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Abstract. We consider a population of anonymous processes communicating
via anonymous message-passing, where the recipient of each message is cho-
sen by an adversary and the sender is not identified to the recipient. Even with
unbounded message sizes and process states, such a system can compute only
limited predicates on inputs held by the processes. In the finite-state case, we
show how the exact strength of the model depends critically on design choices
that are irrelevant in the unbounded-state case, such as whether messages are de-
livered immediately or after a delay, whether a sender can record that it has sent

a message, and whether a recipient can queue incoming messages, refusing to
accept new messages until it has had a chance to send out messages of its own.
These results may have implications for the design of distributed systems where
processor power is severely limited, as in sensor networks.

1 Introduction

We introduce and study certain variants of the population protocol model [2, 3] modi-
fied to use forms of one-way communication progressively more similar to those of tra-
ditional asynchronous message-passing. In the population protocol model, finite-state
agents interact in pairs, updating their states according to a joint transition function
whose value depends upon the previous states of both agents. Because the new state
of both agents may depend on the prior state of the other, we call such an interaction
a bidirectional interaction . Protocols in this model must work correctly regardless of
the order in which these bidirectional interactions occur. Motivating scenarios include
models of the propagation of trust in populations of agents [10] and interactions of
passively mobile sensors [3]. Similar models of pairwise interaction have been used to
study the propagation of rumors in a population of agents [9] and to justify the Chem-
ical Master Equation [13], suggesting that the model of population protocols may be
fundamental in several fields.

Because the agents in a population protocol have only a constant number of states, it
is impossible for them to adopt distinct identities, making them effectively anonymous.
An agent encountering another agent cannot tell in general whether it has interacted
with that agent before. Despite these limitations, populations of such agents can com-
pute surprisingly powerful predicates on their initial states under a reasonable global
fairness condition. When each agent may interact with every other agent, any predicate
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over the counts of initial states definable in Presburger arithmetic is computable [3].
When each agent has only a bounded set of neighbors with which it can interact, linear
space computable predicates are computable [2].

The assumption of bidirectional interaction, however, may be unrealistic in the con-
text of sensor networks, where radio communication, even between nearby sensors, may
not be bidirectional. Moreover, one-way message-passing primitives may be easier to
implement in practice. In this paper, we study how the power of the population protocol
model changes when the assumption of bidirectional interaction is replaced by certain
forms of one-way communication. The pairwise interactions are split into separate send
and receive events that each may affect only a single agent.

We consider the effect of two primary attributes of the models: (1) send and re-
ceive events may occur simultaneousiyrfediate delivery) or may involve delayed
messages subject to various constraidtdgyed delivery andqueueddelivery), and
(2) a sender may be allowed to change its state as a result of sending a message
(transmission), or not Ebservation). The transmission model is more typical in dis-
tributed computing. A web page that increments its counter in response to a visit is an
example of such an interaction. Examples of interactions that fit the observation model,
where the receiver observes an unknowing sender, include a person reading a post to
a discussion forum or a device reading a passive RFID (radio frequency identification)
tag. (Of course to preserve the anonymity of our model, the device would not get a
unique identity from the tag.) For models with delayed messages, we also consider
whether the number of messages in transit is linearly bounded in the population size.
Precise definitions are given in Sect. 2.

1.1 Comparing the Models

Comparing the computational power of the resulting models highlights the differences
between the forms of one-way communication we consider. As in [3], we assume that
every pair of agents eventually come into contact with each other, and seek to character-
ize the class of predicates on multisets of inputs that are stably computable by protocols
in each model. Le# (a) denote the number of agents assigned impotthe initial con-
figuration. We consider three kinds of predicates: (1) Threshkéld) > ¢, (2) Modulo:

#(a) = j (mod k), and (3) Comparison#(a) > #(b). These three kinds of predi-
cates turn out to be well-suited for characterizing the power of the various versions of
our model but they arise in some interesting distributed tasks. The threshold function is
applicable to a motivating example of [3]: a network of sensors monitoring individual
birds could detect when at least five birds in the flock have an elevated temperature in
order to raise an alarm of a possible epidemic. The mo#uylcedicate is useful if the
system must determine whether processes can be evenly partitioned into groups of size
k. A majority voting scheme could use a comparison predicate.

