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Abstract

In this paper we provide a theoretical foundation for the problem of network localization in which

some nodes know their locations and other nodes determine their locations by measuring the distances

to their neighbors. We construct grounded graphs to model network localization and apply graph rigidity

theory to test the conditions for unique localizability andto construct uniquely localizable networks. We

further study the computational complexity of network localization and investigate a subclass of grounded

graphs where localization can be computed efficiently. We conclude with a discussion of localization in

sensor networks where the sensors are placed randomly.

I. I NTRODUCTION

Location service is a fundamental building block of many emerging computing/networking

paradigms. For example, in pervasive computing [23], [59],knowing the locations of the computers

and the printers in a building will allow a computer to send a printing job to the nearest printer.

In sensor networks, the sensor nodes need to know their locations in order to detect and record

events, and to route packets using geometric routing (e.g., [38]).

Manual configuration is one method to determine the locationof a node. However, this is unlikely

to be feasible for large-scale deployments and scenarios inwhich nodes move often. GPS [32]

is another possibility, however it is costly in terms of bothhardware and power requirements.

Furthermore, since GPS requires line-of-sight between thereceiver and satellites, it may not work

well in buildings or in the presence of obstructions such as dense vegetation, buildings, or mountains

blocking the direct view to the GPS satellites.

Recently, novel schemes have been proposed to determine the locations of the nodes in a network

where only some special nodes (called beacons) know their locations (e.g., [28], [44], [53]). In these

schemes, network nodes measure the distances to their neighbors and then try to determine their

locations. The process of computing the locations of the nodes is callednetwork localization.

For example, in [53], Savvideset al. propose an iterative multilateration scheme to determinethe

locations of nodes that do not know their locations initially.

Although the designs of the previous schemes have demonstrated great engineering ingenuity

and their effectiveness in certain settings verified through extensive simulations, some fundamental

questions have not been addressed. As a result, the previousschemes are mainly heuristic-based

and a full theoretical foundation of network localization is still lacking.

Specifically, we identify the following three fundamental questions:
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1) What are the conditions for unique network localizability?Although the network localization

problem has already been studied extensively, the precise conditions under which the network

localization problem is solvable (i.e., has a unique solution) are not known.

2) What is the computational complexity of network localization? Even though the computational

complexity of graph embeddability has been investigated before (e.g., general graphs by

Saxe [54] and unit disk graphs by Breu and Kirkpatrick [9]), the computational complexity

of determining the locations of the nodes in a uniquely localizable network has not been

studied.

3) What is the complexity of network localization in typical network deployment scenarios?

Furthermore, for a large-scale sensor network, it may not bepossible to control the placement

of the sensor nodes precisely. Rather, they may be placed uniformly or randomly in a region.

The unique localizability and computational complexity ofsuch scenarios have not been

investigated.

The objective of this paper is to provide systematic answersto these three questions. Many but

not all of the ideas of this paper were presented in preliminary form by Erenet al. in [20]. In this

paper, we extend these ideas and provide formal proofs. In particular, we address the first question

using graph rigidity theory, the second for arbitrary uniquely localizable networks and uniquely

localizable unit disk networks, and the third for unit disk networks of randomly placed nodes.

More specifically, in order to answer the first question, we propose the notion ofgrounded graphs.

In these graphs, each vertex represents a network node, and two vertices in the graph are connected

if the distance between the two is known; that is, when the distance between the two nodes is

measured or when the two nodes are beacon nodes and their distance isimplicitly known. Given

our construction of grounded graphs, we show that a network has a unique localization if and only

if its corresponding grounded graph isgenerically globally rigid. By observing this connection, we

are able to apply results from the graph-rigidity literature to network localization and thus provide a

systematic and pleasantly intuitive answer to the first question. For example, to check if a network

in the plane is unique localizable, we just need to check if the corresponding grounded graph is

3-connected andredundantly rigid, both of which can be efficiently checked.

In addition, we demonstrate conditions and inductive sequences for constructing uniquely local-

izable networks, both in the plane and in 3-space. For instance, we show that a network with a

biconnected grounded graph is uniquely localizable if two-hop neighbors are connected,e.g., by
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doubling the range of distance measurements in a sensor network. By using our results, a designer

of a network can be assured that the constructed network is uniquely localizable, thus avoiding

expensive trial-and-error procedures.

To address the second question, we analyze the computational complexity of network localization

when the grounded graph is a generically globally rigid graph and show NP-hardness with a

reduction from set-partition. To strengthen this insight,we show that even in the idealized case that

distance measurements are present between all nodes withinless than a certain known distance of

each other, localization is still NP-hard.

To address the third question, we explore the density-dependent average-case complexity of

network localization in realistic settings like sensor networks, and study a class of graphs in the

plane calledtrilateration graphs. We show that trilateration graphs are uniquely localizable and

the locations of the nodes can be computed efficiently. We show that random geometric graphs

are trilateration graphs with high probability if a certainnode density or communication radius is

reached. We provide asymptotic results on the densities of the beacons sufficient for trilateration

to be carried out inO(1) step,O(
√

log(n)) steps, orO(
√

n) steps, respectively, wheren is the

number of nodes in the network.

The rest of this paper is organized as follows. The specific network localization problem to be

addressed is formulated in Section II. The concepts of rigidity and global rigidity are discussed in

Section III. In Section IV, sufficient conditions for localization and construction of localizable

networks are presented. In Section V, we study the computational complexity of solving the

localization problem. In Section VI, we study localizationof random geometric graphs in the

plane. In Section VII, we present simulation results for localization in 3-space geometric graphs. In

Section VIII, we discuss related work. Our conclusion and future work are presented in Section IX.

II. FORMULATION

A. The Network Localization Problem

In this paper we shall be concerned with the “network localization problem with distance infor-

mation” which can be formulated as follows. One begins with anetworkN in real d-dimensional

space (whered = 2 or 3) consisting of a set ofm > 0 nodes labelled1 throughm that represent

special “beacon” nodes together withn − m > 0 additional nodes labelledm + 1 throughn that

represent ordinary nodes. Each node is located at a fixed position in IRd and has associated with it
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a specific set of “neighboring” nodes. Although a node’s neighbors are typically defined to be all

other nodes within some specified range, other definitions could also be used (e.g., those considering

the effects of obstacles). The essential property we will require in this paper is that the definition

of a neighbor be a symmetric relation on{1, 2, . . . , n} in the sense that nodej is a neighbor of

node i if and only if nodei is also a neighbor of nodej. Under these conditionsN’s neighbor

relationships can be conveniently described by an undirected graphGN = (V,EN) with vertex set

V = {1, 2, . . . , n} and edge setEN defined so that(i, j) is one of the graph’s edges precisely when

nodesi and j are neighbors. We assume throughout thatGN is a connected graph. Thenetwork

localization problem with distance informationis to determine the locationspi of all nodes inIRd

given the graph of the networkGN, the positions of the beaconspj, j ∈ {1, 2, . . . ,m} in IRd, and

the distanceδN(i, j) between each neighbor pair(i, j) ∈ EN.

