ #(b). These three kinds of predi-
cates turn out to be well-suited for characterizing the power of the various versions of
our model but they arise in some interesting distributed tasks. The threshold function is
applicable to a motivating example of [3]: a network of sensors monitoring individual
birds could detect when at least five birds in the flock have an elevated temperature in
order to raise an alarm of a possible epidemic. The modulo-k predicate is useful if the
system must determine whether processes can be evenly partitioned into groups of size
k. A majority voting scheme could use a comparison predicate.

More complicated predicates can be built up from the basic predicates using Boolean
operators. We define classes of predicates on finite multisets of symbols from a finite
input alphabetΣ as follows.THk is the Boolean closure of all threshold predicates
#(a) ≥ t wherea ∈ Σ and t ≤ k. Predicates inTHk are determined by the mul-
tiplicities of input symbols up to a maximum ofk; in particular, predicates inTH1

are determined by the presence or absence of each input symbol.TH∗ is the union of

observation transmission transmission with
linear message bound

immediate= TH∗ (Thm 5)⊃ REG (Thm 9) not applicable
63 comparison (Cor 12)
= two-way∩ core-REG (Thm 13)

delayed = TH1 (Thm 1)⊇ immediate transmission = immediate transmission
63 comparison (Cor 12) (full paper)
⊆ queued∩ core-REG (Thm 11)

queued not applicable ⊇ two-way⊇ SLIN (Thm 14 & [3]) = two-way⊇ SLIN
(Thm 14 & [3])

Fig. 1.Summary of our results for finite-state models.

THk over all positive integersk. REG is the Boolean closure of all threshold predicates
#(a) ≥ t and modulo predicates#(a) ≡ j (mod k) wherea ∈ Σ, t ≥ 1, j ≥ 0, and
k ≥ 2. Predicates inREG are those recognizable by finite-state acceptors when fed the
input symbols in any order.SLIN is the class of semilinear predicates over multisets
of symbols fromΣ, that is, the class definable by Presburger predicates [21] over the
counts of symbols fromΣ. It is the Boolean closure of threshold predicates, modulo
predicates and comparisons of linear combinations of input multiplicities. We have the
following relationships between these classes:

TH1 ⊂ TH2 ⊂ . . . ⊂ TH∗ ⊂ REG ⊂ SLIN ,

where the containments are strict. For example, the predicate(#(a) = 1)∧ (#(b) ≥ 3)
is in TH3 but notTH2. The predicate(#(a) ≥ 13) ∨ (#(b) ≡ 3 (mod 5)) is in REG,
but not TH∗, which does not contain the modulo predicates. The predicate
((3 ∗ #(a) + 1) < (5 ∗ #(b))) ∨ (#(b) = 2) is in SLIN but notREG, which does
not contain the comparison predicate. Every predicate inSLIN is stably computable by
a population protocol in the standard two-way model [3]; whether other predicates are
stably computable in this model is open.

We define the class of core-REG predicates over an alphabetΣ as follows. A finite
multiset of elements ofΣ is k-rich if it contains each element ofΣ with multiplicity at
leastk. Given a predicateP and a nonnegative integerk, define thek-core of P to be
P ∧ Q whereQ is the property of beingk-rich. Then a predicateP is in core-REG if
somek-core ofP is in REG.

Our results for the finite-state models appear in Sect. 3. A summary is provided
in Fig. 1. For each variant of the model, the corresponding box in the figure describes
known facts about the class of predicates that can be stably computed.

The power of the delayed observation model is exactlyTH1; protocols can only
detect the presence or absence of each input symbol. The power of the immediate ob-
servation model is exactlyTH∗. A protocol in this model may determine the multiplicity
of each input symbol up to some fixed limitk. Thus, this model is strictly stronger than
the delayed observation model. The power of the immediate and delayed transmission
models properly includesREG, but does not include the comparison predicate. Thus,
these two models are strictly more powerful than the immediate observation model. The

immediate transmission model is strictly weaker than the standard two-way model and
the delayed transmission model is strictly weaker than the queued transmission model.

The queued transmission model, which is essentially an anonymous finite-state ver-
sion of the usual asynchronous message-passing model, is at least as powerful as the
standard two-way model, and equal to it in power with a linear bound on messages
in transit. Without such a bound, the queued transmission model admits protocols that
spawn an unbounded number of new simulated agents; the exact characterization of the
power of the model in this case is an open question.

