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Abstract

In this paper we provide a theoretical foundation for thebpgm of network localization in which
some nodes know their locations and other nodes determéaie Ititations by measuring the distances
to their neighbors. We construct grounded graphs to mode&tank localization and apply graph rigidity
theory to test the conditions for unique localizability ailedconstruct uniquely localizable networks. We
further study the computational complexity of network lization and investigate a subclass of grounded
graphs where localization can be computed efficiently. Weckale with a discussion of localization in

sensor networks where the sensors are placed randomly.

. INTRODUCTION

Location service is a fundamental building block of many eymg computing/networking
paradigms. For example, in pervasive computing [23], [E8hwing the locations of the computers
and the printers in a building will allow a computer to sendrenfing job to the nearest printer.
In sensor networks, the sensor nodes need to know theiridosain order to detect and record
events, and to route packets using geometric routing, (38]).

Manual configuration is one method to determine the locatfcanode. However, this is unlikely
to be feasible for large-scale deployments and scenarioghioh nodes move often. GPS [32]
is another possibility, however it is costly in terms of bdtardware and power requirements.
Furthermore, since GPS requires line-of-sight betweenrébeiver and satellites, it may not work
well in buildings or in the presence of obstructions suchexssé vegetation, buildings, or mountains
blocking the direct view to the GPS satellites.

Recently, novel schemes have been proposed to determinectitehs of the nodes in a network
where only some special nodes (called beacons) know thetitms €.g, [28], [44], [53]). In these
schemes, network nodes measure the distances to theirboesgand then try to determine their
locations. The process of computing the locations of theesog callednetwork localization
For example, in [53], Savvidest al. propose an iterative multilateration scheme to deterrttiee
locations of nodes that do not know their locations iniyiall

Although the designs of the previous schemes have demtaetstgeieat engineering ingenuity
and their effectiveness in certain settings verified thioegtensive simulations, some fundamental
qguestions have not been addressed. As a result, the prescbiesnes are mainly heuristic-based
and a full theoretical foundation of network localizatianstill lacking.

Specifically, we identify the following three fundamentalegtions:
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1) What are the conditions for unique network localizabili?hough the network localization
problem has already been studied extensively, the preoisdittons under which the network
localization problem is solvable.€., has a unique solution) are not known.

2) What is the computational complexity of network localiza®i&ven though the computational
complexity of graph embeddability has been investigatefbrbe(e.g, general graphs by
Saxe [54] and unit disk graphs by Breu and Kirkpatrick [9]) tomputational complexity
of determining the locations of the nodes in a uniquely lzedlle network has not been
studied.

3) What is the complexity of network localization in typical wetk deployment scenarios?
Furthermore, for a large-scale sensor network, it may nqdssible to control the placement
of the sensor nodes precisely. Rather, they may be placedronyf or randomly in a region.
The unique localizability and computational complexity safch scenarios have not been

investigated.

The objective of this paper is to provide systematic answetbese three questions. Many but
not all of the ideas of this paper were presented in prelingif@m by Erenet al. in [20]. In this
paper, we extend these ideas and provide formal proofs.riicpiar, we address the first question
using graph rigidity theory, the second for arbitrary umlyulocalizable networks and uniquely
localizable unit disk networks, and the third for unit disétworks of randomly placed nodes.

More specifically, in order to answer the first question, weppise the notion ajrounded graphs
In these graphs, each vertex represents a network nodewangettices in the graph are connected
if the distance between the two is known; that is, when théadte between the two nodes is
measured or when the two nodes are beacon nodes and thaimogissimplicitly known. Given
our construction of grounded graphs, we show that a netwaskahunique localization if and only
if its corresponding grounded graphgenerically globally rigid By observing this connection, we
are able to apply results from the graph-rigidity literattw network localization and thus provide a
systematic and pleasantly intuitive answer to the first goesFor example, to check if a network
in the plane is unique localizable, we just need to checkef ¢brresponding grounded graph is
3-connected andedundantly rigid both of which can be efficiently checked.

In addition, we demonstrate conditions and inductive segeg for constructing uniquely local-
izable networks, both in the plane and in 3-space. For iestawe show that a network with a

biconnected grounded graph is uniquely localizable if tva@- neighbors are connecteglg, by
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doubling the range of distance measurements in a sensoorketidy using our results, a designer
of a network can be assured that the constructed networkitgiely localizable, thus avoiding
expensive trial-and-error procedures.

To address the second question, we analyze the computatmmalexity of network localization
when the grounded graph is a generically globally rigid gramd show NP-hardness with a
reduction from set-partition. To strengthen this insigi®, show that even in the idealized case that
distance measurements are present between all nodes leissithan a certain known distance of
each other, localization is still NP-hard.

To address the third question, we explore the density-dbgenaverage-case complexity of
network localization in realistic settings like sensorwatks, and study a class of graphs in the
plane calledtrilateration graphs We show that trilateration graphs are uniquely localigadhd
the locations of the nodes can be computed efficiently. Wevdihat random geometric graphs
are trilateration graphs with high probability if a certainde density or communication radius is
reached. We provide asymptotic results on the densitiebebeacons sufficient for trilateration
to be carried out inD(1) step,O(y/log(n)) steps, orO(y/n) steps, respectively, where is the
number of nodes in the network.

The rest of this paper is organized as follows. The specifizvor localization problem to be
addressed is formulated in Section Il. The concepts of itig@hd global rigidity are discussed in
Section Ill. In Section 1V, sufficient conditions for locadition and construction of localizable
networks are presented. In Section V, we study the computticomplexity of solving the
localization problem. In Section VI, we study localizatiofi random geometric graphs in the
plane. In Section VII, we present simulation results foralazation in 3-space geometric graphs. In
Section VIII, we discuss related work. Our conclusion artdre work are presented in Section IX.

[I. FORMULATION
A. The Network Localization Problem

In this paper we shall be concerned with the “network loedion problem with distance infor-
mation” which can be formulated as follows. One begins witheawork N in real d-dimensional
space (wherel = 2 or 3) consisting of a set ofn > 0 nodes labelled throughm that represent
special “beacon” nodes together with— m > 0 additional nodes labellegh + 1 throughn that
represent ordinary nodes. Each node is located at a fixetiqyosi IR and has associated with it
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a specific set of “neighboring” nodes. Although a node’s heas are typically defined to be all
other nodes within some specified range, other definition&lcaso be usedxg, those considering
the effects of obstacles). The essential property we wijuire in this paper is that the definition
of a neighbor be a symmetric relation ¢, 2,...,n} in the sense that nodgis a neighbor of
node: if and only if node: is also a neighbor of nodg. Under these conditionM’s neighbor
relationships can be conveniently described by an undidegtaphGyn = (V, En) with vertex set
V ={1,2,...,n} and edge seky defined so thati, j) is one of the graph’s edges precisely when
nodes: and j are neighbors. We assume throughout tGat is a connected graph. Theetwork
localization problem with distance informatias to determine the locations of all nodes inIR*
given the graph of the networ&y, the positions of the beacons, j € {1,2,...,m} in R?, and
the distancein (i, j) between each neighbor pdir, j) € En.