The network localization problem just formulated is said tobe solvableif there is exactly one

set of vectors{pm+1, . . . pn} in IRd consistent with the given dataGN, {p1, p2, . . . , pm}, andδN :

EN → IR. In this paper we will be concerned with “generic” solvability of the problem which

means, roughly speaking, that the problem should be solvable not only for the given data but also

for slightly perturbed but consistent versions of the givendata. It is possible to make precise what

generic solvability means as follows. FixGN and lete1, e2, . . . , eq denote the edges inEN. Note

that for any set ofn pointsy1, y2, . . . , yn in IRd there is a unique distance vectorz whosek − th

component (element) is the distance betweenyi and yj where (i, j) = ek. This means that there

is a well-defined functionf : IRnd → IR(md+q) mapping{y1, y2, . . . , yn} 7−→ {y1, y2, . . . , ym, z}.

Solvability of the network localization problem is equivalent tof being injective at{p1, p2, . . . , pn}
in the sense that the only set of points{y1, y2, . . . , yn} ∈ IRnd for which f(y1, y2, . . . , yn) =

f(p1, p2, . . . , pn) is {y1, y2, . . . , yn} = {p1, p2, . . . , pn}. In this context it is natural to say that the

network localization problem isgenerically solvableat {p1, p2, . . . , pn} if it is solvable at each point

in an open neighborhood of{p1, p2, . . . , pn}. In other words, the localization problem is solvable

at {p1, p2, . . . , pn} if there is an open neighborhood of{p1, p2, . . . , pn} on whichf is an injective

function.

B. Point Formations

To study the solvability of the network localization problem, we reformulate the problem in terms

of a “point formation”. As we shall see, the point formation relevant to the network localization

problem has associated with it thegrounded graphof the network,ĜN, with the same vertices as
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GN but with a slightly larger edge set which adds “links” or edges from every beacon to every

other. It is a property of̂GN rather thanGN which proves to be central to the solvability of the

localization problem under consideration.

We begin by reviewing the point formation concept. By ad-dimensionalpoint formation[19] at

p
∆
= column {p1, p2, . . . , pn}, written Fp, is meant a set ofn points{p1, p2, . . . , pn} in IRd together

with a setL of k links, labelled(i, j), wherei andj are distinct integers in{1, 2, . . . , n}; the length

of link (i, j) is the Euclidean distance between pointpi and pj. The idea of a point formation is

essentially the same as the concept of a “framework” studiedin mathematics [51], [60], [61] as well

as within the theory of structures in mechanical and civil engineering. For our purposes, a point

formationFp = ({p1, p2, . . . , pn},L) provides a natural high-level model for ann-node network in

real 2 or 3 dimensional space. In this context, the pointspi represent the positions of nodes (i.e.,

both beacons and ordinary nodes), inIRd and the links inL label those specific node pairs whose

inter-node distances are given. Thus for the networkN, L would consist of all edges in̂GN, since

the distance between every pair of beacons is determined by their specified positions.

Each point formationFp uniquely determines a graphGFp
∆
= {V,L} with vertex setV

∆
=

{1, 2, . . . , n} and edge setL, as well as a distance functionδ : L → IR whose value at(i, j) ∈ L is

the distance betweenpi andpj. Let us note that the distance function ofFp is the same as the distance

function of any point formationFq with the same graph asFp providedq is congruentto p in the

sense that there is a distance preserving mapT : IRd → IRd such thatT (qi) = pi, i ∈ {1, 2, . . . , n}.

In the next section, we will say that two point formationsFp and Fq are congruentif they have

the same graph and ifq and p are congruent. It is clear thatFp is uniquely determined by its

graph and distance functionat mostup to a congruence transformation. A formation that isexactly

determined up to congruence by its graph and distance function is called “globally rigid.” More

precisely, ad-dimensional point formationFp is said to beglobally rigid if each d-dimensional

point formationFq with the same graph and distance function asFp is congruent toFp. It is clear

that any formation whose graph is complete is globally rigid. The following simple generalizations

of this fact in Lemma 1 provide sufficient conditions for global rigidity that are especially relevant

to the network localization problem. Ind dimensions, we say a set of pointsp1, . . . , pd+1 is in

general positionif it does not lie in a proper subspace (i.e., three points in the plane do not lie on

a line, and four points in space do not lie in a plane).

Lemma 1:
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Let Fp = ({p1, p2, . . . , pn},L) be ann-point formation inIR2 that contains three pointspa, pb,

and pc in general position. Suppose that the graph of the formationGFp contains the complete

graph on{a, b, c}. If the only n-point formation inIR2 that contains these three points and has the

same link set asFp is Fp itself, thenFp is globally rigid.

This property is a direct consequence of the fact that the identity on IR2 is the only distance

preserving mapT : IR2 → IR2 that leavespa, pb, andpc unchanged. A directly analogous property

holds in three dimensions. A proof of the lemma will not be given.

C. Solvability of the Network Localization Problem

With the previous definition of point formations, we can now restate the network localization

problem in terms of its associated point formationFp. In the present context, the problem is to

determineFp, given the graph and distance function ofFp as well as the beacon position vectors

p1, p2, . . . , pm. Solvability of the problem demands thatFp be globally rigid; for if Fp were not

globally rigid it would be impossible to determineFp up to congruence, let alone to determine it

uniquely. AssumingFp is globally rigid, solvability of the network localizationproblem reduces to

making sure that the group of transformationsT that leaves the set{p1, p2, . . . , pm} unchanged –

namely distance preserving transformationsT : IRd → IRd for which T (pi) = pi, i ∈ {1, 2, . . . ,m}
– also leaves unchanged the set{pm+1, . . . , pn}. The easiest way to guarantee this inIR2 is to

require{p1, p2, . . . , pm} to contain three pointspi1 , pi2 , pi3 in general position; for if this is so, then

the only distance preserving transformation that leaves{p1, p2, . . . , pm} unchanged is the identity

map onIR2. Similarly, if in IR3, {p1, p2, . . . , pm} contains at least four points in general position,

then T will again be an identity map, in this case onIR3. We summarize the main result for the

solvability of network localization as follows.