1.2 Anonymous Communication and Fairness

The question of what computations can be performed in anonymous systems, where
processes start with the same state and the same programming, has a long history in the-
oretical distributed computing. Many early impossibility results such as [1] assume both
anonymity and symmetry in the communication model, which limits what can be done
without some mechanism for symmetry-breaking. See [12] for a survey of many such
impossibility results. More recent work targeted specifically at anonymity has stud-
ied what problems are solvable in message-passing systems under various assumptions
about the initial knowledge of the processes [6,7,22], or in anonymous shared-memory
systems where the properties of the supplied shared objects can often (but not always,
depending on the details of the model) be used to break symmetry and assign identi-
ties [4,5,8,11,15,17–20,23]. This work has typically assumed few limits on the power
of the processes in the system other than the symmetry imposed by the model.

Agents in the population protocol model are assumed to be finite-state. Together
with a transition rule that depends only on the states of the two interacting agents, the
finite-state assumption naturally yields a model in which agents are effectively anony-
mous. This makes the model much weaker than a typical message-passing model, where
processes have identities. On the other hand, in one respect the population protocol
model is much stronger than a typical message-passing model: communication between
two interacting agents is instantaneous and bidirectional.

Implicit in the structure of a population protocol is that message-passing is rather
strongly anonymous: not only does a receiver not learn the identity of the sender, but a
sender cannot direct its message to a particular receiver. This is unusual even in anony-
mous message-passing models, which typically assume that a process can use some sort
of local addressing to direct messages to specific neighbors. It also leads to a very weak
message-passing model if we adopt the traditional fairness assumption of eventual de-
livery to all destinations of any message that is sent often enough. We show in Sect. 4
that even with unbounded states and message lengths, this fairness condition only pro-
vides enough power to detect the presence or absence of each possible input, giving
additional justification for the global fairness condition used in the rest of the paper.

2 Model

We give a model that unifies both the standard asynchronous message-passing model,
adapted so that processes are anonymous and no longer control the destinations of their

messages; and the population protocol model of [3], restricted so that interactions be-
tween two agents are one-way. We first describe these two models separately, and then
define our combined model and its variations.

2.1 Asynchronous message-passing

In anasynchronous message-passing model, processes communicate by sending mes-
sages. A process may spontaneously send a message at any time, which is delivered to
a recipient at some later time. The recipient may respond to the message by updating its
state and possibly sending one or more messages. In the standard model, senders can
choose the recipients of their messages, and recipients are aware of the identities of the
senders of messages they receive; in our model, we drop these assumptions.

Message-passing systems may be vulnerable to a variety of failures, including fail-
ures at processes such as crashes or Byzantine faults, and failures in the message deliv-
ery system such as dropped or duplicated messages. We assume fault-free executions.
Since message delivery is asynchronous, making any sort of progress requires adopt-
ing a fairness condition to exclude executions in which indefinitely-postponed delivery
becomes equivalent to no delivery.

A minimal fairness condition might be that if some process sends a particular mes-
sagem infinitely often, then each other process receives the same messagem infinitely
often. In Sect. 4, we show that this minimal fairness condition is not enough to solve
more than a small class of problems, even in a message-passing model with unbounded
states and message sizes. So instead we adopt a stronger global fairness condition de-
rived from that used in [3]. We define this condition formally below.

2.2 Population Protocols

We call this model thestandard two-way modelof population protocols to distinguish
it from the one-way models we define in Sect. 2.3. Apopulation protocol [3] consists
of a finite populationV of agents with states drawn from a finite state setQ. The iden-
tities of agentsv ∈ V are used in describing the model, but are not accessible to the
agents themselves. Agents interact in pairs; each interaction updates the state of both
agents according to a joint transition ruleδ : Q×Q → Q×Q that maps pairs of states
(p, q) 7→ (p′, q′). Interactions are asymmetric: the left-hand agent is called theinitia-
tor and the right-hand agent theresponder. We think of the initiator as thesenderof
a message and the responder as thereceiver of a message, but in the original model
information may flow in both directions.

A configuration C of a population protocol describes the states of all agents; the
state of agentv in C is denotedC(v). An interaction takes a configurationC to a new
configurationC ′ by updating the states of exactly two agents. If there is a transition
from C to C ′, we writeC → C ′. We writeC

∗→ C ′ if there is a sequence of zero or
more transitions that transformC to C ′. In this case,C ′ is said to bereachablefrom C.

A computation is a sequence of configurationsC0, C1, C2, . . . with Ci → Ci+1 for
eachi. Computations may be finite or infinite. Achieving positive results in this model
depends on excluding computations in which subpopulations are isolated from each

other or are only permitted to communicate at inopportune times. In [3], a computation
was defined to befair if for every configurationC that occurs infinitely often in the
computation, ifC → C ′, thenC ′ also occurs infinitely often in the computation. This
condition is intended to capture the effect of a probability 1 property without directly
incorporating probabilities; for example, if pairs of agents are selected at random to
interact, the resulting computation is fair with probability 1. In Sect. 2.4 we generalize
this fairness condition to deal with messages in transit.