More complicated predicates can be built up from the basic predicates using Boolean
operators. We define classes of predicates on finite multisets of symbols from a finite
input alphabet™ as follows.TH is the Boolean closure of all threshold predicates
#(a) > t wherea € X andt < k. Predicates ifTH;, are determined by the mul-
tiplicities of input symbols up to a maximum &f in particular, predicates ifiH;
are determined by the presence or absence of each input syhibpis the union of
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Fig. 1. Summary of our results for finite-state models.

TH, over all positive integers. REG is the Boolean closure of all threshold predicates
#(a) > t and modulo predicateg(a) = j (mod k) wherea € X, ¢t > 1, j > 0, and

k > 2. Predicates ifREG are those recognizable by finite-state acceptors when fed the
input symbols in any orde6LIN is the class of semilinear predicates over multisets
of symbols fromX, that is, the class definable by Presburger predicates [21] over the
counts of symbols fron¥. It is the Boolean closure of threshold predicates, modulo
predicates and comparisons of linear combinations of input multiplicities. We have the
following relationships between these classes:

TH; C THy C ... C TH, C REG C SLIN,

where the containments are strict. For example, the predigdie) = 1) A (#(b) > 3)

isin TH3 but notTH . The predicaté# (a) > 13) V (#(b) = 3 (mod 5)) is in REG,

but not TH,, which does not contain the modulo predicates. The predicate
((Bx#(a)+1) < (5% +#(b))) V (#(b) = 2) is in SLIN but notREG, which does

not contain the comparison predicate. Every predicaglilN is stably computable by

a population protocol in the standard two-way model [3]; whether other predicates are
stably computable in this model is open.

We define the class of coREG predicates over an alphabgtas follows. A finite
multiset of elements aoF’ is k-rich if it contains each element df with multiplicity at
leastk. Given a predicaté” and a nonnegative integér define thek-core of P to be
P A @Q whereQ is the property of being-rich. Then a predicat® is in core-REG if
somek-core of P is in REG.

Our results for the finite-state models appear in Sect. 3. A summary is provided
in Fig. 1. For each variant of the model, the corresponding box in the figure describes
known facts about the class of predicates that can be stably computed.

The power of the delayed observation model is exa€tiy; ; protocols can only
detect the presence or absence of each input symbol. The power of the immediate ob-
servation model is exactliyH ... A protocol in this model may determine the multiplicity
of each input symbol up to some fixed linkit Thus, this model is strictly stronger than
the delayed observation model. The power of the immediate and delayed transmission
models properly includeREG, but does not include the comparison predicate. Thus,
these two models are strictly more powerful than the immediate observation model. The



immediate transmission model is strictly weaker than the standard two-way model and
the delayed transmission model is strictly weaker than the queued transmission model.

The queued transmission model, which is essentially an anonymous finite-state ver-
sion of the usual asynchronous message-passing model, is at least as powerful as the
standard two-way model, and equal to it in power with a linear bound on messages
in transit. Without such a bound, the queued transmission model admits protocols that
spawn an unbounded number of new simulated agents; the exact characterization of the
power of the model in this case is an open question.

1.2 Anonymous Communication and Fairness

The question of what computations can be performed in anonymous systems, where
processes start with the same state and the same programming, has a long history in the-
oretical distributed computing. Many early impossibility results such as [1] assume both
anonymity and symmetry in the communication model, which limits what can be done
without some mechanism for symmetry-breaking. See [12] for a survey of many such
impossibility results. More recent work targeted specifically at anonymity has stud-
ied what problems are solvable in message-passing systems under various assumptions
about the initial knowledge of the processes [6, 7,22], or in anonymous shared-memory
systems where the properties of the supplied shared objects can often (but not always,
depending on the details of the model) be used to break symmetry and assign identi-
ties [4,5,8,11,15,17-20, 23]. This work has typically assumed few limits on the power

of the processes in the system other than the symmetry imposed by the model.

Agents in the population protocol model are assumed to be finite-state. Together
with a transition rule that depends only on the states of the two interacting agents, the
finite-state assumption naturally yields a model in which agents are effectively anony-
mous. This makes the model much weaker than a typical message-passing model, where
processes have identities. On the other hand, in one respect the population protocol
model is much stronger than a typical message-passing model: communication between
two interacting agents is instantaneous and bidirectional.