Theorem 1:Let N be a network inIRd, d = 2 or 3, consisting ofm > 0 beacons located at

positionsp1, p2, . . . , pm andn−m > 0 ordinary nodes located at positionspm+1, . . . , pn. Suppose

that for the cased = 2 there are at least three beacons in general position. Similarly, for the case

d = 3 suppose there are at least four beacons positioned at pointsin general position. LetFp denote

the point formation whose points are atp1, p2, . . . , pn and whose links are those labelled by all

neighbor pairs and all beacon pairs inN. Then for bothd = 2 andd = 3 the network localization

problem is solvable if and only ifFp is globally rigid.
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III. R IGIDITY AND GLOBAL RIGIDITY

In the previous section, we have established that under certain mild conditions, the solvability

of the network localization problem is equivalent to the “global rigidity” of point formation. In

this section we review results from rigidity theory which allow us to check for “global rigidity”

efficiently. Readers familiar with rigidity theory or not interested in the technical details can just

read Theorem 4 (which gives an efficiently checkable condition for rigidity in R2), the definition

of redundant rigidity (rigidity after removal of any one edge), Theorem 6 and then proceed to next

section. We refer the interested reader to [27] for an in-depth reference on this topic.

As we have already stated, ad-dimensional point formationFp is globally rigid if eachd-

dimensional point formationFq with the same graph and distance function asFp is congruent to

Fp. In order to clearly present properties of global rigidity,we need several other mathematical

concepts whose roots can be found in the rich classical theory of rigid structures.

A. Rigidity

Let Fp be ad-dimensional point formation, with the distance function measuring all edges in

L, δ : IRnd → IRk. We are interested in all possible formations with the same distances, that is, in

δ−1(δ(p)). This is a smooth manifold inIRnd [51] and we want to know whether it contains only

points congruent top. Our best tool for studying this manifold its tangent space and the matrix

equation defining this tangent space with a linearized version of the distance constraints.

For each edge(i, j) ∈ L, the distance equation(pi − pj)
T (pi − pj) = δ(i, j)2 generates the

corresponding linear equation

(pi − pj)
T (ṗi − ṗj) = 0

in the unknown vector(ṗ1, ṗ2, . . . , ṗn). If a vector satisfies all these equations, then it lies in the

tangent space. This entire system is written as a matrix equation:

R(Fp)ṗ = 0, (1)

where ṗ = column (ṗ1, ṗ2, . . . , ṗn), andR(Fp) is the specially structuredk × dn array called the

rigidity matrix of the formation. In structural engineering and mathematics, the solutionsṗ are

calledfirst-order flexes(infinitesimal flexes, or virtual velocities) [51], [60], [61].

The tangent vectors to the congruences of the spaceIRd generate a subspace of trivial solutions,

called thetrivial flexes. In the plane, provided that we have at least two distinct points, this space
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has dimension3, generated by two translations and the tangent vector to a rotation about the origin.

In 3-space, if we have three non-collinear points, this space has dimension6, generated by three

translations along the axes and the derivatives of three rotations about the three axes though the

origin.

Definition 1: If the trivial flexes are the entire space of first-order flexes, the formation isfirst-

order rigid.

In short, provided we have at least three vertices [51], [61]:

Theorem 2:AssumeFp is a formation with at leastd nodes ind-space,

rank R(Fp) ≤











2n − 3 if d = 2

3n − 6 if d = 3.

The formationFp in the plane is first-order rigid if and only ifrank R(Fp) = 2n−3. The formation

Fp in 3-space is first-order rigid if and only ifrank R(Fp) = 3n − 6.

It is easy to see from the form of the rigidity matrix that the entries in R(Fp) are polynomial

(actually linear) functions ofp. Because of this, the values ofp for which the rank ofR(Fp) is

below its maximum value form a proper algebraic set inIRdn. This observation lies at the roots of

the following equivalences [60], [61]:

Theorem 3:Given a formation graphG with n ≥ 2 vertices in the plane (resp.n ≥ 3 vertices

in 3-space) the following are equivalent:

1) for some formationFp with this graph,rank R(Fp) = 2n− 3 (resp.rank R(Fp) = 3n− 6 in

3-space);

2) for all q ∈ IR2n in an open neighborhood ofp, the formationFq on the graphG is first-order

rigid in the plane (resp.q ∈ IR3n, Fq is first-order rigid in3-space);

3) for all q in an open dense subset ofIR2n, the formationFq on the same graphG is first-order

rigid in the plane (resp. open dense subset ofIR3n, Fq is first-order rigid in3-space).

When property 3) holds, we say that the graphG of Fp is generically rigid in the space. It is well

known that first-order rigidity implies all of the other standard forms of rigidity for a formation,

but the converse can fail [21], [51], [60]. For readers thinking of other concepts of rigidity, we

point out that if one of these alternative forms of rigidity holds for a non-empty open set, then all

of the properties in Theorem 3 hold [51], [60].
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For the plane we have a strong combinatorial characterization of the generically rigid graphs.

We note that this leads to a fastO(|V |2) algorithm for generic rigidity testing [29].

Theorem 4 (Laman [40]):A graphG = (V,L) with n vertices is generically rigid inIR2 if and

only if L contains a subsetE consisting of2n− 3 edges with the property that for any nonempty

subsetE ′ ⊂ E, the number of edges inE ′ cannot exceed2n′−3 wheren′ is the number of vertices

of G which are endpoints of edges inE ′.

There is no comparable complete result for3-space, and no known polynomial time algorithm,

though there are useful partial results [60], [61].

B. Conditions for Global Rigidity

We are interested in the stronger concept of generic global rigidity. This concept is intimately

related with first-order rigidity. If the formationFp is not first-order rigid, there is a non-trivial

first-order flexṗ that does not come from a congruence. This is enough to guarantee that a small

perturbation will create a formation that is not globally rigid.

Theorem 5 (Averaging Theorem [60], [61]):Given a non-degenerate formationFp with a non-

trivial flex q̇, the formationsFp+tq̇ andFp−tq̇ on the same graph, for allt > 0, have the same edge

lengths for all links but are not congruent.

We say that a formationFq is generically globally rigidif every sufficiently small perturbation

q of p creates a globally rigid formationFq. The result above shows that any non-degenerate

generically globally rigid formationFp must be first-order rigid. However, as Fig. 1 illustrates, the

converse is not true.

(a)

d c

c

b b

(b)

a

d

a

Fig. 1. Two first-order rigid formations with the same graph and the same distance values.
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A graphG = {V ,L} with n vertices isgenerically globally rigidin IRd if there is an open dense

set of pointsp ∈ IRdn at which Fp is a globally rigid formation with link setL. In the plane, a

recent result gives a complete characterization of generically globally rigid graphs. To introduce

the result, we first review the definitions ofk-connectivity and redundant rigidity.

A graph G is k-connectedif it remains connected upon removal of any set of< k vertices.

The k-connectivity of a complete graph withn vertices is defined to ben − 1. A simple mental

check also confirms that for more thand+1 vertices in dimensiond, we need at leastd+1 vertex

connectivity, to avoid a reflection of one component througha mirror placed on a disconnecting

set of sized.