To allow agent states to contain information other than the output value, states inQ
are mapped to outputs from a finite output alphabetY by anoutput function . Similarly,
inputs from a finite input alphabetΣ are mapped to states inQ by an input function
I : Σ → Q. An inputX assigns a symbol fromΣ to each agent in the population; the
corresponding input configuration is denotedI(X). Because the agents are anonymous
and every pair may interact and because we consider predicates, it is immaterial which
agent is assigned each symbol [3], and we may consider inputs and configurations as
finite multisets. Multisets are denoted by upper-case letters, and individual elements are
denoted by lower-case letters. We use the notationA + B for the union of multisetsA
andB, andA + a for the union of multisetsA and{a}. The notationkA, wherek is a
non-negative integer andA is a multiset, is used for the multiset in which every element
occurs withk times its multiplicity inA.

A configurationC is output-stable if, for any C ′ reachable fromC by a sequence
of zero or more transitions, the vector of output values inC ′ is equal to the vector
of output values inC. A predicateP on finite multisetsX of elements fromΣ is
stably computedby a given protocol if every fair computation of the protocol from an
input configurationI(X) eventually reaches an output-stable state in which all agents
output the correct value forP (X). As an example, a protocol with inputs{0, 1} and
identity input and output functions in which(1, q) 7→ (1, 1) and(0, q) 7→ (0, q) stably
computes the OR of all the initial inputs. Output-stability does not require that the states
of individual agents do not change; it is enough that any changes are not visible in the
outputs of agents. This fact is exploited by protocols that include “leader bits” or similar
tokens that move freely among agents without affecting the output after convergence.

2.3 One-way Communication in Population Protocols

To model one-way communication in a population protocol, we restrict the transition
function so that the new state of the sender does not depend on the state of the receiver.
There are two natural ways to do this. We may stipulate that an interaction does not
change the state of the sender at all. This is anobservationmodel, in which the sender
is passively observed by the receiver. Formally, if(p, q) 7→ (p′, q′), thenp′ = p.

Alternatively, in atransmissionmodel, the sender of a message can detect that it has
sent the message, but learns nothing about the state of the recipient. This corresponds
to requiring that for any two transitions(p1, q1) 7→ (p′1, q

′
1) and(p2, q2) 7→ (p′2, q

′
2),

that if p1 = p2 thenp′1 = p′2. Since each transmission model formally includes the
corresponding observation model, it is at least as powerful.

In both cases, the result is that communication isone-way: only the receiver obtains
any information about its partner’s state. We will refer to any protocol with such one-
way communication as aone-way population protocol. In an immediate delivery

model, these are the only changes to the basic population protocol model. Immediate
delivery models can be thought of as models of interaction.

However, the standard asynchronous message-passing model assumes that (1) pro-
cesses cannot be compelled to send messages if they do not want to and (2) messages
may not be delivered immediately. Including the first feature requires classifying states
based on whether or not they are enabled to send messages. For the non-immediate
models we assume that send events only occur for statesq in some subsetQS of Q;
states inQS are calledsend-enabled.

To address (2), we split a joint transition into two separate sending and receiving
events. Configurations are extended to include two components: thepopulation con-
figuration , giving the states of all the agents, and the multiset ofmessages in transit,
which for simplicity we take to be pairs consisting of sender ids and elements of the
state spaceQ. (The sender ids are used only in the model discussed in Sect. 4.) Each
transition(p, q) 7→ (p′, q′) is split into asend eventwhich changes the state of an agent
from p to p′ and addsp to the multiset of messages in transit, and areceive eventin
whichp is removed from the multiset of messages in transit and the state of some agent
is updated fromq to q′. As with immediate delivery, we can consider both adelayed
transmissionmodel in which a sender can record that it sent a message and adelayed
observationmodel in which a sender cannot.

Both the delayed transmission and delayed observation models require that any
agent be prepared to receive any message in any state. This may not give an agent
enough time to respond to a message before the next incoming message arrives. With
queueddelivery, an agent can enter into a state in which it refuses to receive messages.
Formally, we assume that only states in some subsetQR of Q can receive messages;
states inQR are calledreceive-enabled. In the delayed or queued models, the transition
rule becomes a partial function whose domain isQS×QR, whereQR = Q for delayed
transmission or delayed observation andQR ⊆ Q for queued transmission.4

Separating message transmission and receipt creates the possibility that an agent
may receive its own message. This can be thought of as including self-loops in thein-
teraction graph controlling which agents can communicate, which we otherwise take
to be complete. In general, we assume that this does not occur in the immediate delivery
models (which are interaction models) but may occur in the delayed and queued deliv-
ery models (once a message is sent it may be delivered to anyone.) In the full paper
it will be shown that this has at most a minor effect on the power of the models we
consider.