Implicit in the structure of a population protocol is that message-passing is rather
strongly anonymous: not only does a receiver not learn the identity of the sender, but a
sender cannot direct its message to a particular receiver. This is unusual even in anony-
mous message-passing models, which typically assume that a process can use some sort
of local addressing to direct messages to specific neighbors. It also leads to a very weak
message-passing model if we adopt the traditional fairness assumption of eventual de-
livery to all destinations of any message that is sent often enough. We show in Sect. 4
that even with unbounded states and message lengths, this fairness condition only pro-
vides enough power to detect the presence or absence of each possible input, giving
additional justification for the global fairness condition used in the rest of the paper.

2 Model

We give a model that unifies both the standard asynchronous message-passing model,
adapted so that processes are anonymous and no longer control the destinations of their



messages; and the population protocol model of [3], restricted so that interactions be-
tween two agents are one-way. We first describe these two models separately, and then
define our combined model and its variations.

2.1 Asynchronous message-passing

In anasynchronous message-passing mogptocesses communicate by sending mes-
sages. A process may spontaneously send a message at any time, which is delivered to
a recipient at some later time. The recipient may respond to the message by updating its
state and possibly sending one or more messages. In the standard model, senders can
choose the recipients of their messages, and recipients are aware of the identities of the
senders of messages they receive; in our model, we drop these assumptions.

Message-passing systems may be vulnerable to a variety of failures, including fail-
ures at processes such as crashes or Byzantine faults, and failures in the message deliv-
ery system such as dropped or duplicated messages. We assume fault-free executions.
Since message delivery is asynchronous, making any sort of progress requires adopt-
ing a fairness condition to exclude executions in which indefinitely-postponed delivery
becomes equivalent to no delivery.

A minimal fairness condition might be that if some process sends a particular mes-
sagem infinitely often, then each other process receives the same messadjaitely
often. In Sect. 4, we show that this minimal fairness condition is not enough to solve
more than a small class of problems, even in a message-passing model with unbounded
states and message sizes. So instead we adopt a stronger global fairness condition de-
rived from that used in [3]. We define this condition formally below.

2.2 Population Protocols

We call this model thetandard two-way modelof population protocols to distinguish

it from the one-way models we define in Sect. 2.3dpulation protocol [3] consists

of a finite populatiort/ of agents with states drawn from a finite state@eThe iden-

tities of agenta € V are used in describing the model, but are not accessible to the
agents themselves. Agents interact in pairs; each interaction updates the state of both
agents according to a joint transition rdle Q x Q — @ x @ that maps pairs of states

(p,q) — (p',q'). Interactions are asymmetric: the left-hand agent is calledhitia-

tor and the right-hand agent tmesponder. We think of the initiator as theenderof

a message and the responder asréloeiver of a message, but in the original model
information may flow in both directions.

A configuration C' of a population protocol describes the states of all agents; the
state of agent in C'is denoted”(v). An interaction takes a configurati@ito a new
configurationC’ by updating the states of exactly two agents. If there is a transition
from C to C’, we writeC' — C’. We writeC' = (" if there is a sequence of zero or
more transitions that transfor@ito C’. In this case(’ is said to beeachablefrom C.

A computationis a sequence of configuratio@g, C1, Cs, . . . with C; — C; 14 for
eachi. Computations may be finite or infinite. Achieving positive results in this model
depends on excluding computations in which subpopulations are isolated from each



other or are only permitted to communicate at inopportune times. In [3], a computation
was defined to béair if for every configurationC' that occurs infinitely often in the
computation, ifC — C’, thenC" also occurs infinitely often in the computation. This
condition is intended to capture the effect of a probability 1 property without directly
incorporating probabilities; for example, if pairs of agents are selected at random to
interact, the resulting computation is fair with probability 1. In Sect. 2.4 we generalize
this fairness condition to deal with messages in transit.

To allow agent states to contain information other than the output value, st&es in
are mapped to outputs from a finite output alphabély anoutput function. Similarly,
inputs from a finite input alphabét’ are mapped to states (@ by aninput function
I:X — Q. AninputX assigns a symbol from¥' to each agent in the population; the
corresponding input configuration is denotédl ). Because the agents are anonymous
and every pair may interact and because we consider predicates, it is immaterial which
agent is assigned each symbol [3], and we may consider inputs and configurations as
finite multisets. Multisets are denoted by upper-case letters, and individual elements are
denoted by lower-case letters. We use the notation B for the union of multisetsA
andB, andA + a for the union of multisetsi and{a}. The notatiork A, wherek is a
non-negative integer andlis a multiset, is used for the multiset in which every element
occurs withk times its multiplicity in A.