The network localization problem just formulated is saidbsolvableif there is exactly one
set of vectors{p,,41,...p,} in IRY consistent with the given dat@y, {p:,po, ..., pm}, anddx :
Ex — IR. In this paper we will be concerned with “generic” solvatyilof the problem which
means, roughly speaking, that the problem should be s@wvadil only for the given data but also
for slightly perturbed but consistent versions of the gidaa. It is possible to make precise what
generic solvability means as follows. F&y and letey, e, ..., e, denote the edges ify. Note
that for any set of: pointsy:, ys, . .., y, in IR? there is a unique distance vectowhosek — th
component (element) is the distance betwgeand y; where (i, j) = e;,. This means that there
is a well-defined functionf : R™ — IR™9) mapping{y1, vz, ..., Yn} — {1, Y2, - -+ Ym, 2}
Solvability of the network localization problem is equieat to f being injective afp;, p2, ..., p.}
in the sense that the only set of poinfg,,ys,...,y,} € IR™ for which f(yi,y2,...,yn) =
f(p1,p2y -y 0n) 1S {Y1,Y2, -, Un} = {pP1,p2, ..., pn}. In this context it is natural to say that the
network localization problem igenerically solvablat {p;, p, ..., p,} if it is solvable at each point
in an open neighborhood dfpy, p2, ..., p.}. In other words, the localization problem is solvable
at {p1,ps,...,pn} if there is an open neighborhood &f1, ps, ..., p,} on which f is an injective

function.

B. Point Formations

To study the solvability of the network localization profmewe reformulate the problem in terms
of a “point formation”. As we shall see, the point formaticglavant to the network localization

problem has associated with it tiggounded graptof the network, G, with the same vertices as



Gn but with a slightly larger edge set which adds “links” or eslgeom every beacon to every
other. It is a property ofsn rather thanGy which proves to be central to the solvability of the
localization problem under consideration.

We begin by reviewing the point formation concept. By-dimensionalpoint formation[19] at
P 2 column {p1,p2....,pn}, WrittenF,, is meant a set of points {py, ps, ..., p,} in R¢ together
with a setC of k links, labelled(z, j), wherei and;j are distinct integers if1, 2, ..., n}; thelength
of link (4, ) is the Euclidean distance between pgintand p;. The idea of a point formation is
essentially the same as the concept of a “framework” studiedathematics [51], [60], [61] as well
as within the theory of structures in mechanical and civjieaering. For our purposes, a point
formationF, = ({p1,p2....,pn}, L) provides a natural high-level model for aanode network in
real 2 or 3 dimensional space. In this context, the poiptgepresent the positions of nodese(
both beacons and ordinary nodes), R4 and the links in label those specific node pairs whose
inter-node distances are given. Thus for the netwd§itkC would consist of all edges ifin, since
the distance between every pair of beacons is determinetdiy dpecified positions.

Each point formationF, uniquely determines a grapBp, 2 {V, L} with vertex setV 2
{1,2,...,n} and edge sef, as well as a distance functian £ — IR whose value ati,j) € L is
the distance between andp;. Let us note that the distance functionitfis the same as the distance
function of any point formatior, with the same graph ds, providedq is congruentto p in the
sense that there is a distance preserving ffiafR? — R? such thatT'(¢;) = p;,i € {1,2,...,n}.

In the next section, we will say that two point formatiofis and IF, are congruentif they have
the same graph and if and p are congruent. It is clear thdt, is uniquely determined by its
graph and distance functiat mostup to a congruence transformation. A formation thagxactly
determined up to congruence by its graph and distance amddi called “globally rigid.” More
precisely, ad-dimensional point formatiorf, is said to beglobally rigid if each d-dimensional
point formationF, with the same graph and distance functionfgds congruent tdf,. It is clear
that any formation whose graph is complete is globally ridide following simple generalizations
of this fact in Lemma 1 provide sufficient conditions for gébbigidity that are especially relevant
to the network localization problem. ld dimensions, we say a set of poinis,...,pg.1 IS in
general positionf it does not lie in a proper subspadee(, three points in the plane do not lie on

a line, and four points in space do not lie in a plane).

Lemma 1:



Let F, = ({p1,p2,.--,pn}, L) be ann-point formation inIR* that contains three points,, p,
and p. in general position. Suppose that the graph of the formatign contains the complete
graph on{a, b, c}. If the only n-point formation inIR? that contains these three points and has the
same link set a§), is I, itself, thenF,, is globally rigid.

This property is a direct consequence of the fact that thatiigeon IR? is the only distance
preserving maf’ : IR? — IR? that leaves,, p», andp, unchanged. A directly analogous property

holds in three dimensions. A proof of the lemma will not beegiv

C. Solvability of the Network Localization Problem

With the previous definition of point formations, we can noestate the network localization
problem in terms of its associated point formatiBp In the present context, the problem is to
determinelF,, given the graph and distance functionItf as well as the beacon position vectors
D1, D2, - - -, Pm. Solvability of the problem demands th&j be globally rigid; for if F, were not
globally rigid it would be impossible to determir¥g, up to congruence, let alone to determine it
uniquely. Assumingr, is globally rigid, solvability of the network localizatiogproblem reduces to
making sure that the group of transformatidfighat leaves the s€tp;, ps,. .., p,} unchanged —
namely distance preserving transformati@hsIR? — R for which T'(p;) = p;, i € {1,2,...,m}

— also leaves unchanged the $@t,.,...,p,}. The easiest way to guarantee thisIRT is to
require{pi, ps, ..., pm} tO contain three points;,, p;,, pi, iN general position; for if this is so, then
the only distance preserving transformation that legygsp,, ..., p,} unchanged is the identity
map onIR?. Similarly, if in IR*, {p1,ps,...,pn} cOntains at least four points in general position,
then 7" will again be an identity map, in this case @r. We summarize the main result for the

solvability of network localization as follows.

Theorem 1:Let N be a network inIR?, d = 2 or 3, consisting ofm > 0 beacons located at
positionspy, pa, . . ., pm @andn —m > 0 ordinary nodes located at positiops .1, ..., p,. Suppose
that for the casel = 2 there are at least three beacons in general position. Siynitar the case
d = 3 suppose there are at least four beacons positioned at poigésieral position. Lef, denote
the point formation whose points are @t po, ..., p, and whose links are those labelled by all
neighbor pairs and all beacon pairsi¥h Then for bothd = 2 andd = 3 the network localization
problem is solvable if and only if, is globally rigid.
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[11. RIGIDITY AND GLOBAL RIGIDITY

In the previous section, we have established that undeainemild conditions, the solvability
of the network localization problem is equivalent to thedlggl rigidity” of point formation. In
this section we review results from rigidity theory whicHoal us to check for “global rigidity”
efficiently. Readers familiar with rigidity theory or not erested in the technical details can just
read Theorem 4 (which gives an efficiently checkable comwlifor rigidity in 12?), the definition
of redundant rigidity (rigidity after removal of any one ejgTheorem 6 and then proceed to next
section. We refer the interested reader to [27] for an irtfdepference on this topic.

As we have already stated, &adimensional point formatior¥, is globally rigid if eachd-
dimensional point formatiof¥, with the same graph and distance functionfFgsis congruent to
F,. In order to clearly present properties of global rigidiye need several other mathematical
concepts whose roots can be found in the rich classical yhaforigid structures.

A. Rigidity

Let I, be ad-dimensional point formation, with the distance functioeasuring all edges in
L, :R" — RF. We are interested in all possible formations with the saistadces, that is, in
6~1(8(p)). This is a smooth manifold ifR™ [51] and we want to know whether it contains only
points congruent te. Our best tool for studying this manifold its tangent spand the matrix
equation defining this tangent space with a linearized warsf the distance constraints.