A graphG is redundantly rigidin IRd if the removal of any single edge results in a graph that is

also generically rigid inIRd. Fig. 2 shows a graph that is not redundantly rigid. As Fig. 3 suggests,

we need the graph to be generically redundantly rigid to ensure generic global rigidity.

b

a

b

ca c c’ a’

a’

b’

c’

b’

Fig. 2. An example from [29] showing a rigid3-connected graph with two realizations in the plane. If edge(a, a′) is removed,

trianglea′b′c′ swings along a path until the distance(a, a′) is the same as it originally was.

a

d

e

c

b

Fig. 3. A globally rigid formation in the plane.

Theorem 6 ( [34]): A graph G with n ≥ 4 vertices is generically globally rigid inIR2 if and

only if it is 3-connected and redundantly rigid inIR2.
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Notice that to actually carry out a test to decide whether or not a given graphG is generically

globally rigid in IR2, one must establish that it is both3-connected and redundantly rigid inIR2.

Various tests for 3-connectivity are known, and we refer thereader to [33], [43] for details including

measures of the complexity of the tests involved. Tests for redundant rigidity inIR2 have been

derived [29] based on variants of Laman’s theorem [40].

Since these properties are also required for even a non-empty open set of globally rigid formations

in the plane, we can see that the existence of one genericallyglobally rigid formationFp implies

the graph is generically globally rigid. In3-space, whether having one generically globally rigid

formation is enough to show that the graph is generically globally rigid is an open question [13].

As with generic rigidity, we do not have a generalization of Theorem 6 to higher dimensions.

However, it extends as a necessary but not sufficient condition.

Theorem 7 ( [14], [29]): If a graphG with more thand+1 vertices is generically globally rigid

in d-space, thenG is redundantly rigid and at leastd+1 connected. In all dimensionsd ≥ 3, there

are redundantly rigid and at leastd + 1 connected graphs that are not generically globally rigid.

IV. I NDUCTIVE CONSTRUCTION OFGENERICALLY GLOBALLY RIGID GRAPHS

It is possible to derive useful sufficient conditions and inductive constructions for generically

globally rigid graphs (i.e., solvable) in spaces of all dimensions [14], [21]. Such constructions can

be useful in identifying and constructing uniquely localizable networks.

One simple construction inserts new nodes of degreed+1 into existing generically globally rigid

formations to create larger generically globally rigid formations. Since we will use this construction

later, we give some formal definitions using the term ‘trilateration’ from the plane as a general

term.

Lemma 2:Given a generically globally rigid point formationFp, and a new pointp0 linked

to d + 1 nodesp1, ...pd+1 of Fp, in general position, then the extended point formationF̄p+p0
is

generically globally rigid.

Proof: Consider any location for the distances inF̄p+p0
. We show that the location ofp0 is

unique, given these prior locations.

We first give the proof inR2, whereFp has three non-collinear pointspa, pb, pc. We have the

distances fromp0 to these three points. The distances from the first two points, pa, pb, define two

intersections of corresponding circles centered atpa andpb. The distances from any third pointpc
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to these two solutions are different, sincepc is not on the line throughpa, pb. Therefore there is a

unique position forp0 for the given distance topc.

The same argument works in all dimensions, starting with thetwo points of intersection ford

spheres with centers in general position.

Now, consider a second formation̄Fp+q0
with the same link lengths as̄Fp+p0

. Since the generically

globally rigid formationFp is contained in this second extended formation, the location of its nodes

is unique, up to congruence. The unique congruenceT defined by thed+1 general position points

of attachment induces a positionT (p0) that satisfies our construction. Since the constructed point

was unique, we conclude thatT (p0) = q0 and the two extended formations are congruent. We

conclude that the extended formation is globally rigid.

The general position property used is stable under small perturbations ofp. Therefore the global

rigidity holds for all small perturbations and the extendedformation is generically globally rigid.

For the network setting in2 dimensions, we can start with the globally rigid formation on m ≥ 3

beacons asFpm
. We can then sequentially add new nodes as pointspm+1, . . . , pn, each along with3

edges to distinct nodes in the preceding formation, to extend the preceding formation. Provided that

all sets of points which will be used in extensions are in general position, we create a generically

globally rigid formation F̄p with n points. This process can be worded in terms of generically

globally rigid graphs.

Definition 2: A trilateration extensionin dimensiond of a graphG = (V,E), where|V | ≥ d+1

produces a new graphG′ = (V ∪ {v}, E ∪ {(v, w1), . . . , (v, wd+1)}), wherev /∈ V , andwi ∈ V .

Definition 3: A trilaterative ordering in dimensiond for a graphG is an ordering of the vertices

1, . . . , d+1, d+2, . . . n such thatKd+1, the complete graph on the initial vertices, is inG, and from

every vertexj > d+1, there are at leastd+1 edges to vertices earlier in the sequence. Graphs for

which a trilaterative ordering exists in dimensiond are calledtrilateration graphs in dimensiond.

Theorem 8:Trilateration graphs in dimensiond are generically globally rigid in dimensiond.

Proof: Any formation on the complete graph ond+1 vertices is generically globally rigid if the

points are in general position. We take such a formation. We can then apply Lemma 2 to add each

point along the trilaterative ordering, with its guaranteed d + 1 edges, to create a larger generically

globally rigid formation with all points in general position. We can then add any additional edges

beyond thed + 1 needed, without changing the generic global rigidity of theextended formation.
13



Repeated application of this leads to a generically globallyrigid formation on the whole graph.

Since the conditions of being in general position apply to anopen dense subset of the space, we

conclude that the graph is generically globally rigid.

A trilateration graphG may have more than one trilaterative ordering and even more than one

seed— the initial complete graphKd+1. We will look at algorithmic aspects of trilateration graphs

in the next section.

V. COMPUTATIONAL COMPLEXITY OF LOCALIZATION

We have seen in preceding sections that global rigidity is a necessary condition for the solvability

of network localization. We will now move from the decision problem of solvability to an associated

search problem, graph realization.

Specifically, we define the graph realization problem as the problem of assigning coordinates to

vertices of a weighted graphG so that the edge weight of every edge(i, j) equals the distance

between the points assigned to verticesi andj. Note that a given graph may not be realizable under

a particular set of edge weights. In the context of network localization, the graphs under study are

the grounded graphs associated with network point formations.

A. Realizing Globally Rigid Graphs

Although global rigidity testing in the plane is computablein polynomial time, Saxe has shown

that testing the realizability of weighted graphs is NP-hard [54]. Below, we will argue that realizing

a graph is still hard, even if it is known that the graph is globally rigid and that it has a realization.

The objective of this subsection is to build intuitive results. In the next subsection we will conduct

a formal reduction and discuss the implications. Note that we will restrict ourselves to the plane

in this section.

Recall that the SET-PARTITION-SEARCH problem is the following: Given a set of numbersS,

find a partition ofS asA ∪ S − A so that the sums of the numbers in the two sets are equal. We

first prove a useful NP-hardness result for the SET-PARTITION-SEARCH problem.