A configurationC' is output-stable if, for any C’ reachable fronCC' by a sequence
of zero or more transitions, the vector of output valueg’inis equal to the vector
of output values inC. A predicateP on finite multisetsX of elements fromY' is
stably computedby a given protocol if every fair computation of the protocol from an
input configuration/ (X ) eventually reaches an output-stable state in which all agents
output the correct value faP(X). As an example, a protocol with inpu{§, 1} and
identity input and output functions in whidh, ¢) — (1,1) and(0, ¢) — (0, ¢) stably
computes the OR of all the initial inputs. Output-stability does not require that the states
of individual agents do not change; it is enough that any changes are not visible in the
outputs of agents. This fact is exploited by protocols that include “leader bits” or similar
tokens that move freely among agents without affecting the output after convergence.

2.3 One-way Communication in Population Protocols

To model one-way communication in a population protocol, we restrict the transition
function so that the new state of the sender does not depend on the state of the receiver.
There are two natural ways to do this. We may stipulate that an interaction does not
change the state of the sender at all. This islaservationmodel, in which the sender

is passively observed by the receiver. Formallypifq) — (p’, ¢'), thenp’ = p.

Alternatively, in atransmissionmodel, the sender of a message can detect that it has
sent the message, but learns nothing about the state of the recipient. This corresponds
to requiring that for any two transition®:,¢1) — (p},¢}) and(p2,q2) — (p5, ¢5),
that if p; = po thenp| = p). Since each transmission model formally includes the
corresponding observation model, it is at least as powerful.

In both cases, the result is that communicatioonis-way. only the receiver obtains
any information about its partner’s state. We will refer to any protocol with such one-
way communication as ane-way population protocol In animmediate delivery



model, these are the only changes to the basic population protocol model. Immediate
delivery models can be thought of as models of interaction.

However, the standard asynchronous message-passing model assumes that (1) pro-
cesses cannot be compelled to send messages if they do not want to and (2) messages
may not be delivered immediately. Including the first feature requires classifying states
based on whether or not they are enabled to send messages. For the non-immediate
models we assume that send events only occur for sjatesome subsef)s of Q;
states inQ s are calledsend-enabled

To address (2), we split a joint transition into two separate sending and receiving
events. Configurations are extended to include two componentpoghdation con-
figuration, giving the states of all the agents, and the multisehe§sages in transit
which for simplicity we take to be pairs consisting of sender ids and elements of the
state spacé€). (The sender ids are used only in the model discussed in Sect. 4.) Each
transition(p, ¢) — (p’, ¢') is split into asend eventwhich changes the state of an agent
from p to p’ and addw to the multiset of messages in transit, anceeeive eventin
whichp is removed from the multiset of messages in transit and the state of some agent
is updated fromy to ¢’. As with immediate delivery, we can consider botdelayed
transmissionmodel in which a sender can record that it sent a message @deldyed
observationmodel in which a sender cannot.

Both the delayed transmission and delayed observation models require that any
agent be prepared to receive any message in any state. This may not give an agent
enough time to respond to a message before the next incoming message arrives. With
queueddelivery, an agent can enter into a state in which it refuses to receive messages.
Formally, we assume that only states in some su@sebf Q can receive messages;
states inQ) i are calledeceive-enabledin the delayed or queued models, the transition
rule becomes a partial function whose domai@jsx @Q r, whereQ r = Q for delayed
transmission or delayed observation &g C Q for queued transmissich.

Separating message transmission and receipt creates the possibility that an agent
may receive its own message. This can be thought of as including self-loopsiim the
teraction graph controlling which agents can communicate, which we otherwise take
to be complete. In general, we assume that this does not occur in the immediate delivery
models (which are interaction models) but may occur in the delayed and queued deliv-
ery models (once a message is sent it may be delivered to anyone.) In the full paper
it will be shown that this has at most a minor effect on the power of the models we
consider.