For each edgdi,j) € L, the distance equatiofp; — p;)" (p; — p;) = 4(i,j)* generates the
corresponding linear equation

(pi — pj)T(pi —p;) =0

in the unknown vecto(py, po, ..., p,). If @ vector satisfies all these equations, then it lies in the

tangent space. This entire system is written as a matrixtegua
R(F,)p =0, 1)

wherep = column (py, P2, ..., Pn), and R(F,) is the specially structuredl x dn array called the
rigidity matrix of the formation. In structural engineering and mathensattbe solutiong are
calledfirst-order flexeqinfinitesimal flexes, or virtual velocities) [51], [60], 16.

The tangent vectors to the congruences of the sfitgenerate a subspace of trivial solutions,

called thetrivial flexes In the plane, provided that we have at least two distinchigoithis space
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has dimensiors, generated by two translations and the tangent vector téaéion about the origin.
In 3-space, if we have three non-collinear points, this spacedraensioné, generated by three
translations along the axes and the derivatives of thresioos about the three axes though the
origin.

Definition 1: If the trivial flexes are the entire space of first-order flexte formation isfirst-
order rigid.

In short, provided we have at least three vertices [51],:[61]

Theorem 2:Assumef, is a formation with at least nodes ind-space,

2n—3 ifd=2
rank R(F,) <
3n—6 ifd=3.
The formationkF, in the plane is first-order rigid if and only itink R(F,) = 2n— 3. The formation
[, in 3-space is first-order rigid if and only ifank R(F,) = 3n — 6.

It is easy to see from the form of the rigidity matrix that thetrees in R(IF,) are polynomial
(actually linear) functions op. Because of this, the values pffor which the rank ofR(F,) is
below its maximum value form a proper algebraic selRff'. This observation lies at the roots of
the following equivalences [60], [61]:

Theorem 3:Given a formation grapliz with n > 2 vertices in the plane (resp. > 3 vertices
in 3-space) the following are equivalent:

1) for some formatior¥, with this graphrank R(F,) = 2n — 3 (resp.rank R(F,) = 3n —6 in
3-space);

2) for all ¢ € IR*" in an open neighborhood @f the formationF, on the graphG is first-order
rigid in the plane (respg € IR*", T, is first-order rigid in3-space);

3) for all ¢ in an open dense subsetBf", the formationF, on the same grap® is first-order
rigid in the plane (resp. open dense subselRdF, F, is first-order rigid in3-space).

When property 3) holds, we say that the grédplof FF,, is generically rigidin the space. It is well
known that first-order rigidity implies all of the other sthard forms of rigidity for a formation,
but the converse can fail [21], [51], [60]. For readers timigkof other concepts of rigidity, we
point out that if one of these alternative forms of rigiditglths for a non-empty open set, then all
of the properties in Theorem 3 hold [51], [60].
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For the plane we have a strong combinatorial charactesizaif the generically rigid graphs.
We note that this leads to a fadt(|V'|*) algorithm for generic rigidity testing [29].

Theorem 4 (Laman [40])A graphG = (V, £) with n vertices is generically rigid ifR? if and
only if £ contains a subsedf consisting of2n — 3 edges with the property that for any nonempty
subsett’ C E, the number of edges i’ cannot exceedn’ —3 wheren’ is the number of vertices
of G which are endpoints of edges itl.

There is no comparable complete result 3espace, and no known polynomial time algorithm,
though there are useful partial results [60], [61].

B. Conditions for Global Rigidity

We are interested in the stronger concept of generic glabality. This concept is intimately
related with first-order rigidity. If the formatiodf, is not first-order rigid, there is a non-trivial
first-order flexp that does not come from a congruence. This is enough to giearaimat a small
perturbation will create a formation that is not globallgid.

Theorem 5 (Averaging Theorem [60], [61])Given a non-degenerate formatidl) with a non-
trivial flex ¢, the formationsF,,,; andF,_,; on the same graph, for all> 0, have the same edge
lengths for all links but are not congruent.

We say that a formatiofff, is generically globally rigidif every sufficiently small perturbation
q of p creates a globally rigid formatiof,. The result above shows that any non-degenerate
generically globally rigid formatiori, must be first-order rigid. However, as Fig. 1 illustrateg, th

converse is not true.

(@) (b)

Fig. 1. Two first-order rigid formations with the same graph and the sastande values.
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A graphG = {V, £} with n vertices isgenerically globally rigidin IR if there is an open dense
set of pointsp € IR™ at whichF, is a globally rigid formation with link set. In the plane, a
recent result gives a complete characterization of gealgriglobally rigid graphs. To introduce
the result, we first review the definitions gfconnectivity and redundant rigidity.

A graph G is k-connectedif it remains connected upon removal of any set<ofk vertices.
The k-connectivity of a complete graph with vertices is defined to be — 1. A simple mental
check also confirms that for more thdn- 1 vertices in dimensior, we need at least+ 1 vertex
connectivity, to avoid a reflection of one component throaghirror placed on a disconnecting
set of sized.

A graphG is redundantly rigidin IR if the removal of any single edge results in a graph that is
also generically rigid ifR“. Fig. 2 shows a graph that is not redundantly rigid. As Figuggests,
we need the graph to be generically redundantly rigid to engeneric global rigidity.

Fig. 2. An example from [29] showing a rigi8-connected graph with two realizations in the plane. If efige:’) is removed,

triangle a’d’c’ swings along a path until the distante a’) is the same as it originally was.

C d

Fig. 3. A globally rigid formation in the plane.

Theorem 6 ( [34]): A graph G with n > 4 vertices is generically globally rigid ifR* if and

only if it is 3-connected and redundantly rigid IR?.
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Notice that to actually carry out a test to decide whetherairangiven graphG is generically
globally rigid in IR?, one must establish that it is boflaconnected and redundantly rigid IR
Various tests for 3-connectivity are known, and we referrdaaler to [33], [43] for details including
measures of the complexity of the tests involved. Tests déolundant rigidity inIR* have been
derived [29] based on variants of Laman’s theorem [40].

Since these properties are also required for even a nonyapph set of globally rigid formations
in the plane, we can see that the existence of one generglalbally rigid formationF, implies
the graph is generically globally rigid. I8-space, whether having one generically globally rigid
formation is enough to show that the graph is genericallaglly rigid is an open question [13].

As with generic rigidity, we do not have a generalization dfedrem 6 to higher dimensions.
However, it extends as a necessary but not sufficient comditi

Theorem 7 ( [14], [29]): If a graphG with more thand+ 1 vertices is generically globally rigid
in d-space, thefs is redundantly rigid and at leagt+ 1 connected. In all dimensions> 3, there

are redundantly rigid and at leagt- 1 connected graphs that are not generically globally rigid.

[V. INDUCTIVE CONSTRUCTION OFGENERICALLY GLOBALLY RIGID GRAPHS

It is possible to derive useful sufficient conditions anduciive constructions for generically
globally rigid graphs (i.e., solvable) in spaces of all divsiens [14], [21]. Such constructions can
be useful in identifying and constructing uniquely locabre networks.

One simple construction inserts new nodes of degreé into existing generically globally rigid
formations to create larger generically globally rigidrf@tions. Since we will use this construction
later, we give some formal definitions using the term ‘tglation’ from the plane as a general

term.

Lemma 2:Given a generically globally rigid point formatioR,, and a new poinp, linked
to d + 1 nodesp,, ...p441 Of F,, in general position, then the extended point formation,, is
generically globally rigid.