Claim 1: Given a setS for which the existence of a set partition is guaranteed, theproblem of

finding a set partition is still NP-hard.

Proof: Assume that algorithmA solves set-partition-search. LetS be a set of numbers for

which it is unknown whether there is a set-partition. RunA on input S for time t equal to the

running time ofA on a valid input of size|S|.
14



If A has not terminated, thenS has no set-partition. IfA has terminated, thenS has a set-

partition if and only the output ofA is a set-partition ofS. Since set-partition is NP-complete,

set-partition-search is NP-hard.

We now show another result which will prove to be useful. Fig.4 shows a particular realization

of the wheel graphW6.

Fig. 4. Wheel graphW6.

Claim 2: The wheel graphWn is globally rigid.

Proof: We will refer to nodes in the cycle,Cn−1, asrim nodes, the central node as thehub,

an edge between the hub and a rim node as aspoke, and an edge between two rim nodes as arim

edge.

If we remove two rim vertices, the graph remains connected through the hub. If we remove the

hub and one rim vertex, the graph remains a connected path on the remaining vertices. Therefore

removing two vertices does not disconnect the graph, and it is 3-connected.

As Lemma 2.1 of [6] observes, a wheel is a minimally redundantly rigid graph for the plane.

By Theorem 6, it is generically globally rigid.

We now analyze the complexity of realization of globally rigid graphs. A realistic formulation

of the realization problem requires that the edge lengths benoisy measurements of underlying

edge lengths subject to bounded errors. Note that with probability 1, these error-corrupted edge

lengths will not correspond to realizable weights. In this case, the realization problem becomes

an approximation problem; namely, finding an assignment of coordinates for the graph vertices so

that the resulting discrepancies with the noisy weights arebelow a tolerance parameter. Below, we

use a reduction from set partition to show that realization of globally rigid weighted graphs with
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realizablei.e., exact, edge weights is still hard. To construct the reduction, we use real numbers,

which could potentially be irrational. The formal proof in the next subsection does not need to use

real numbers.

Assume we have an algorithmA that takes as input a realizable globally rigid weighted graph and

outputs the unique realization. Consider a set ofn positive rational numbersS = {s1, s2, . . . , sn},

for which a set-partition exists, scaled without loss of generality such that
∑n

i=1 si = π/2. Let us

now label the nodes ofWn+1 as follows: we label the hub0, and the rim nodes1 throughn, where

there is an edge fromi to i + 1 for i ∈ {1, 2, . . . , n − 1} and fromn to 1. We will refer to the

spoke from0 to i asspokei.

Let us now construct a weighted version ofWn+1. Let the weight of each spoke ber, wherer

is a positive rational number. Let the weight of the rim edge between nodei and nodei + 1 for

i ∈ {1, 2, . . . , n−1} be2r sin(si/2), and let the weight of the rim edge between noden and node1

be 2r sin(sn/2). We now argue that this weighted version ofWn+1, call it W
′
n+1, has a realization

in the plane.

If we imaginesi as the modulus of the angle between spokei and spokei+1 for i ∈ {1, 2, . . . , n−1}
andsn as the modulus of the angle between spoken and spoke1 in a realization ofWn+1, we can

determine a set of edge weights. Fix the weight of each spoke to be r, wherer is a positive real

number. Then the weight of the rim edge between nodei and nodei+1 for i ∈ {1, 2, . . . , n−1} must

be 2r sin(si/2), and the weight of the rim edge between noden and node1 must be2r sin(sn/2).

SinceS has a set partition, we can form a cycle of these chords in the plane. Therefore the wheel

graph with these edge weights,W
′
n+1 has a realization.

Note that despite the fact that the spokes might be inserted sequentially, it is not true that the

ends of the spokes on the circumference necessarily occur sequentially as one moves continuously

around the rim. The graph will in general fold up like a fan. Inaddition, note that the upper bound

on the sum of thesi ensures that in progressing through the cycle, there can be no net rotation

around the hub,i.e., the angles corresponding to clockwise rotation and those to counter clockwise

rotation do not differ by some nonzero multiple of2π.

Suppose we have an efficient algorithmA for graph realization. We run the algorithm on

the realizable globally rigid weighted graphW′
n+1 to obtain a realization. From this realization,

determine whether it is clockwise or counter-clockwise to rotate spokei to spokei+1 for i ∈
{1, . . . , n − 1} and from spoken to spoke1. By construction, the set of angles corresponding to
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clockwise rotation and that of counter-clockwise rotationform a set-partition ofS.

This procedure solves set-partition-search with one call to a graph realization algorithm and

polynomial time additional computation. Since set-partition-search is NP-hard, realizable globally

rigid weighted graph realization in the plane is NP-hard.

B. Localization complexity for unit disk graphs

The preceding subsection considers arbitrary globally rigid graphs. However, the construction

relies on a “folding fan” construction in which pairs of nodes close to each other in the unique

realization may possibly not have an edge between them. We consider a special class of graphs

called unit disk graphs, where a distance measurement is present between any pair of sensors if

they are within some disk radius parameterr of each other. We will show that even when limited

to this idealized class of graph, localization is still NP-hard. To avoid precision issues involving

irrational distances, below we assume that the input to the problem is presented with the distances

squared. If we make the further assumption that all sensors have integer coordinates, all distances

will be integers as well.

We consider a decision version of the localization problem,which we callUNIT DISK GRAPH

RECONSTRUCTION. This problem essentially asks if a particular graph with given edge lengths

can be physically realized as a unit disk graph with a given disk radius in two dimensions. A

similar result is obtained by Breu and Kirkpatrick in [9]. Ourobjective in this paper is to further

connect to network localization.

The input is a graphG where each edgeuv of G is labeled with an integerℓ2
uv, the square of

its length, together with an integerr2 that is the square of the radius of a unit disk. The output

is “yes” or “no” depending on whether there exists a set of points in R2 such that the distance

betweenu and v is ℓuv wheneveruv is an edge inG and exceedsr wheneveruv is not an edge

in G.

Our main result is that UNIT DISK GRAPH RECONSTRUCTION is NP-hard, based on a

reduction from the NP-hard problem CIRCUIT SATISFIABILITY [24]. The constructed graph for

a circuit with m wires hasO(m2) vertices andO(m2) edges, and the number of solutions to the

resulting localization problem is equal to the number of satisfying assignments for the circuit. In

each solution to the localization problem, the points can beplaced at integer coordinates, and the

entire graph fits in anO(m)-by-O(m) rectangle, where the constants hidden by the asymptotic
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notation are small. The construction also permits a constant fraction of the nodes to be placed at

known locations.