2.4 Fairness Revisited

We generalize the fairness condition from [3], given in Sect. 2.2, to deal with messages
in transit. Because we permit partial transition rules, we also extend the definition of
a computation to be any sequence of configurationsC0, C1, . . . such that for eachi,
Ci → Ci+1 or Ci+1 = Ci. This does not change the reachability relation on computa-

4 In an observation model an agent cannot leave a non receive-enabled state; thus we do not
consider a queued observation model.

tions, but it does permit a simpler definition of fairness that applies to computations that
terminate (when no further transitions are enabled) as well as non-terminating ones.

Let C0, C1, . . . be an infinite computation. A population configurationC occurs
infinitely often in this computation if there are infinitely manyj such thatC is the
population component ofCj . A population configurationC is infinitely often enabled
in this computation if there exist infinitely manyj such thatC is the population compo-
nent of some configuration reachable fromCj . We say that this computation isfair if
for every population configurationC that is infinitely often enabled in the computation,
C occurs infinitely often in the computation.5

3 The Power of One-Way Population Protocols

We investigate what predicates on the multiset of input symbols are stably computable
in the models defined in Sect. 2.3 Note that for each of these models, a direct product
construction permits parallel execution of a finite collection of different protocols, and
therefore the set of stably computable predicates is closed under Boolean combinations
in each model.

3.1 Delayed Observation

The delayed observation model is very weak: an agent is unaware that it has sent a
message, and may receive messages that were sent in the distant past. This effectively
means that an agent may at any time receive messages containing any state that has ever
appeared in the computation. As a result, the most that a protocol can do is detect the
presence or absence of particular symbols in the input.

Theorem 1. TH1 is the class of predicates stably computable in the delayed observa-
tion model.

Lemma 2. Let P be a predicate inTH1. ThenP is stably computable by a delayed
observation protocol.

Proof. Each state is a subset of the finite input alphabet. Inputa is mapped to{a}.
Whenever an agent in stateq receives a messageq′, it updates its state toq ∪ q′. The
output function mapsq to the value ofP on this set of inputs. By the fairness condition,
the value of every state must converge to the set of inputs present in the initial configu-
ration, and the outputs will then be the correct value ofP . ut

The following cloning technique applies to both the observation models.

Lemma 3. Suppose a protocol in the delayed or immediate observation model stably
computes the predicateP . SupposeC

∗→ D andv is an agent such thatC(v) = p and
D(v) = q. Let v′ be a new agent, and letC ′ beC with v′ in statep and letD′ beD

with v′ in stateq. ThenC ′ ∗→ D′.

5 The antecedent of the condition may never be satisfied if the state space is unbounded, as is
often implicit in the standard asynchronous message-passing model.

Proof sketch.We use the computation fromC to D to construct a computation fromC ′

toD′ by duplicating every message eventually delivered tov in the computation fromC
to D, and delivering one copy tov and one copy tov′. The agents sending the duplicate
messages are unaffected by the change because these are observation models.ut

Lemma 4. SupposeP is stably computed by a delayed observation protocol. ThenP
is in TH1.

Proof. We show that for any multisetX of inputs, ifa ∈ X thenP (X + a) = P (X),
which implies thatP is determined solely by the presence or absence of each input
symbol and hence is inTH1.

Consider the finite graph whose nodes are configurations reachable fromI(X) that
contain no messages in transit, with a directed edge fromC to C ′ if C

∗→ C ′. A fi-
nal strongly connected component of this graph is one from which no other strongly
connected component of the graph is reachable. FromI(X) we can reach a configu-
ration in a final strongly connected componentF of this graph. LetF̂ denote all the
configurationsD, including those with undelivered messages, such thatC

∗→ D for
someC ∈ F . For any configurationsD andD′ in F̂ , D

∗→ D′ by first delivering all
messages inD. This implies that all configurations in̂F are output-stable.

The setT of states that occur in configurations in̂F is closed, that is, ifp, q ∈ T
and(p, q) 7→ (p, q′), thenq′ ∈ T . To see this, assume not. Then, take a configurationD
in F̂ that containsp and let an agent in statep send a message, puttingp into messages
in transit. Now mimic a computation fromD to a configurationD′ in F̂ containingq,
leaving the messagep undelivered. Then deliverp to an agent in stateq, arriving at a
configuration inF̂ containingq′, a contradiction.