Proof: Consider any location for the distancesHp.,,. We show that the location qf, is
unique, given these prior locations.

We first give the proof inR?, whereF, has three non-collinear poinis, p,, p.. We have the
distances fronp, to these three points. The distances from the first two point,, define two

intersections of corresponding circles centered,aand p,. The distances from any third poipt
12



to these two solutions are different, singeis not on the line through,, p,. Therefore there is a
unique position fomp, for the given distance tgp..

The same argument works in all dimensions, starting withtée points of intersection for
spheres with centers in general position.

Now, consider a second formatidh, ,, with the same link lengths a8, ,,. Since the generically
globally rigid formation[F,, is contained in this second extended formation, the lonadfats nodes
iS unique, up to congruence. The unique congruénckefined by thel+ 1 general position points
of attachment induces a positidr(p,) that satisfies our construction. Since the constructedt poin
was unique, we conclude thdt(p,) = ¢ and the two extended formations are congruent. We
conclude that the extended formation is globally rigid.

The general position property used is stable under smatilifxtions ofp. Therefore the global
rigidity holds for all small perturbations and the extenderdmation is generically globally rigid.

u

For the network setting i dimensions, we can start with the globally rigid formationa > 3
beacons a#),,. We can then sequentially add new nodes as p@ipts, . . . , p,,, each along witl3
edges to distinct nodes in the preceding formation, to ektea preceding formation. Provided that
all sets of points which will be used in extensions are in gangosition, we create a generically
globally rigid formationF, with n points. This process can be worded in terms of generically
globally rigid graphs.

Definition 2: A trilateration extensiornn dimensiond of a graphG = (V, E), where|V| > d+1
produces a new grapf’ = (V U {v}, EU{(v,w),..., (v,wes1)}), Wherev ¢ V, andw, € V.

Definition 3: A trilaterative ordering in dimensiow for a graphG is an ordering of the vertices
1,...,d+1,d+2,...n such that,,,, the complete graph on the initial vertices, isGnand from
every vertex; > d+ 1, there are at least+ 1 edges to vertices earlier in the sequence. Graphs for

which a trilaterative ordering exists in dimensidrare calledtrilateration graphs in dimensioun.

Theorem 8:Trilateration graphs in dimensiah are generically globally rigid in dimensioh
Proof: Any formation on the complete graph dn-1 vertices is generically globally rigid if the
points are in general position. We take such a formation. #ethen apply Lemma 2 to add each
point along the trilaterative ordering, with its guaramtelet 1 edges, to create a larger generically
globally rigid formation with all points in general positioWe can then add any additional edges

beyond thed + 1 needed, without changing the generic global rigidity of &x¢ended formation.
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Repeated application of this leads to a generically globddligl formation on the whole graph.
Since the conditions of being in general position apply toopen dense subset of the space, we

conclude that the graph is generically globally rigid. [ |

A trilateration graphG may have more than one trilaterative ordering and even niwe tne
seed— the initial complete graplK,,;. We will look at algorithmic aspects of trilateration graph

in the next section.

V. COMPUTATIONAL COMPLEXITY OF LOCALIZATION

We have seen in preceding sections that global rigidity is@ssary condition for the solvability
of network localization. We will now move from the decisioroplem of solvability to an associated
search problem, graph realization.

Specifically, we define the graph realization problem as tieblpm of assigning coordinates to
vertices of a weighted grap&y so that the edge weight of every edgej) equals the distance
between the points assigned to verticesmd ;. Note that a given graph may not be realizable under
a particular set of edge weights. In the context of netwodaliaation, the graphs under study are

the grounded graphs associated with network point formatio

A. Realizing Globally Rigid Graphs

Although global rigidity testing in the plane is computabtepolynomial time, Saxe has shown
that testing the realizability of weighted graphs is NPeh&4]. Below, we will argue that realizing
a graph is still hard, even if it is known that the graph is glibprigid and that it has a realization.
The objective of this subsection is to build intuitive résuln the next subsection we will conduct
a formal reduction and discuss the implications. Note thatwill restrict ourselves to the plane
in this section.

Recall that the SET-PARTITION-SEARCH problem is the followirgven a set of numbers,
find a partition ofS asA U S — A so that the sums of the numbers in the two sets are equal. We
first prove a useful NP-hardness result for the SET-PARTN4EEARCH problem.

Claim 1: Given a setS for which the existence of a set partition is guaranteed ptioblem of
finding a set partition is still NP-hard.
Proof: Assume that algorithm solves set-partition-search. Létbe a set of numbers for
which it is unknown whether there is a set-partition. Rdnon input S for time ¢ equal to the

running time of. A on a valid input of sizgsS|.
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If A has not terminated, thef has no set-partition. If4 has terminated, thel§ has a set-
partition if and only the output of4 is a set-partition ofS. Since set-partition is NP-complete,

set-partition-search is NP-hard. [ |

We now show another result which will prove to be useful. Bigghows a particular realization
of the wheel graphiVs.

Fig. 4. Wheel graphiVs.

Claim 2: The wheel graphV,, is globally rigid.

Proof: We will refer to nodes in the cycle&’,_;, asrim nodes the central node as thHaub,
an edge between the hub and a rim node apake and an edge between two rim nodes asma
edge

If we remove two rim vertices, the graph remains connecteautih the hub. If we remove the
hub and one rim vertex, the graph remains a connected patheoremaining vertices. Therefore
removing two vertices does not disconnect the graph, arsi3iconnected.

As Lemma 2.1 of [6] observes, a wheel is a minimally redunigiangiid graph for the plane.

By Theorem 6, it is generically globally rigid. [ |

We now analyze the complexity of realization of globallyidiggraphs. A realistic formulation
of the realization problem requires that the edge lengthsidiesy measurements of underlying
edge lengths subject to bounded errors. Note that with pibityal, these error-corrupted edge
lengths will not correspond to realizable weights. In thise, the realization problem becomes
an approximation problem; namely, finding an assignmenofdinates for the graph vertices so
that the resulting discrepancies with the noisy weightsb@lew a tolerance parameter. Below, we
use a reduction from set partition to show that realizatibglobally rigid weighted graphs with
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realizablei.e., exact, edge weights is still hard. To construct the redactive use real numbers,
which could potentially be irrational. The formal proof imet next subsection does not need to use
real numbers.

Assume we have an algorithi that takes as input a realizable globally rigid weighteggrand
outputs the unique realization. Consider a set qfositive rational numbers = {si, so,..., 8.},
for which a set-partition exists, scaled without loss of gifity such thad " | s; = 7/2. Let us
now label the nodes d#,,,; as follows: we label the hub, and the rim node$ throughn, where
there is an edge fromto i + 1 for i € {1,2,...,n — 1} and fromn to 1. We will refer to the
spoke from0 to ¢ asspoke.

Let us now construct a weighted version®f, ;. Let the weight of each spoke be wherer
is a positive rational number. Let the weight of the rim edgéneen node and nodei + 1 for
ie{l,2,...,n—1} be2rsin(s;/2), and let the weight of the rim edge between nadend nodel
be 27 sin(s,/2). We now argue that this weighted versionWf, ., call it W/, ,, has a realization
in the plane.