Formally, we show:

Theorem 9:There is a polynomial-time reduction from CIRCUIT SATISFIABILITY to UNIT

DISK GRAPH RECONSTRUCTION, in which there is a one-to-one correspondence between

satisfying assignments to the circuit and solutions to the resulting localization problem.

The proof of Theorem 9 depends on a sequence of constructionsof logical gates and is given

by Aspneset al. in [5]. An application of the theorem tosparse networksshows that localization

is hard. By sparse networks, we mean networks where the numberof known distance pairs grows

only linearly in the number of nodes. Sparse networks are of great importance, because in the limit

as a network with bounded communication range and fixed sensor density grows, the number of

known distance pairs grows only linearly in the number of nodes.

Corollary 1: There is no efficient algorithm that solves the localizationproblem for sparse sensor

networks in the worst case unless P=NP.

Proof: Suppose that we have a polynomial-time algorithm that takesas input the distances

between sensors from an actual placement inR2, and recovers the original position of the sensors

(relative to each other, or to an appropriate set of beacons). Such an algorithm can be used to

solve UNIT DISK GRAPH RECONSTRUCTION by applying it to an instance of the problem

(that may or may not have a solution). After reaching its polynomial time bound, the algorithm

will either have returned a solution or not. In the first case,we can check if the solution returned is

consistent with the distance constraints in the UNIT DISK GRAPH RECONSTRUCTION instance

in polynomial time, and accept if and only if the check succeeds. In the second case, we can

reject the instance. In both cases we have returned the correct answer for UNIT DISK GRAPH

RECONSTRUCTION.

It might appear that this result depends on the possibility of ambiguous reconstructions, where

the position of some points is not fully determined by the known distances. However, if we allow

randomized reconstruction algorithms, a similar result holds even for graphs that have unique

reconstructions. Below RP denotes the class of randomized polynomial-time algorithms [25].

Corollary 2: There is no efficient randomized algorithm that solves the localization problem for

sparse sensor networks that have unique reconstructions unless RP=NP.

Proof: The proof of this claim is by use of the well-known construction of Valiant and Vazirani,
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which gives a randomized Turing reduction from 3SAT to UNIQUE SATISFIABILITY [58]. The

essential idea of this reduction is that randomly fixing someof the inputs to the 3SAT problem

reduces the number of potential solutions, and repeating the process eventually produces a 3SAT

instance with a unique solution with high probability.

Finally, because the graph constructed in the proof of Theorem 9 uses only points with integer

coordinates, even an approximate solution that positions each point to within a distanceǫ < 1/2 of

its correct location can be used to find the exact locations ofall points by rounding each coordinate

to the nearest integer. Since the construction uses a fixed value for the unit disk radiusr (the natural

scale factor for the problem), we have

Corollary 3: The results of Corollary 1 and Corollary 2 continue to hold evenfor algorithms

that return an approximate location for each point, provided the approximate location is withinǫ · r
of the correct location, whereǫ is a fixed constant.

What we donot know at present is whether these results continue to hold forsolutions that have

large positional errors but that give edge lengths close to those in the input. Our suspicion is that

edge-length errors accumulate at most polynomially acrossthe graph, but we have not yet carried

out the error analysis necessary to prove this. If our suspicion is correct, we would have:

Conjecture 1:The results of Corollary 1 and Corollary 2 continue to hold evenfor algorithms

that return an approximate location for each point, provided the relative error in edge length for

each edge is bounded byǫ/nc for some fixed constantc.

C. Global/Distributed Optimization for Localization

The preceding subsections have shown that the computational complexity of network localization

is likely to be high. In practice, one way to solve the generallocalization problem is to formulate

it as an optimization problem. Specifically, realization ofa graphG = (V,E) with edge weight

function δ(i, j) can be formulated as a global optimization over vectors of points {x1, x2, . . . , x|V |}
of the following form,

minimize
∑

(i,j)∈E

(δ(i, j)− ‖ xi − xj ‖)2 .

This formulation of the problem has been used by biologists studying molecular conforma-

tion [15]. Because such optimization is computationally expensive, strategies such as divide-and-

conquer [30] and objective function smoothing [45] have been proposed. Recently, in [7], Biswas
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and Ye show that network localization in unit disk graphs canbe formulated as a semidefinite

programming problem and thus can be efficiently solved. A condition of their algorithm, however, is

that the graphs are densely connected. More specifically, their algorithm requires thatΩ(n2) pairs of

nodes know their relative distances, wheren is the number of sensor nodes in the network. However,

as we see from the preceding section, for a general network, it is enough for the localization process

to have a unique solution when certainO(n) pairs of nodes know their distances.

In the context of network localization, distributed optimization algorithms may be desirable. In

this case, algorithms such as [30] may be applied by dividingthe global network into small globally

rigid sub-components [36] (clusters) to reduce overall complexity. Each cluster computes its relative

localization using some optimization technique. Then the global localization can be achieved by

merging the localizations of individual components. With these algorithms, a tradeoff will likely

emerge between the advantage of small cluster size and the disadvantage of having to reconcile a

large number of localized clusters.

D. Realizing Trilateration Graphs

Although realization of general globally rigid graphs is hard, we have already seen a class

of globally rigid graphs that are computationally efficientto realize. In what follows, we define

trilateration to be the operation whereby a node with known distances to three other nodes in

general position determines its own position in terms of thepositions of those three neighbors. We

assume that this operation is efficiently computable.

Theorem 10:A trilateration graphG = (V,E) with realizable edge weights is realizable in a

polynomial number of trilaterations.

Proof: There is a sequence of trilateration extensions that resultin G when applied toK3.

If we know a seed ofG, then we can do the following: Localize one of the nodes of theseed

at the origin, another on the positivex-axis, and the remaining node at a position with a positive

y coordinate. At each step, we can calculate positions for allunlocalized nodes with edges to

three localized nodes. BecauseG is a trilateration graph, we are guaranteed to be able to calculate

positions for all nodes with at most|V | − 3 trilaterations.

If we do not know any seed ofG, we can guess it in at most
(

n
3

)

tries, which is polynomial.

A guess is correct if and only if the above procedure succeedsin localizing all nodes in a linear

number of steps. Hence, we can realize a trilateration graphin a polynomial number of steps.
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As we shall see, there are scenarios in which it is reasonableto assume that we know a seed of

the trilateration graph, and in these cases, the linear algorithm will be applicable.

VI. L OCALIZATION IN RANDOM GEOMETRIC GRAPHS IN THEPLANE

In previous sections, we presented theory for localizationof general networks. In this section, we

specialize to the setting of sensor networks with a large number of randomly distributed sensors

and explore the average case behavior of a specific localization algorithm. An abstraction that

corresponds well to this setting is the random geometric graph.

A. Definition and Properties of Random Geometric Graphs

We define random geometric graphs in terms of point formations.