Now consider anya in X. Let C be an output-stable configuration inF that is
reachable fromI(X). Let q be the state in configurationC of an agent that began with
inputa. Then by Lemma 3, a configurationC ′ equal toC with a new agent in stateq is
reachable fromI(X + a). BecauseT is closed and the states ofC ′ are all inT , C ′ is
output-stable and thereforeP (X + a) = P (X). ut

3.2 Immediate Observation

In the immediate observation model, transitions are of the form(p, q) 7→ (p, q′) and
there is no multiset of undelivered messages. For any constantk, an immediate obser-
vation protocol can count the number of copies of each input symbol up tok, making
this model more powerful than the delayed observation model. However, this is also the
extent of its power.

Theorem 5. TH∗ is the class of predicates stably computable in the immediate obser-
vation model.

Lemma 6. Every predicate inTH∗ is stably computable by an immediate observation
protocol.

Proof. By Boolean closure, it suffices to give an immediate observation protocol that
stably computes an arbitrary threshold predicate:#(a) ≥ k. The states are0, 1, 2, . . . , k.

The input map takesa to 1 and every other symbol to0; the protocol must determine
whether there are at leastk 1’s in the initial configuration. The transitions are(i, i) 7→
(i, i + 1) for all i = 1, 2, . . . , k − 1 and(k, i) 7→ (k, k) for all i = 0, 1, 2, . . . , k − 1,
where all other transitions leave the argument pair unchanged. The output map takesk
to 1 and every other state to1.

If there are no1’s in the initial configuration, then it never changes. If there arej 1’s
in the initial configuration for some0 < j < k, then any fair computation eventually
reaches a configuration in which the only nonzero states are1, 2, . . . , j, and this config-
uration never changes. In both cases, every output is0 throughout the computation.

If there arej ≥ k 1’s in the initial configuration, then any fair computation must
reach the configuration in which all states arek, and this configuration never subse-
quently changes. In this configuration, every output is1. (The full paper will contain a
proof that the number of states used in this protocol is optimal.) ut

Consider an immediate observation protocol that stably computes a predicateP .
The following property of output-stable configurations ofP is very useful; it will be
proved in the full paper. A setL of finite multisets of elements from some setS is
calledlinear if there exist a base elementB ∈ L and a finite set of periodsP1, . . . , Pd

such that the elements ofL are precisely those of the formB + m1P1 + . . . + mdPd,
where themi are nonnegative integers and thePi are multisets of elements ofS.

Lemma 7. The set of output-stable accepting [rejecting] configurations is a union of a
finite collection of linear sets in which every period consists of a singleton state.

Proof. A set is calledsemilinear if it is a finite union of linear sets. The setA of output-
stable accepting configurations is downward closed, so its complement is upward closed
and therefore semilinear by Higman’s Lemma [16]. Because the semilinear sets are
closed under complement [14],A is semilinear.

Thus,A is a finite union of linear sets. Consider one of the linear sets, sayL. It
has a base elementB and a finite collection of periods,P1, . . . , Pd. Consider the linear
setL′ with baseB and periods{q} for any stateq that occurs in somePi. Clearly,
L ⊆ L′, and we claimL′ ⊆ A, so that replacing eachL by its correspondingL′ gives
the decomposition ofA required by the lemma. To see that the claim is true, consider
any elementC of L′. C consists ofB plus multiples of statesq in the periodsPi. By
taking B plus sufficiently large multiples of thePi’s we get a configurationC ′ ∈ L
such thatC ⊆ C ′. BecauseA is downward closed,C ∈ A. The same proof works for
the output-stable rejecting configurations. ut

Lemma 8. LetP be a predicate that is stably computed by a protocol in the immediate
observation model. ThenP is in TH∗.

Proof. By Lemma 7, the output-stable accepting configurations of the protocol are the
union of a finite collection of linear setsLi with singleton periods, and similarly for the
output-stable rejecting configurations, where the linear sets areMj . Let k be one more
than the maximum cardinality of any of the bases of theLi’s orMj ’s.

Consider any finite multisetX of inputs for which#(a) ≥ k for somea. Suppose
X is accepted; a similar proof applies ifX is rejected. IfI(a) = q thenq occurs with

multiplicity at leastk in I(X). Consider any output-stable configurationD reachable
from C. D is in one of the linear setsLi. Because the multiplicity ofq exceeds the
cardinality of the base ofLi, some agentv in stateq in I(X) must have stateq′ in D,
whereq′ is the singleton state of one of the periods ofLi. Thus,D + q′ is also inLi,
soD + q′ is output-stable and accepting. However, by Lemma 3,I(X) + q

∗→ D + q′,
andI(X) + q = I(X + a), soX + a must also be accepted by the protocol. Thus, for
any input symbola, if #(a) ≥ k in input X, P (X + a) = P (X), which implies that
P is in THk, and therefore inTH∗. ut

3.3 Immediate and Delayed Transmission

The immediate and delayed transmission models can stably compute all threshold and
modulo predicates, and therefore all predicates inREG. Thus they are more powerful
than the immediate observation model.