2.4 Fairness Revisited

We generalize the fairness condition from [3], given in Sect. 2.2, to deal with messages
in transit. Because we permit partial transition rules, we also extend the definition of
a computation to be any sequence of configurationsC1, . .. such that for each,

C; — C;y1 0r C;41 = C;. This does not change the reachability relation on computa-

4n an observation model an agent cannot leave a non receive-enabled state; thus we do not
consider a queued observation model.



tions, but it does permit a simpler definition of fairness that applies to computations that

terminate (when no further transitions are enabled) as well as non-terminating ones.
Let Cy, Cy, ... be an infinite computation. A population configuratiGhoccurs

infinitely often in this computation if there are infinitely manysuch thatC' is the

population component af';. A population configuratiod’ is infinitely often enabled

in this computation if there exist infinitely manysuch thatC is the population compo-

nent of some configuration reachable frém We say that this computation fair if

for every population configuratio@i that is infinitely often enabled in the computation,

C occurs infinitely often in the computaticn.

3 The Power of One-Way Population Protocols

We investigate what predicates on the multiset of input symbols are stably computable
in the models defined in Sect. 2.3 Note that for each of these models, a direct product
construction permits parallel execution of a finite collection of different protocols, and
therefore the set of stably computable predicates is closed under Boolean combinations
in each model.

3.1 Delayed Observation

The delayed observation model is very weak: an agent is unaware that it has sent a
message, and may receive messages that were sent in the distant past. This effectively
means that an agent may at any time receive messages containing any state that has ever
appeared in the computation. As a result, the most that a protocol can do is detect the
presence or absence of particular symbols in the input.

Theorem 1. TH; is the class of predicates stably computable in the delayed observa-
tion model.

Lemma 2. Let P be a predicate infTH,. ThenP is stably computable by a delayed
observation protocol.

Proof. Each state is a subset of the finite input alphabet. lmpist mapped to{a}.
Whenever an agent in stajereceives a messagg, it updates its state tpU ¢’. The
output function maps to the value ofP on this set of inputs. By the fairness condition,
the value of every state must converge to the set of inputs present in the initial configu-
ration, and the outputs will then be the correct valué’of O

The following cloning technique applies to both the observation models.

Lemma 3. Suppose a protocol in the delayed or immediate observation model stably
computes the predicate. Suppose€” - D anduv is an agent such that'(v) = p and

D(v) = ¢. Letv’ be a new agent, and &€t be C with v in statep and letD’ be D

with o’ in stateq. ThenC’ = D',

5 The antecedent of the condition may never be satisfied if the state space is unbounded, as is
often implicit in the standard asynchronous message-passing model.



Proof sketch.We use the computation frofti to D to construct a computation froff

to D’ by duplicating every message eventually delivereditothe computation frond

to D, and delivering one copy teand one copy te’. The agents sending the duplicate
messages are unaffected by the change because these are observation modets.

Lemma 4. SupposeP is stably computed by a delayed observation protocol. TRen
isinTH.

Proof. We show that for any multiseX” of inputs, ifa € X thenP(X + a) = P(X),
which implies thatP is determined solely by the presence or absence of each input
symbol and hence is ifiH ;.

Consider the finite graph whose nodes are configurations reachablé ffopthat
contain no messages in transit, with a directed edge ffoto ¢’ if ¢ = . A fi-
nal strongly connected component of this graph is one from which no other strongly
connected component of the graph is reachable. Hrak) we can reach a configu-
ration in a final strongly connected componéhiof this graph. LetF denote all the
configurationsD, including those with undelivered messages, such¢hat D for
someC € F. For any configuration® andD’ in F, D - D’ by first delivering all
messages i. This implies that all configurations i are output-stable.

The setT of states that occur in configurationsnis closed, that is, ip, ¢ € T
and(p, q) — (p,q’), theng’ € T. To see this, assume not. Then, take a configurdfion
in F that containg and let an agent in stajesend a message, puttipgnto messages
in transit. Now mimic a computation frof to a configurationD’ in  containingg,
leaving the messageundelivered. Then deliver to an agent in state, arriving at a
configuration inF containingg’, a contradiction.

Now consider any: in X. Let C' be an output-stable configuration jf that is
reachable fronT(X). Let ¢ be the state in configuratiafi of an agent that began with
inputa. Then by Lemma 3, a configurati@r’ equal toC with a new agent in staigis
reachable fron7 (X + a). Becausél' is closed and the states 6f are all inT, C’ is
output-stable and therefor®( X + a) = P(X). O

3.2 Immediate Observation

In the immediate observation model, transitions are of the fgrm) — (p,¢’) and

there is no multiset of undelivered messages. For any conistam immediate obser-
vation protocol can count the number of copies of each input symbol kprieaking

this model more powerful than the delayed observation model. However, this is also the
extent of its power.