If we imagines; as the modulus of the angle between spakel spoke ; fori € {1,2,... ,n—1}
ands,, as the modulus of the angle between spo#ad spoke in a realization ofW, . ,, we can
determine a set of edge weights. Fix the weight of each spoket, wherer is a positive real
number. Then the weight of the rim edge between naaled node+1 fori € {1,2,...,n—1} must
be 2rsin(s;/2), and the weight of the rim edge between nedand nodel must be2r sin(s, /2).
SinceS has a set partition, we can form a cycle of these chords in ldreep Therefore the wheel
graph with these edge weighf®/, ., has a realization.

Note that despite the fact that the spokes might be insegqdestially, it is not true that the
ends of the spokes on the circumference necessarily ocquesgally as one moves continuously
around the rim. The graph will in general fold up like a fan.alkidition, note that the upper bound
on the sum of thes; ensures that in progressing through the cycle, there caroheetrotation
around the hubi.e., the angles corresponding to clockwise rotation and thos®tnter clockwise
rotation do not differ by some nonzero multiple &f.

Suppose we have an efficient algoritheh for graph realization. We run the algorithm on
the realizable globally rigid weighted gragh’,,, to obtain a realization. From this realization,
determine whether it is clockwise or counter-clockwise tbate spoketo spoke,; for i €

{1,...,n — 1} and from spokg to spoke. By construction, the set of angles corresponding to
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clockwise rotation and that of counter-clockwise rotatform a set-partition ofS.

This procedure solves set-partition-search with one alh tgraph realization algorithm and
polynomial time additional computation. Since set-pamitsearch is NP-hard, realizable globally
rigid weighted graph realization in the plane is NP-hard.

B. Localization complexity for unit disk graphs

The preceding subsection considers arbitrary globallyd rgraphs. However, the construction
relies on a “folding fan” construction in which pairs of nadelose to each other in the unique
realization may possibly not have an edge between them. \Wsider a special class of graphs
called unit disk graphs, where a distance measurement semrdetween any pair of sensors if
they are within some disk radius parameiteof each other. We will show that even when limited
to this idealized class of graph, localization is still N&¢h To avoid precision issues involving
irrational distances, below we assume that the input to tbblem is presented with the distances
squared. If we make the further assumption that all sensars Imteger coordinates, all distances
will be integers as well.

We consider a decision version of the localization problednich we callUNIT DISK GRAPH
RECONSTRUCTIONThis problem essentially asks if a particular graph withegi edge lengths
can be physically realized as a unit disk graph with a givesk dadius in two dimensions. A
similar result is obtained by Breu and Kirkpatrick in [9]. Oalpjective in this paper is to further
connect to network localization.

The input is a graphz where each edgev of G is labeled with an integef? , the square of

its length, together with an integef that is the square of the radius of a unit disk. The output
is “yes” or “no” depending on whether there exists a set ofhmin ? such that the distance
betweenu andwv is /¢,, wheneveruv is an edge inG and exceeds wheneveruv is not an edge
in G.

Our main result is that UNIT DISK GRAPH RECONSTRUCTION is NP-habédsed on a
reduction from the NP-hard problem CIRCUIT SATISFIABILITY [24The constructed graph for
a circuit with m wires hasO(m?) vertices andD(m?) edges, and the number of solutions to the
resulting localization problem is equal to the number ofs§ghg assignments for the circuit. In
each solution to the localization problem, the points carplbeed at integer coordinates, and the

entire graph fits in arO(m)-by-O(m) rectangle, where the constants hidden by the asymptotic
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notation are small. The construction also permits a congtaation of the nodes to be placed at
known locations.

Formally, we show:

Theorem 9:There is a polynomial-time reduction from CIRCUIT SATISFIABILY to UNIT
DISK GRAPH RECONSTRUCTION, in which there is a one-to-one cqoeslence between
satisfying assignments to the circuit and solutions to #silting localization problem.

The proof of Theorem 9 depends on a sequence of construaiiolagjical gates and is given
by Aspneset al. in [5]. An application of the theorem teparse networkshows that localization
is hard. By sparse networks, we mean networks where the nuofl@own distance pairs grows
only linearly in the number of nodes. Sparse networks araedtgmportance, because in the limit
as a network with bounded communication range and fixed seteswsity grows, the number of
known distance pairs grows only linearly in the number ofewd

Corollary 1: There is no efficient algorithm that solves the localizafooblem for sparse sensor
networks in the worst case unless P=NP.

Proof: Suppose that we have a polynomial-time algorithm that taleesput the distances
between sensors from an actual placemenkinand recovers the original position of the sensors
(relative to each other, or to an appropriate set of beac@®h an algorithm can be used to
solve UNIT DISK GRAPH RECONSTRUCTION by applying it to an instanof the problem
(that may or may not have a solution). After reaching its polyial time bound, the algorithm
will either have returned a solution or not. In the first case,can check if the solution returned is
consistent with the distance constraints in the UNIT DISK GRARECONSTRUCTION instance
in polynomial time, and accept if and only if the check sucsedn the second case, we can
reject the instance. In both cases we have returned thect@nswer for UNIT DISK GRAPH
RECONSTRUCTION. [ |

It might appear that this result depends on the possibilitarobiguous reconstructions, where
the position of some points is not fully determined by thewnalistances. However, if we allow
randomized reconstruction algorithms, a similar resulideceven for graphs that have unique
reconstructions. Below RP denotes the class of randomizeash@uilial-time algorithms [25].

Corollary 2: There is no efficient randomized algorithm that solves tlvaliaation problem for
sparse sensor networks that have unique reconstructidessuRP=NP.

Proof: The proof of this claim is by use of the well-known constrantbf Valiant and Vazirani,
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which gives a randomized Turing reduction from 3SAT to UNIRSATISFIABILITY [58]. The
essential idea of this reduction is that randomly fixing sashehe inputs to the 3SAT problem
reduces the number of potential solutions, and repeatiagpthcess eventually produces a 3SAT
instance with a unique solution with high probability. [ |

Finally, because the graph constructed in the proof of Témd® uses only points with integer
coordinates, even an approximate solution that positiach @oint to within a distance< 1/2 of
its correct location can be used to find the exact locatioradlgfoints by rounding each coordinate
to the nearest integer. Since the construction uses a fixad f@ the unit disk radius (the natural
scale factor for the problem), we have

Corollary 3: The results of Corollary 1 and Corollary 2 continue to hold ef@nalgorithms
that return an approximate location for each point, prodittee approximate location is within
of the correct location, whereis a fixed constant.

What we donot know at present is whether these results continue to holddiutions that have
large positional errors but that give edge lengths closddsé in the input. Our suspicion is that
edge-length errors accumulate at most polynomially actlessgyraph, but we have not yet carried
out the error analysis necessary to prove this. If our si@mpis correct, we would have:

Conjecture 1:The results of Corollary 1 and Corollary 2 continue to hold ef@malgorithms
that return an approximate location for each point, proditie relative error in edge length for

each edge is bounded layn® for some fixed constant

C. Global/Distributed Optimization for Localization

The preceding subsections have shown that the computhtiomgplexity of network localization
is likely to be high. In practice, one way to solve the genéwahlization problem is to formulate
it as an optimization problem. Specifically, realizationeofjyraphG = (V, E') with edge weight
function (i, j) can be formulated as a global optimization over vectors aftpdz,, z, ..., 2y}
of the following form,

minimize Z (003, §)— || 2 — z; |))°.