Theorem 9. Predicates inREG are stably computable in the immediate and delayed
transmission models.

Proof. By Boolean closure, it suffices to prove that all the threshold and modulo pred-
icates are stably computable in both models. We assume data values in the setS =
{0, 1, . . . , k} and a commutative monoid operationg(d1, d2) on this set with identity0.
We describe a protocol to compute theg-sum of all the data values in the input states.
The states are(b, d), whereb ∈ {0, 1} is a leader bit, andd ∈ S. A transition with
sender state(b, d) and receiver state(b′, d′) updates the sender state to(0, d) and the
receiver state to(1, g(d, d′)) if b = b′ = 1, to (1, d) if b = 1 andb′ = 0, and leaves it
unchanged otherwise.

The following invariant is preserved by each transition: theg-sum of the data values
of those agents and messages in transit with leader bit equal to1 is theg-sum of all the
input data values. By fairness, eventually there will be just one agent (or message in
transit) with leader bit equal to1, and its data value will be the correctg-sum of all the
input data values. Again by fairness, that data value will be copied to every agent as the
leader bit is passed among them.

For the threshold predicate#(a) ≥ k, a is mapped to(1, 1) and all other input
symbols are mapped to(0, 0). State(b, d) is mapped to output1 if and only if d =
k. The monoid sumg(d1, d2) is min(k, d1 + d2). For the modulo predicate#(a) ≡
j (mod (k + 1)) we take the same input function, map(b, d) to output1 if and only if
d = j, and take the monoid sumg(d1, d2) to be(d1 + d2) mod (k + 1). ut

The following theorem shows thatREG does not exhaust the class of predicates
stably computable in the immediate and delayed transmission models. Let$ be a symbol
not in Σ andP a predicate over alphabetΣ. DefineP$ be the predicate overΣ ∪ {$}
that is true if there are at least two agents in the population, there is exactly one$ in
the input, andP is true on the multiset of other input symbols. For example, ifP is the
comparison predicate,#(a) > #(b), thenP$ is the predicate that is true when the input
contains exactly one$ and morea’s thanb’s, which is not inREG.

Theorem 10. Let P be a predicate overΣ that is stably computable in the standard
two-way model. ThenP$ is stably computable in the immediate and delayed transmis-
sion models.

Proof sketch.We run three protocols in parallel, one to verify that there are at least two
agents in the population, one to verify that there is just one$ in the input, and one that
performs a simulation of the two-way protocol computingP on the rest of the input
symbols, assuming that the first two conditions are satisfied. The first two conditions
are inTH2 andTH1, respectively, and are therefore computable, by Theorem 9.

The idea of the simulation is to use the unique input$ to generate a leader token
that passes from one simulated agent to another in the population. The leader token
nondeterministically chooses a simulated agent to be the initiator and picks up its state
(leaving behind a place marker), chooses another simulated agent to be the responder,
updates the responder’s state and waits until it returns to the place marker to update the
simulated initiator’s state, and then repeats the whole sequence. The state of the extra
agent (that had the input$) is updated to reflect the outputs of the simulated agents.ut

The following theorem is an important restriction on the power of both transmission
models; its proof will appear in the full paper. Recall the definitions ofk-rich, k-core,
and core-REG from Sect. 1.1.

Theorem 11. Let P be a predicate that is stably computable by an immediate or de-
layed transmission protocol. Then for somek, thek-core ofP is in REG.

Let P be the comparison predicate,#(a) > #(b). The2-core ofP$ is empty, and
therefore inREG, but nok-core ofP is in REG, yielding the following corollary.

Corollary 12. The comparison predicate is not stably computable in the immediate or
delayed transmission models.

By generalizing Theorem 10 and combining it with Theorem 11, we get the follow-
ing characterization of the power of immediate transmission protocols; its proof will
appear in the full paper.

Theorem 13. A predicateP is stably computable in the immediate transmission model
if and only ifP is stably computable in the standard two-way model and somek-core
of P is in REG.

3.4 Queued Transmission

The queued transmission model is the most powerful of the models we consider; it is
capable of simulating the standard model of two-way population protocols, and (if no
bounds are placed on the size of the multiset of messages in transit) can generate an
unbounded number of additional simulated agents. The intuition is that a simulation
can use messages in transit to represent agents of the standard population protocol, and
collect pairs of simulated agents at real nodes to simulate transitions. To avoid dead-
locks, we also include a floating population of “release messages” that trigger nodes to
release the simulated agents collected so far.