Definition 4: Given n ∈ N and r ∈ [0, 1], the random geometric graphsGn(r) are the graphs

associated with two dimensional point formationsFp with all links of length less thanr, where

p = {p1, p2, . . . , pn} is a set of points in[0, 1]2 generated by a two dimensional Poisson point

process of intensityn.

The parameters of the model,n and r, correspond respectively to the physical parameters of

sensor density and sensing radius.

We next review some useful properties of the connectivity ofGn(r). Note that the results we

present in this section are asymptotic and that because of this, we neglect collinearity as a low

probability phenomenon.

As in the case of the Erdös-Ŕenyi random graph model [8], there is a phase transition in the

random geometric graph model at which the graph becomes connected with high probability [4].

Penrose [48] generalizes this tok-connectivity with the result that ifGn(r) has a minimum vertex

degree ofk then with high probabilityGn(r) is k-connected.

Since it is was proved in [41] that for somer ∈ O(
√

log n
n

), Gn(r) asymptotically has a minimum

vertex degree ofk for k ∈ O(1) with high probability,r ∈ O(
√

log n
n

) can also ensurek-connectivity.

B. Global Rigidity of Random Geometric Graphs

Recalling that3-connectivity is a necessary condition for global rigidity, and using a recent

result that6-connectivity is sufficient for global rigidity in the plane[34], we conclude thatGn(r)

is globally rigid with high probability for somer ∈ O(
√

log n
n

).
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Next we have the following interesting result:

Theorem 11:If G = (V,E) is 2-connected, then the graphG2 = (V,E ∪ E2), whereE2 is the

set of edges between endpoints of paths consisting of two edges inG, is globally rigid.

Proof:

Let G = (V,E) be 2-connected. Take any two nodesu andv in V . Since there are at least two

node-disjoint paths fromu to v, they lie on a cycle. Let us denote the cycle ofn nodes byCn. We

will show thatC2
n is globally rigid, and from this, it follows that the distance between every pair

of nodes inV is fixed in G
2, i.e., G

2 is globally rigid.

By a result from [6], every globally rigid graph has a globallyrigid subgraph that can be obtained

from K4 by a sequence of node addition operations, termed edge splitting. Edge splitting preserves

global rigidity, and in it, a new nodev is added by replacing an existing edge(u,w) by edges(u, v)

and (v, w), and adding an edge(v, z) for somez 6= u, v. We show thatC2
n is globally rigid by

constructing a class of globally rigid graphsC ′
n which are spanning subgraphs ofC2

n, as illustrated

in Fig. 5.
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Fig. 5. In the top row are the globally rigidC′

n graphs,n = 4, 5, 6, 7. The dotted edge connects a newly added noden to node

n − 2. Note thatC′

n is a spanning subgraph ofC2

n.

Starting fromK4, we label the nodes1 . . . 4 and add nodes sequentially. In then− 4th step, we

insert a noden by adding an edge(n, n − 2), and subdividing the edge(n − 1, 1) by replacing

it with (n − 1, n) and (n, 1). The resulting graphC ′
n is globally rigid. It is easy to see thatC ′

n

is a spanning subgraph ofC2
n for all n ≥ 4. Since adding edges to a globally rigid graph cannot

result in a non-globally rigid graph,C2
n is globally rigid. Hence, ifG is biconnected, the distance
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between all pairs of nodes is fixed inG2, andG2 is globally rigid.

For random geometric graphs, the preceding theorem means that Gn(2r) is globally rigid with

at least the probability thatGn(r) is 2-connected. This result is extended and related results for

3-space and trilateration graphs proven in recent work by Andersonet al. in [3]

For some largen and δ ∈ (0, 1), let ri denote the smallest radius at whichGn(r) becomes

i-connected with probability1 − δ and letrg denote the radius at which it becomes globally rigid

with probability 1 − δ. Note thatr2 ≤ r3 ≤ rg ≤ r6 and thatrg ≤ 2r2. This behavior is illustrated

in Fig. 6.
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Fig. 6. Probability thatGn(r) is k-connected. Dotted line represents the probability thatGn(r) is globally rigid.

C. Realization of Random Geometric Graphs

We now explore conditions forGn(r) to yield an efficient realization computation1.

Theorem 12:If limn→∞
nr2

log n
> 8, with high probability,Gn(r) is a trilateration graph.

Proof: Partition [0, 1]2 into cn
log n

square cells of equal size where8 log n/nr2 < c < 1. That

such ac exists is assured by the theorem hypothesis. Note that with high probability, every cell

1with respect to a particular algorithm

23



contains at least three nodes. This is because ifA is the area of a square, the probability it contains

no nodes, one node, or two nodes ise−nA, nAe−nA and (1/2)(nA)2e−nA. When A = logn/cn,

the sum of these three probabilities, call itq(n), goes to zero asn goes to infinity. In fact, it is

easily seen thatcn
log n

q(n) goes to zero asn goes to infinity, from which one can argue that every

cell contains at least three nodes with probability approaching 1 asn goes to infinity. Additionally,

sincer > 2
√

2
√

log n
n

, every node has edges between itself and all nodes in its own cell and those

adjacent cells sharing a corner or edge with its cell.

Starting from some cell we label as0, we iteratively label every cell in[0, 1]2. In step i ∈
{1, . . . ,

√

cn
log n

}, we label withi every unlabelled cell that adjoins a cell labelledi−1 horizontally,

vertically, or diagonally. We will refer to the union of all cells with the same labeli as alayer, Li.

We now iteratively label alln nodes in the grid such that each node has a unique label. In step

−1, we choose three nodes inL0 and label them1, 2, and3. In step0, we label the rest of the

nodes inL0 sequentially with numbers greater than3. In stepi, we label sequentially all nodes in

Li with numbers larger than every label inLi−1.

Every node inL0 with a label greater than three has edges to1, 2, and 3. By construction, a

node labelledm in Li, i > 0 has edges to at least three nodes inLi−1 with labels less thanm.

Thus we have a trilaterative ordering from Definition 3, andGn(r) is a trilateration graph.

An intuitive argument that perhaps yields more insight intothe previous result is the following.

In the limit of largen, assume that nodes1, 2, and3 can be considered to occur at a single point

p0. If every node inGn(r) is connected to three other nodes closer than itself top0, thenGn(r) has

a trilaterative ordering. Sincep0 can be in any direction from an arbitrary point, this is assured in

the event that every node has three neighbors in any120◦ sector of the circle with radiusr about

it, or at least nine neighbors. Denoting byrt the radius at whichGn(r) has probability1 − δ of

being a trilateration graph, we suspect thatrt approachesr9 from above in the limit of largen.

These results immediately yield insight into the complexity of realizingGn(r).

Theorem 13:For somer ∈ O(
√

log n
n

), if the positions of three nodes with edges to each other

are known, then with high probability, a realization ofGn(r) is computable in linear time.