(i,5)€E

This formulation of the problem has been used by biologistslysng molecular conforma-
tion [15]. Because such optimization is computationally engive, strategies such as divide-and-

conquer [30] and objective function smoothing [45] haverbpeoposed. Recently, in [7], Biswas
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and Ye show that network localization in unit disk graphs t@nformulated as a semidefinite
programming problem and thus can be efficiently solved. Add@n of their algorithm, however, is
that the graphs are densely connected. More specificadly, algorithm requires thd®(n?) pairs of
nodes know their relative distances, wheris the number of sensor nodes in the network. However,
as we see from the preceding section, for a general netwaskenough for the localization process
to have a unique solution when cert&itin) pairs of nodes know their distances.

In the context of network localization, distributed optaaiion algorithms may be desirable. In
this case, algorithms such as [30] may be applied by divitiegglobal network into small globally
rigid sub-components [36] (clusters) to reduce overall glexity. Each cluster computes its relative
localization using some optimization technique. Then tlaba@ localization can be achieved by
merging the localizations of individual components. Witlege algorithms, a tradeoff will likely
emerge between the advantage of small cluster size and shdwdintage of having to reconcile a
large number of localized clusters.

D. Realizing Trilateration Graphs

Although realization of general globally rigid graphs isrthawe have already seen a class
of globally rigid graphs that are computationally efficigntrealize. In what follows, we define
trilateration to be the operation whereby a node with known distances &etlother nodes in
general position determines its own position in terms ofggbsitions of those three neighbors. We
assume that this operation is efficiently computable.

Theorem 10:A trilateration graphG = (V, E) with realizable edge weights is realizable in a

polynomial number of trilaterations.

Proof: There is a sequence of trilateration extensions that r@sult when applied toKs;.
If we know a seed ofs, then we can do the following: Localize one of the nodes of $bed
at the origin, another on the positiveaxis, and the remaining node at a position with a positive
y coordinate. At each step, we can calculate positions foumlibcalized nodes with edges to
three localized nodes. BecauSeis a trilateration graph, we are guaranteed to be able taleaéc
positions for all nodes with at most’| — 3 trilaterations.

If we do not know any seed of, we can guess it in at mogt) tries, which is polynomial.
A guess is correct if and only if the above procedure succeediscalizing all nodes in a linear
number of steps. Hence, we can realize a trilateration gma@hpolynomial number of stepsm
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As we shall see, there are scenarios in which it is reasortaldesume that we know a seed of

the trilateration graph, and in these cases, the linearitiigo will be applicable.

VI. LOCALIZATION IN RANDOM GEOMETRIC GRAPHS IN THE PLANE

In previous sections, we presented theory for localizatibgeneral networks. In this section, we
specialize to the setting of sensor networks with a large bernof randomly distributed sensors
and explore the average case behavior of a specific lodalizalgorithm. An abstraction that

corresponds well to this setting is the random geometriplgra

A. Definition and Properties of Random Geometric Graphs

We define random geometric graphs in terms of point formation

Definition 4: Givenn € N andr € [0, 1], the random geometric graph&,,(r) are the graphs
associated with two dimensional point formatidfswith all links of length less tham, where
p = {p1,p2,...,pn} is a set of points in0, 1] generated by a two dimensional Poisson point
process of intensity..

The parameters of the model, and r, correspond respectively to the physical parameters of
sensor density and sensing radius.

We next review some useful properties of the connectivityGofr). Note that the results we
present in this section are asymptotic and that becauseiyfwle neglect collinearity as a low
probability phenomenon.

As in the case of the Ei$-Renyi random graph model [8], there is a phase transition é th
random geometric graph model at which the graph becomesectethwith high probability [4].
Penrose [48] generalizes this teconnectivity with the result that it,,(r) has a minimum vertex
degree ofk then with high probabilityG,,(r) is k-connected.

Since it is was proved in [41] that for somes O(y/*%"), G,,

n

—~

r) asymptotically has a minimum

vertex degree of for k € O(1) with high probability,s € O(y/%%%) can also ensurk-connectivity.

n

B. Global Rigidity of Random Geometric Graphs

Recalling that3-connectivity is a necessary condition for global rigidignd using a recent
result that6-connectivity is sufficient for global rigidity in the plari84], we conclude that,,(r)
is globally rigid with high probability for some € O(,/k’%).
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Next we have the following interesting result:

Theorem 11:1f G = (V, E) is 2-connected, then the graf@’ = (V, £ U E?), where E? is the
set of edges between endpoints of paths consisting of twesenld, is globally rigid.

Proof:

Let G = (V, E) be 2-connected. Take any two nodesandv in V. Since there are at least two
node-disjoint paths from to v, they lie on a cycle. Let us denote the cyclenrohodes byC,,. We
will show thatC? is globally rigid, and from this, it follows that the distamdetween every pair
of nodes inV is fixed in G2, i.e., G is globally rigid.

By a result from [6], every globally rigid graph has a globailyid subgraph that can be obtained
from K, by a sequence of node addition operations, termed edgérgpliEdge splitting preserves
global rigidity, and in it, a new node is added by replacing an existing edgew) by edgequ, v)
and (v,w), and adding an edge, z) for somez # u,v. We show thatC? is globally rigid by
constructing a class of globally rigid grapfi which are spanning subgraphs@f, as illustrated
in Fig. 5.

c? c? o

Fig. 5. In the top row are the globally rigi@,, graphs,n = 4,5,6,7. The dotted edge connects a newly added node node
n — 2. Note thatC/, is a spanning subgraph @2,

Starting fromK,, we label the nodes. .. 4 and add nodes sequentially. In the- 4th step, we
insert a noden by adding an edgén,n — 2), and subdividing the edgé: — 1,1) by replacing
it with (n — 1,n) and (n,1). The resulting graplC’ is globally rigid. It is easy to see that/,
is a spanning subgraph ¢f? for all n > 4. Since adding edges to a globally rigid graph cannot

result in a non-globally rigid graphC? is globally rigid. Hence, ifG is biconnected, the distance
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between all pairs of nodes is fixed @, andG? is globally rigid.
u

For random geometric graphs, the preceding theorem meah&:{ti2r) is globally rigid with
at least the probability thaf,,(r) is 2-connected. This result is extended and related results for
3-space and trilateration graphs proven in recent work byetswhet al. in [3]

For some large: andd € (0,1), let r; denote the smallest radius at whiéh,(r) becomes
i-connected with probability — ¢ and letr, denote the radius at which it becomes globally rigid
with probability 1 — 6. Note thatr, < r;3 < r, < rs and thatr, < 2r,. This behavior is illustrated

in Fig. 6.

o Probability

sensing radius r Iy fy @
2

Fig. 6. Probability thatG,, (r) is k-connected. Dotted line represents the probability thafr) is globally rigid.

C. Realization of Random Geometric Graphs

We now explore conditions faB,,(r) to yield an efficient realization computatidn

Theorem 12:If lim,, .., 22> > 8, with high probability,G,,(r) is a trilateration graph.

logn

Proof: Partition [0, 1]* into - square cells of equal size wheséogn/nr® < ¢ < 1. That
such ac exists is assured by the theorem hypothesis. Note that wggh probability, every cell

lwith respect to a particular algorithm
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contains at least three nodes. This is becaugkid the area of a square, the probability it contains
no nodes, one node, or two nodescig”, nAe "4 and (1/2)(nA)%e~"4. When A = logn/cn,
the sum of these three probabilities, callit:), goes to zero as goes to infinity. In fact, it is
easily seen thaitcfginq(n) goes to zero as goes to infinity, from which one can argue that every
cell contains at least three nodes with probability appgnoar 1 asn goes to infinity. Additionally,

sincer > 21/2,/%5" every node has edges between itself and all nodes in its eWamd those

n

adjacent cells sharing a corner or edge with its cell.
Starting from some cell we label a5 we iteratively label every cell if0,1]%. In stepi €

{1,..., \/E }, we label withi every unlabelled cell that adjoins a cell labelled 1 horizontally,
vertically, or diagonally. We will refer to the union of alells with the same labeélas alayer, L;.