Theorem 14. A predicateP is stably computable by a standard two-way population
protocol if and only ifP is stably computable in the queued transmission model using
at most a linear number of messages in transit.

A detailed proof is given in the full paper. The full paper will also include a proof that
the delayed transmission model with a linear bound on messages in transit is equivalent
in power to the immediate transmission model, based on Theorems 11 and 14.

4 Local Fairness Is Weak Even with Unbounded States

In this section, we consider an anonymous message-passing model with the following
local fairness condition: if some process sends a particular messagem infinitely often,
then each process receives messagem infinitely often. This model turns out to be sur-
prisingly weak. Even if the states of processes and the lengths of messages may grow
without bound, protocols in this model cannot distinguish two multisets of inputs if the
same set of values appears in each. Since this model subsumes the finite-state models
of the preceding sections, it demonstrates why the stronger global fairness condition
assumed there is necessary. The definition ofTHk generalizes straightforwardly to an
infinite alphabetΣ.

Theorem 15. Let Σ denote the (finite or infinite) set of possible input values. A predi-
cateP on finite multisets of elements fromΣ is stably computable in the asynchronous
message-passing model with the weak fairness condition if and only ifP is in TH1.

Proof. Consider the delayed observation protocol from the proof of Lemma 2 to deter-
mine the set of all inputs that occur in the initial configuration, modified so that each
agent sends its state every time it runs. Clearly every message is a subset of the initial set
of input values, so there are only finitely many possible messages in each computation.
Every message sent by a process with input valuex contains the elementx, and it sends
infinitely many messages, so eventually every process receives a message containingx.
Thus, the state of every process eventually consists of the initial set of input values.

For the converse, assume that we have an algorithm to stably compute a predicate
P , and letA andB be two multisets of values fromΣ such that the same set of values
appears in each. Letn = |A| andn′ = |B|. Let C0 andC ′

0 be initial configurations
where processes have inputs fromA andB, respectively. We construct two executions
α andα′ starting fromC0 andC ′

0. Letm1,m2, . . . be an arbitrary sequence of messages
where every possible message appears infinitely often. We construct the executionsα
andα′ in phases, where phasei will ensure that messagemi gets delivered to everyone
if that message has been sent enough times. LetCi andC ′

i be the configurations ofα
andα′ at the end of phasei.

Our goal is to prove the following claim: for alli ≥ 0 and for allx ∈ Σ, the state
of each process with inputx in Ci is the same as the state of each process with input
x in C ′

i. Assume that we have constructed the firsti − 1 phases of the two executions
so that the claim is satisfied. Suppose we run all processes in lock step fromCi−1 and
C ′

i−1 without delivering any messages. There are two cases.

Case (i): Eventually, afterri rounds, the run fromCi−1 will have at leastn copies
of mi in transit and, afterr′i rounds, the run fromC ′

i−1 will have at leastn′ copies of
mi in transit. Then, theith phase ofα andα′ is constructed by running each process
for max(ri, r

′
i) rounds without delivering any messages, and then delivering one copy

of mi to every process. This ensures the claim will be true forCi andC ′
i.

Case (ii): Otherwise, we allow every process to take one step without delivering any
messages. (This clearly satisfies the claim forCi andC ′

i.)
It remains to show that bothα andα′ satisfy the weak fairness condition, and then

it will follow from the claim thatP (A) = P (B). First, notice that every process takes
infinitely many steps inα andα′. If some processv sends a messagem infinitely many
times inα or α′, it will also be sent infinitely many times by a process with the same
input value in the other execution (since a process with a particular input experiences
the same sequence of events in both executions). Supposem is never delivered after
phasei to some processw in one of the two executions. Eventually, there will ben
copies ofm in transit inCj for somej > i andn′ copies ofm in transit inC ′

j′ for
somej′ > i. Consider the first occurrence ofm in the sequencem1,m2, . . . that comes
aftermj andm′

j . During the corresponding phase,m will be delivered to every process,
includingw, a contradiction. Thus,α andα′ satisfy the weak fairness condition. ut

5 Conclusion

We defined several models incorporating one-way communication and message-passing
into population protocols and compared their ability to compute predicates on multisets
of inputs. We have fully characterized the power of the delayed and immediate observa-
tion models, the immediate transmission model, and the delayed and queued transmis-
sion models with a linear bound on messages in transit. The queued transmission model
with a linear bound on messages in transit is equivalent in power to the original model
of two-way population protocols. In contrast to traditional message-passing systems,
the strongest model is the most asynchronous: in the queued transmission model, mes-
sages in transit can effectively act as extra storage. An important feature of the queued
transmission model is that receivers can exercise flow control over incoming messages;
the delayed transmission model, lacking such flow control, is strictly weaker. The prob-
lems of characterizing the power of the delayed and queued transmission models with
no bound on messages in transit remains open, as does the related problem from [3] of
whether the power of standard two-way model is more thanSLIN .