Theorem 5. TH, is the class of predicates stably computable in the immediate obser-
vation model.

Lemma 6. Every predicate inTH , is stably computable by an immediate observation
protocol.

Proof. By Boolean closure, it suffices to give an immediate observation protocol that
stably computes an arbitrary threshold predic#tgi) > k. The statesae 1,2, ..., k.



The input map takes to 1 and every other symbol 1@ the protocol must determine
whether there are at lealstl’s in the initial configuration. The transitions afgi) —
(i,i+ 1) foralli =1,2,...,k — 1land(k,i) — (k,k)foralli =0,1,2,...,k — 1,
where all other transitions leave the argument pair unchanged. The output map takes
to 1 and every other state fio

If there are nd’s in the initial configuration, then it never changes. If therejarts
in the initial configuration for somé < j < k, then any fair computation eventually
reaches a configuration in which the only nonzero states,&re. ., j, and this config-
uration never changes. In both cases, every outguttisoughout the computation.

If there arej > k 1's in the initial configuration, then any fair computation must
reach the configuration in which all states &teand this configuration never subse-
quently changes. In this configuration, every outpdut. iéThe full paper will contain a
proof that the number of states used in this protocol is optimal.) O

Consider an immediate observation protocol that stably computes a prefficate
The following property of output-stable configurationsifis very useful; it will be
proved in the full paper. A sef of finite multisets of elements from some sgtis
calledlinear if there exist a base elemeBt < £ and a finite set of periodB;, ..., P;
such that the elements dfare precisely those of the for® + m Py + ... + mgPy,
where them; are nonnegative integers and tReare multisets of elements 6f

Lemma 7. The set of output-stable accepting [rejecting] configurations is a union of a
finite collection of linear sets in which every period consists of a singleton state.

Proof. A setis callecsemilinearif it is a finite union of linear sets. The sdtof output-
stable accepting configurations is downward closed, so its complement is upward closed
and therefore semilinear by Higman’s Lemma [16]. Because the semilinear sets are
closed under complement [144 is semilinear.

Thus, A is a finite union of linear sets. Consider one of the linear sets/sdy
has a base elemeRtand a finite collection of period$;,, . .., P;. Consider the linear
set £’ with baseB and periods{q} for any stateg that occurs in somé;. Clearly,
L C L, and we claimZ’ C A, so that replacing each by its corresponding’ gives
the decomposition ofd required by the lemma. To see that the claim is true, consider
any element of £’. C consists ofB plus multiples of stateg in the periodsP;. By
taking B plus sufficiently large multiples of th&;’s we get a configuratiod’ € L
such thatC' C C’. BecauseA is downward closed; € .A. The same proof works for
the output-stable rejecting configurations. ad

Lemma 8. Let P be a predicate that is stably computed by a protocol in the immediate
observation model. TheR isin TH.,.

Proof. By Lemma 7, the output-stable accepting configurations of the protocol are the
union of a finite collection of linear sefs; with singleton periods, and similarly for the
output-stable rejecting configurations, where the linear setd el et k be one more
than the maximum cardinality of any of the bases offfys or M;’s.

Consider any finite multiseX of inputs for which#(a) > & for somea. Suppose
X is accepted; a similar proof appliesXf is rejected. If[(a) = ¢ thenq occurs with



multiplicity at leastk in I(X). Consider any output-stable configuratibhreachable
from C. D is in one of the linear set§;. Because the multiplicity of exceeds the
cardinality of the base of;, some agent in stateg in (X ) must have state’ in D,
whereq’ is the singleton state of one of the periodsof Thus,D + ¢’ is also inZ;,
soD + ¢ is output-stable and accepting. However, by LemmAX]) + ¢ — D + ¢/,
andI(X) + g = I(X + a), s0X + a must also be accepted by the protocol. Thus, for
any input symbot, if #(a) > kininput X, P(X + a) = P(X), which implies that
PisinTH, and therefore iTH.,. a

3.3 Immediate and Delayed Transmission

The immediate and delayed transmission models can stably compute all threshold and
modulo predicates, and therefore all predicateREG. Thus they are more powerful
than the immediate observation model.

Theorem 9. Predicates inREG are stably computable in the immediate and delayed
transmission models.