We now iteratively label alk nodes in the grid such that each node has a unique label.pn ste
—1, we choose three nodes iy and label theml, 2, and3. In step0, we label the rest of the
nodes inL, sequentially with numbers greater thanin step:, we label sequentially all nodes in
L; with numbers larger than every label in)_.

Every node inL, with a label greater than three has edged,t@, and3. By construction, a
node labelledn in L;, i > 0 has edges to at least three nodes.jn; with labels less thamn.
Thus we have a trilaterative ordering from Definition 3, &&glr) is a trilateration graph.

An intuitive argument that perhaps yields more insight itite previous result is the following.
In the limit of largen, assume that nodds 2, and3 can be considered to occur at a single point
po- If every node inG, (r) is connected to three other nodes closer than itself tthenG,,(r) has
a trilaterative ordering. Sincg, can be in any direction from an arbitrary point, this is asdun
the event that every node has three neighbors in126y sector of the circle with radius about
it, or at least nine neighbors. Denoting bythe radius at whicl, () has probabilityl — ¢ of
being a trilateration graph, we suspect thaapproaches, from above in the limit of largeu.

These results immediately yield insight into the complexit realizing G,,(r).

Theorem 13:For somer € O(\/@), if the positions of three nodes with edges to each other
are known, then with high probability, a realization @f,(r) is computable in linear time.
Proof: By the proof of Theorem 12, the three nodes with known posstimnm the seed of a
spanning trilateration grap& with high probability. By Theorem 10, the positions of all msdn

G can be computed in linear time. Sin€kg,(r) is spanned by, it can be realized in linear time.
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D. Localization in Random Sensor Networks

We now study a simple localization protocol for random semsaworks we call ITP in Fig. 7.
Theorem 13 allows us to analyze the effectiveness of ourepiue.

> Sensors have two modes: localized and unlocalized
> Sensors determine distance from heard transmitter

> All sensors are pre-placed and plugged-in

L ocalized mode:
Broadcast position
Unlocalized mode:
Listen for broadcast
if broadcast from (x,y) heard
Determine distance to (x,y)
if three broadcasts heard
Determine position

Switch to localized mode

Fig. 7. The iterative trilateration protocol (ITP).

Definition 5: A random sensorned, (r) is a sensornet af sensors with sensing radiugplaced
at random or{0, 1]* by a two-dimensional Poisson point processbéaconis a sensor that knows
its position.

One could define a random sensornet in terms of a uniformildison over|0, 1], but we do
not consider this case.

The following results are summarized in Table I.

Claim 3: For somer € O(4/'2%), with high probability, all sensors i, (r) will have deter-

n

mined their positions with ITP by)( 1ogn) time if three beacons are placed anywheré0in |>

so that they are in sensing range of each other.
Proof: We setr and partition[0, 1] into square cells as in the proof of Theorem 12. We will

now show that we can have an entire grid cell within range efttiree beacons. Let the beacons
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lie at pointsP;, P, and P;. We know thatd(F;, P;) < r, for i # j. Consider the smallest circte
enclosing the three beacons. Assume the centér of P..
Consider the case thd?, P,, and P; are all are onC'. We can bound the radiuB of C as
follows. Consider the angles of the three sectBr®.P,, P,P.P;, and P;P.P;, all less thanl80°.
For eachP, P.P;, to guarantee that(F;, P;) < r, we have the constraint that < WPJE/%'
The most restrictive of these contraints 8ris the one corresponding to the largést, P;, which
is at most180°. Thus, we have thak < r/2. Now we draw a circle”” centered af’. with radius
(1 —1/2)r. Using the triangle inequality we have that the distancenfi® to any point insideC’
is less than or equal tol/2)r 4+ (1 — 1/2)r = r.
The case that only two oP;, P, and P; are onC' is similar since we also have that < r/2.
Thus we have a circular area 6X(r?) wholly within range of the three beacons. We offset the
grid partition such that an entire cell is within this aread ahus localized in the first time-step.
We label this cell) and proceed with labelling the remaining cells as in the podd’heorem 12.
We say that a layer is localized when all sensors in that lénge determined their positions.
Assuming ITP broadcast, distance calculation, and traditen take place in constant timgg will
be localized in a single constant-time step because allsnodatained therein are connected to
the three beacons. Additionally, given localized, ITP will localizeL,; in a single constant-time
step. Therefore, all layers will be localized in at mox @) steps and our claim is established.
u

Claim 4: For somer € O(1/%2%), with high probability, all sensors i, (r) can determine their
positions with ITP and will have done so by expected time&éf/log n) if beacons are placed on
[0,1]* by a Poisson point process of intensi@yn /logn).
Proof: We setr and partition|0, 1] into square cells of ared as in the proof of Theorem 12.

The Poisson point process places beacons into each celatg s« nA/logn € O(1). Therefore,
the probability that a cell contains at least three beacemsdonstanp which is independent af.

The probability that all cells contain less than three baads ¢©/"9") whereq = 1 — p, so
some cell contains at least three beacons with high prabal@hd consequently, all sensors can
localize as in claim 3.

We now bound the expected time it takes for every sensor @ifscgiven some cell contains
three beacons. We say a cell is localized if every sensomitaias has determined its position. In a

single constant-time step, ITP localizes a cell if it consaihree beacons or if any of its neighbors
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are localized. Because of this, in what follows we will referdiscretized time rather than steps.
The probability that a particular cell does not localize bye & is the probability that all cells
within a square of cells with sidek + 1 contain fewer than three beacop&**+1*. The probability
that the last cell to localize does so after a certain timénéssame as the probability that at least
one of the cells localizes after that time. More formally,esd?; is the time at which square

localizes, since the total number of cells(§—~

logn

), the following is true,

Primax(t;) > k] € min(1, O( )qo(k2)).

logn
Since the time to localize is a positive random variable, &we ase the upper tail probabilities
to determine its expected value,

Elmax(t;)] € me (1, O ) OC)y

Observing that for somg, € O(y/logn — loglogn),

O(—)°*) > 1 = k < k,

logn
we see that

o0

E[max(t;)] € O(/logn) + O(—— 1 e Z

k=ko
. . . . n e 2
In calculations we will not include here, it can be shown ) >-.2, ¢°*) € O(1).
We have thus shown that with high probability, all sensor8 lecalize in expected time of

O(logn). L

Claim 5: For somer € O(\/log”) with high probability, all sensors i, () can determine
their positions and will have determined their positions ®l) time if beacons are placed on
[0,1]* by a Poisson point process of intensiiyn).