References

1. Dana Angluin. Local and global properties in networks of processors. InProceedings of the
12th ACM Symposium on Theory of Computing, pages 82–93, 1980.

2. Dana Angluin, James Aspnes, Melody Chan, Michael J. Fischer, Hong Jiang, and René Per-
alta. Stably computable properties of network graphs.IEEE/ACM International Conference
on Distributed Computing in Sensor Systems, June 2005.

3. Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Com-
putation in networks of passively mobile finite-state sensors. InProc. 23rd Annual ACM
Symposium on Principles of Distributed Computing, pages 290–299, 2004.

4. James Aspnes, Gauri Shah, and Jatin Shah. Wait-free consensus with infinite arrivals. In
Proceedings of the 34th ACM Symposium on Theory of Computing, pages 524–533, 2002.

5. Hagit Attiya, Alla Gorbach, and Shlomo Moran. Computing in totally anonymous asyn-
chronous shared memory systems.Information and Computation, 173(2):162–183, March
2002.

6. Paolo Boldi and Sebastiano Vigna. Computing anonymously with arbitrary knowledge. In
Proceedings of the 18th ACM Symposium on Principles of Distributed Computing, pages
173–179, 1999.

7. Paolo Boldi and Sebastiano Vigna. An effective characterization of computability in anony-
mous networks. InDistributed Computing, 15th International Conference, pages 33–47,
2001.

8. Harry Buhrman, Alessandro Panconesi, Riccardo Silvestri, and Paul Vitanyi. On the impor-
tance of having an identity or, is consensus really universal?Distributed Computing, 2005.
To appear.

9. D. J. Daley and D. G. Kendall. Stochastic rumours.Journal of the Institute of Mathematics
and its Applications, 1:42–55, 1965.

10. Zöe Diamadi and Michael J. Fischer. A simple game for the study of trust in distributed
systems.Wuhan University Journal of Natural Sciences, 6(1–2):72–82, March 2001. Also
appears as Yale Technical Report TR–1207, January 2001.

11. Ömer Ĕgeciŏglu and Ambuj K. Singh. Naming symmetric processes using shared variables.
Distributed Computing, 8(1):19–38, 1994.

12. Faith Fich and Eric Ruppert. Hundreds of impossibility results for distributed computing.
Distributed Computing, 16(2-3):121–163, September 2003.

13. Daniel T. Gillespie. A rigorous derivation of the chemical master equation.Physica A,
188:404–425, 1992.

14. Seymour Ginsburg.The Mathematical Theory of Context Free Languages. McGraw-Hill,
New York, 1966.

15. Rachid Guerraoui and Eric Ruppert. What can be implemented anonymously? In19th
International Symposium on Distributed Computing, pages 244–259, 2005.

16. G. Higman. Ordering by divisibility in abstract algebras.Proceedings of the London Math-
ematical Society, 3(2):326–336, 1952.

17. Prasad Jayanti and Sam Toueg. Wakeup under read/write atomicity. InDistributed Algo-
rithms, 4th International Workshop, volume 486 ofLNCS, pages 277–288, 1990.

18. Shay Kutten, Rafail Ostrovsky, and Boaz Patt-Shamir. The Las-Vegas processor identity
problem (How and when to be unique).Journal of Algorithms, 37(2):468–494, November
2000.

19. Richard J. Lipton and Arvin Park. The processor identity problem.Information Processing
Letters, 36(2):91–94, October 1990.

20. Alessandro Panconesi, Marina Papatriantafilou, Philippas Tsigas, and Paul Vitányi. Ran-
domized naming using wait-free shared variables.Distributed Computing, 11(3):113–124,
August 1998.

21. Mojzesz Presburger.Über die Vollsẗandigkeit eines gewissen Systems der Arithmetik ganzer
Zahlen, in welchem die Addition als einzige Operation hervortritt. InComptes-Rendus du I
Congr̀es de Math́ematiciens des Pays Slaves, pages 92–101, Warszawa, 1929.

22. Naoshi Sakamoto. Comparison of initial conditions for distributed algorithms on anonymous
networks. InProc. 18th ACM Symposium on Principles of Distributed Computing, pages
173–179, 1999.

23. Shang-Hua Teng. Space efficient processor identity protocol.Information Processing Let-
ters, 34(3):147–154, April 1990.