Proof. By Boolean closure, it suffices to prove that all the threshold and modulo pred-
icates are stably computable in both models. We assume data values in fhe=set
{0,1,...,k} and a commutative monoid operatigfi; , d2) on this set with identity.
We describe a protocol to compute theaum of all the data values in the input states.
The states aréb, d), whereb € {0,1} is a leader bit, and € S. A transition with
sender statgb, d) and receiver stat@)’, d’) updates the sender state(fthd) and the
receiver state t61, g(d,d")) if b =¥ = 1,t0(1,d) if b = 1 andd’ = 0, and leaves it
unchanged otherwise.

The following invariant is preserved by each transition:gksim of the data values
of those agents and messages in transit with leader bit equas the g-sum of all the
input data values. By fairness, eventually there will be just one agent (or message in
transit) with leader bit equal tb, and its data value will be the corregisum of all the
input data values. Again by fairness, that data value will be copied to every agent as the
leader bit is passed among them.

For the threshold predicaté(a) > k, a is mapped ta(1,1) and all other input
symbols are mapped @, 0). State(b, d) is mapped to output if and only if d =
k. The monoid suny(dy, ds) is min(k, d; + ds). For the modulo predicatg(a) =
j (mod (k + 1)) we take the same input function, mépd) to outputl if and only if
d = j, and take the monoid sug{d;, ds) to be(d; + d2) mod (k+1). O

The following theorem shows th&EG does not exhaust the class of predicates
stably computable in the immediate and delayed transmission modefsbeetsymbol
not in X and P a predicate over alphabét. Define Py be the predicate over U {$}
that is true if there are at least two agents in the population, there is exactlyiane
the input, andP is true on the multiset of other input symbols. For exampl®, i§ the
comparison predicatét(a) > #(b), thenP; is the predicate that is true when the input
contains exactly on#& and morez’s thanb's, which is not inREG.



Theorem 10. Let P be a predicate ovel’ that is stably computable in the standard
two-way model. TheR; is stably computable in the immediate and delayed transmis-
sion models.

Proof sketch.We run three protocols in parallel, one to verify that there are at least two
agents in the population, one to verify that there is just irethe input, and one that
performs a simulation of the two-way protocol computiRgon the rest of the input
symbols, assuming that the first two conditions are satisfied. The first two conditions
are inTH, andTH ¢, respectively, and are therefore computable, by Theorem 9.

The idea of the simulation is to use the unique inpub generate a leader token
that passes from one simulated agent to another in the population. The leader token
nondeterministically chooses a simulated agent to be the initiator and picks up its state
(leaving behind a place marker), chooses another simulated agent to be the responder,
updates the responder’s state and waits until it returns to the place marker to update the
simulated initiator’s state, and then repeats the whole sequence. The state of the extra
agent (that had the inpd) is updated to reflect the outputs of the simulated agertis.

The following theorem is an important restriction on the power of both transmission
models; its proof will appear in the full paper. Recall the definitiong-oich, k-core,
and coreREG from Sect. 1.1.

Theorem 11. Let P be a predicate that is stably computable by an immediate or de-
layed transmission protocol. Then for sofeahek-core of P is in REG.

Let P be the comparison predicaté(a) > #(b). The2-core of P; is empty, and
therefore iNRREG, but nok-core of P is in REG, yielding the following corollary.

Corollary 12. The comparison predicate is not stably computable in the immediate or
delayed transmission models.

By generalizing Theorem 10 and combining it with Theorem 11, we get the follow-
ing characterization of the power of immediate transmission protocols; its proof will
appear in the full paper.

Theorem 13. A predicateP is stably computable in the immediate transmission model
if and only if P is stably computable in the standard two-way model and Somare
of Pisin REG.

3.4 Queued Transmission

The queued transmission model is the most powerful of the models we consider; it is
capable of simulating the standard model of two-way population protocols, and (if no
bounds are placed on the size of the multiset of messages in transit) can generate an
unbounded number of additional simulated agents. The intuition is that a simulation
can use messages in transit to represent agents of the standard population protocol, and
collect pairs of simulated agents at real nodes to simulate transitions. To avoid dead-
locks, we also include a floating population of “release messages” that trigger nodes to
release the simulated agents collected so far.



Theorem 14. A predicateP is stably computable by a standard two-way population
protocol if and only ifP is stably computable in the queued transmission model using
at most a linear number of messages in transit.

A detailed proof is given in the full paper. The full paper will also include a proof that
the delayed transmission model with a linear bound on messages in transit is equivalent
in power to the immediate transmission model, based on Theorems 11 and 14.