Proof: If r € O(\/@) the Poisson point process places beacons in the sensiiog &ga
sensor at raté. o< nr?  log n. Since we expead(logn) beacons connected to every sensor, with
high probability, we will haveO(1) i.e. at least three beacons connected to every sensor, and all
sensors will localize irO(1) time with high probability. [ |
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beacons| sensing radius  E[t;oc]
o | o/t=n) | o /m)

O(z) | o) | o(viogn)
om) | o= | on)

TABLE |

LOCALIZATION IN VARIOUS BEACON PLACEMENT SCHEMES

VIlI. SIMULATION STUDY OF LOCALIZATION IN RANDOM NETWORKS IN 3-SPACE

We simulate random geometric graphs in 3-space by gengaoimts randomly in0, 1]3, placing
four beacons in the center of the unit cube within sensingeasf each other. We then simulate
ITP by localizing nodes in computational rounds in which wetedmine positions for all nodes
connected to four nodes with known position. We terminate ghmulation when a round does
not determine the position of any node. Note that that whiksé simulations are in 3-space, the
theory of the previous section for 2-space is indicativehef 3-space results. In our first simulation,
for three values of-, we track the percentage of nodes whose positions can berdess. We
observe in Fig. 8 an increasingly sharp phase transitiomenpercentage of localizable nodes as
we increasen.
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Fig. 8. Percentage of nodes localizable with 4-beacon ITP.

In our second simulation, we calculate the smallest radiwghich the percentage of localizable
nodes is greater tha®t%. We see in Fig. 9 behavior similar to the analytical resuftshe plane

in the preceding section. Note that the analytical asyngptesult more accurately models actual
28



behavior as: increases. The difference for smallis explained by the contribution of logarithmic

terms in the localization probability that becomes sigaificwhenn is small.

0-35 measured behavior——
0.3 4 asymptotic prediction- 1

Q%'i
0.2}

0.15
0.1r

0.05

phase transition radius

0 1000 2000
number of nodes

Fig. 9. Trilateration graph phase transition radiusdp(r).

Our last simulations investigate the number of computalieounds necessary to localize all
nodes that can be localized. In Fig. 10, we observenfer 2000 that the percentage of localized
nodes at a given step increases dramatically with modestases in sensing radius. Note that
below the phase transition, at= 0.1, the procedure fails to localize practically any nodes and
completes in four steps. For straddling the phase transition, Fig. 11 plots the numbesteps
before completion. The spike is due to a sudden increasenimembedness above the phase transition
at which the radius is minimal for total localizability.
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Fig. 10. Time-evolution of the number of localized nodes.

VIIl. RELATED WORK

Network localization is after four years of intense reskarery much still an active field. The

previous approaches can be classified into two types: comeseed [10], [11], [28], [42], [50], [57]
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Fig. 11. Required steps for algorithm completion.

and fine-grained [1], [7], [12], [18], [37], [44], [46], [47]49], [52], [53], [56]. The focus of this
paper is fine-grained localization. As we discussed in thtdluction, the previous approaches were
mainly heuristics, and a theoretical foundation was lagkHrenet al. addressed this problem in a
preliminary form in [20], providing the first theoretical @ysis of network localization. Since that
work was originally published, the authors in [44] appliatt conditions to produce a localization
algorithm based on trilateration graphs under noisy degameasurements which is effective in
relatively dense networks. Our conditions for unique |leddility are also applied in [49] in an
algorithm which uses mobility to obtain distance measurgsevhich result in globally rigid
constraint structures. The algorithm presented in [7] gsesidefinite programming and is effective
in relatively dense overconstrained networks. A technicaleed multidimensional scaling (MDS),
which requires estimation of the complete distance maisimpplied in [56], yielding good results
in dense networks. Distances between nodes need not nelgebsaused in estimation of the
complete distance matrix, so this approach can be seen agHane or coarse-grained localization.
The work on fine-grained localization which inspired oureash into the fundamental theory
of the problem is [53]. The authors produced an innovatigomhm effective in practice for
sufficiently dense networks, but left open the issues of wmitpcalizability and complexity and
did not necessarily localize all localizable nodes.

A related problem called molecular conformation has beadistl in the chemistry community,
e.g, [2], [30], [45]. However, the focus of these studies is ogpéce. Also, since the structure of
a molecule is given, they do not consider the network constm process.

One major building block of our analysis is rigidity theomydacomputational geometry. Rigidity

has been long studied in mathematics and structural engigegsee for example [40], [60], [31],
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[51], [61]) and has a surprising number of applications imynareas.

We formally analyzed the performance of network localmatin networks of randomly placed
nodes. Even though some researchers have studied randpims grasensor networke.g, [16],
[17], [22], [39], the focus is mainly on routing but not on &ization. Phase transitions for
connectivity in random geometric graphs are explored ir},[dfhd motivated some of our research
on phase transitions for localizability in random sensdivoeks.

IX. CONCLUSION AND FUTURE WORK

The unique localization of networks from distance measergmshares a number of features
with work in several other active fields of study: rigidity daglobal rigidity in frameworks; the
coordination of formations of automonous agents; and géarenstraints in CAD. In this paper,
we have drawn on techniques and results from the first twosfiglldo combined in some previous
joint work [21], as well as specific results on global rigydii 3], [34]. With these concepts, we were
able to lay a coherent solid foundation for the underlyinglpem of when a network is uniquely
localizable, for almost all configurations of the points.e8ifically, we constructed a formation
and then a graph for each network such that the localizatioblgm for the network is uniquely
solvable, almost always, if and only if the correspondingpdris generically globally rigid. From
these connections, we drew specific results and showedhatiateration networks are uniquely
localizable for almost all initial locations.

It should be noted that global rigidity is a graph propertykéd with the unique localizability
of an entire network. In work by Goldenbegg al. in [26], it was observed that even in networks
with non-globally rigid grounded graphs, there may exisguely localizable nodes. A theoretical
investigation of this phenomenon gfobally linked nodesvas later given by Jordaet al. in [35].

It also deserves note that as stated, the localization @mohlith precise distance is not in general
numerically well posed since even if it is solvable with theeg data, it may be unsolvable with data
arbitrarily “close” to that which is given. In practical tas, this means that special attention must be
paid to the computation process and to assessing the sagraéof “approximate solutions.” It also
means that only graphs which are generically globally rayid capable of having computationally
stable solutions for given data sets. This confirms our ehoit conceptual framework for this
problem. However, we comment that even approximate solsitave hard to compute due to the

hardness of the localization problem.
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Specifically, we have shown that the localization problemPshard in the worst case for sparse
graphs unless P=NP or RP=NP, if certain mild forms of appraxiom are permitted. This worst-
case result for sparse graphs stands in contrast to rebaltsshow that localization is possible
for dense graphs [7] or with high probability for random gestnit graphs. The open questions
that remain are where the boundary lies between our negastdt and these positive results. In
particular:

« Isthere an efficient algorithm f@pproximatdocalization in sparse graphs, either by permitting
moderate errors on distances or by permitting the algorithrmisplace some small fraction
of the sensors?

« Given that the difficulty of the problem appears to be strgradtected by the density of nodes
(and the resulting number of known distance pairs), whatimmum density is necessary to
allow localization in the worst case?

« How are these results affected by more natural assumptibast &ommunications ranges,
allowing different maximum distances between adjacentesoor the possibility of placing
small numbers of high-range beacons?

« How does the dimension (e.g., in the plane or in 3-spacettati® problem?

Answers to any of these questions would be an important sie@rt producing practical

localization algorithms.

One potential direction to resolve the computational caxip} issue is to introduce other
modalities. In particular, other work such as [47] appr@acihetwork localization with angles,
bearings and headings in addition to some distance comstr&rawing on more general work on
geometric constraints such as angles and directions in CAD asl in [55], we have further generic
global uniqueness results that can give new insights whentaio patterns of angles or headings
are used [21], as well as insights into the complexity of gangatterns of angle constraints. This

will be explored further in a future paper.
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