4 Local Fairness Is Weak Even with Unbounded States

In this section, we consider an anonymous message-passing model with the following
local fairness condition: if some process sends a particular messagfeitely often,

then each process receives messagafinitely often. This model turns out to be sur-
prisingly weak. Even if the states of processes and the lengths of messages may grow
without bound, protocols in this model cannot distinguish two multisets of inputs if the
same set of values appears in each. Since this model subsumes the finite-state models
of the preceding sections, it demonstrates why the stronger global fairness condition
assumed there is necessary. The definitiomtéf, generalizes straightforwardly to an
infinite alphabety.

Theorem 15. Let 3 denote the (finite or infinite) set of possible input values. A predi-
cate P on finite multisets of elements framis stably computable in the asynchronous
message-passing model with the weak fairness condition if and dRlisiin TH ;.

Proof. Consider the delayed observation protocol from the proof of Lemma 2 to deter-
mine the set of all inputs that occur in the initial configuration, modified so that each
agent sends its state every time it runs. Clearly every message is a subset of the initial set
of input values, so there are only finitely many possible messages in each computation.
Every message sent by a process with input valoentains the element and it sends
infinitely many messages, so eventually every process receives a message containing
Thus, the state of every process eventually consists of the initial set of input values.

For the converse, assume that we have an algorithm to stably compute a predicate
P, and letA and B be two multisets of values frol' such that the same set of values
appears in each. Let = |A| andn’ = |B|. Let Cy andC{, be initial configurations
where processes have inputs frotrand B, respectively. We construct two executions
a anda’ starting fromCy andCy. Letmy, mo, ... be an arbitrary sequence of messages
where every possible message appears infinitely often. We construct the exeautions
andc’ in phases, where phaswiill ensure that message; gets delivered to everyone
if that message has been sent enough timesClLeind C; be the configurations of
anda/ at the end of phase

Our goal is to prove the following claim: for all> 0 and for allz € Y, the state
of each process with input in C; is the same as the state of each process with input
x in C}. Assume that we have constructed the first 1 phases of the two executions
so that the claim is satisfied. Suppose we run all processes in lock steg@franand
C!_, without delivering any messages. There are two cases.



Case (i): Eventually, after; rounds, the run fron®”;_; will have at least copies
of m; in transit and, after; rounds, the run fron®;_, will have at least.’ copies of
m; in transit. Then, théth phase ofx anda’ is constructed by running each process
for max(r;, ;) rounds without delivering any messages, and then delivering one copy
of m; to every process. This ensures the claim will be truefpandC.

Case (ii): Otherwise, we allow every process to take one step without delivering any
messages. (This clearly satisfies the claim@andC..)

It remains to show that both and«’ satisfy the weak fairness condition, and then
it will follow from the claim thatP(A) = P(B). First, notice that every process takes
infinitely many steps im andc’. If some process sends a message infinitely many
times ina or o/, it will also be sent infinitely many times by a process with the same
input value in the other execution (since a process with a particular input experiences
the same sequence of events in both executions). Suppasenever delivered after
phasei to some process in one of the two executions. Eventually, there will he
copies ofm in transit inC; for some;j > ¢ andn’ copies ofm in transit in C’j’., for
somej’ > . Consider the first occurrenceof in the sequence;, mo, . . . that comes
afterm; andm/;. During the corresponding phase will be delivered to every process,
includingw, a contradiction. Thusy and«’ satisfy the weak fairness condition. O

5 Conclusion

We defined several models incorporating one-way communication and message-passing
into population protocols and compared their ability to compute predicates on multisets
of inputs. We have fully characterized the power of the delayed and immediate observa-
tion models, the immediate transmission model, and the delayed and queued transmis-
sion models with a linear bound on messages in transit. The queued transmission model
with a linear bound on messages in transit is equivalent in power to the original model
of two-way population protocols. In contrast to traditional message-passing systems,
the strongest model is the most asynchronous: in the queued transmission model, mes-
sages in transit can effectively act as extra storage. An important feature of the queued
transmission model is that receivers can exercise flow control over incoming messages;
the delayed transmission model, lacking such flow control, is strictly weaker. The prob-
lems of characterizing the power of the delayed and queued transmission models with
no bound on messages in transit remains open, as does the related problem from [3] of
whether the power of standard two-way model is more hiaiiN .
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