Proof: By the proof of Theorem 12, the three nodes with known positions form the seed of a

spanning trilateration graphG with high probability. By Theorem 10, the positions of all nodes in

G can be computed in linear time. SinceGn(r) is spanned byG, it can be realized in linear time.
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D. Localization in Random Sensor Networks

We now study a simple localization protocol for random sensor networks we call ITP in Fig. 7.

Theorem 13 allows us to analyze the effectiveness of our procedure.

⊲ Sensors have two modes: localized and unlocalized

⊲ Sensors determine distance from heard transmitter

⊲ All sensors are pre-placed and plugged-in

Localized mode:

Broadcast position

Unlocalized mode:

Listen for broadcast

if broadcast from (x,y) heard

Determine distance to (x,y)

if three broadcasts heard

Determine position

Switch to localized mode

Fig. 7. The iterative trilateration protocol (ITP).

Definition 5: A random sensornetSn(r) is a sensornet ofn sensors with sensing radiusr placed

at random on[0, 1]2 by a two-dimensional Poisson point process. Abeaconis a sensor that knows

its position.

One could define a random sensornet in terms of a uniform distribution over[0, 1]2, but we do

not consider this case.

The following results are summarized in Table I.

Claim 3: For somer ∈ O(
√

log n
n

), with high probability, all sensors inSn(r) will have deter-

mined their positions with ITP byO(
√

n
log n

) time if three beacons are placed anywhere in[0, 1]2

so that they are in sensing range of each other.

Proof: We setr and partition[0, 1]2 into square cells as in the proof of Theorem 12. We will

now show that we can have an entire grid cell within range of the three beacons. Let the beacons
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lie at pointsP1, P2, andP3. We know thatd(Pi, Pj) ≤ r, for i 6= j. Consider the smallest circleC

enclosing the three beacons. Assume the center ofC is Pc.

Consider the case thatP1, P2, and P3 are all are onC. We can bound the radiusR of C as

follows. Consider the angles of the three sectorsP1PcP2, P2PcP3, andP3PcP1, all less than180◦.

For eachPiPcPj, to guarantee thatd(Pi, Pj) ≤ r, we have the constraint thatR ≤ r
2sin(PiPcPj/2)

.

The most restrictive of these contraints onR is the one corresponding to the largestPiPcPj, which

is at most180◦. Thus, we have thatR ≤ r/2. Now we draw a circleC ′ centered atPc with radius

(1− 1/2)r. Using the triangle inequality we have that the distance from Pi to any point insideC ′

is less than or equal to(1/2)r + (1 − 1/2)r = r.

The case that only two ofP1, P2, andP3 are onC is similar since we also have thatR ≤ r/2.

Thus we have a circular area ofΘ(r2) wholly within range of the three beacons. We offset the

grid partition such that an entire cell is within this area and thus localized in the first time-step.

We label this cell0 and proceed with labelling the remaining cells as in the proof of Theorem 12.

We say that a layer is localized when all sensors in that layerhave determined their positions.

Assuming ITP broadcast, distance calculation, and trilateration take place in constant time,L0 will

be localized in a single constant-time step because all nodes contained therein are connected to

the three beacons. Additionally, givenLi localized, ITP will localizeLi+1 in a single constant-time

step. Therefore, all layers will be localized in at mostO(
√

n
log n

) steps and our claim is established.

Claim 4: For somer ∈ O(
√

log n
n

), with high probability, all sensors inSn(r) can determine their

positions with ITP and will have done so by expected time ofO(
√

log n) if beacons are placed on

[0, 1]2 by a Poisson point process of intensityO(n/ log n).

Proof: We setr and partition[0, 1]2 into square cells of areaA as in the proof of Theorem 12.

The Poisson point process places beacons into each cell at a rateλ ∝ nA/ log n ∈ O(1). Therefore,

the probability that a cell contains at least three beacons is a constantp which is independent ofn.

The probability that all cells contain less than three beacons is qO(n/logn), whereq = 1 − p, so

some cell contains at least three beacons with high probability, and consequently, all sensors can

localize as in claim 3.

We now bound the expected time it takes for every sensor to localize given some cell contains

three beacons. We say a cell is localized if every sensor it contains has determined its position. In a

single constant-time step, ITP localizes a cell if it contains three beacons or if any of its neighbors
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are localized. Because of this, in what follows we will refer to discretized time rather than steps.

The probability that a particular cell does not localize by time k is the probability that all cells

within a square of cells with side2k+1 contain fewer than three beacons,q(2k+1)2. The probability

that the last cell to localize does so after a certain time is the same as the probability that at least

one of the cells localizes after that time. More formally, where ti is the time at which squarei

localizes, since the total number of cells isO( n
log n

), the following is true,

Pr[max(ti) > k] ∈ min(1, O(
n

log n
)qO(k2)).

Since the time to localize is a positive random variable, we can use the upper tail probabilities

to determine its expected value,

E[max(ti)] ∈
∞

∑

k=0

min(1, O(
n

log n
)qO(k2)).

Observing that for somek0 ∈ O(
√

log n − log log n),

O(
n

log n
)qO(k2) > 1 ⇐⇒ k < k0,

we see that

E[max(ti)] ∈ O(
√

log n) + O(
n

log n
)

∞
∑

k=k0

qO(k2).

In calculations we will not include here, it can be shown thatO( n
log n

)
∑∞

k=k0
qO(k2) ∈ O(1).

We have thus shown that with high probability, all sensors will localize in expected time of

O(
√

log n).

Claim 5: For somer ∈ O(
√

log n
n

), with high probability, all sensors inSn(r) can determine

their positions and will have determined their positions byO(1) time if beacons are placed on

[0, 1]2 by a Poisson point process of intensityO(n).

Proof: If r ∈ O(
√

log n
n

), the Poisson point process places beacons in the sensing region of a

sensor at rateλ ∝ nr2 ∝ log n. Since we expectO(log n) beacons connected to every sensor, with

high probability, we will haveO(1) i.e., at least three beacons connected to every sensor, and all

sensors will localize inO(1) time with high probability.
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beacons sensing radius E[tloc]

O(1) O(
√

log n

n
) O(

√

n

log n
)

O( n

log n
) O(

√

log n

n
) O(

√
log n)

O(n) O(
√

log n

n
) O(1)

TABLE I

LOCALIZATION IN VARIOUS BEACON PLACEMENT SCHEMES.

VII. S IMULATION STUDY OF LOCALIZATION IN RANDOM NETWORKS IN 3-SPACE

We simulate random geometric graphs in 3-space by generating points randomly in[0, 1]3, placing

four beacons in the center of the unit cube within sensing range of each other. We then simulate

ITP by localizing nodes in computational rounds in which we determine positions for all nodes

connected to four nodes with known position. We terminate the simulation when a round does

not determine the position of any node. Note that that while these simulations are in 3-space, the

theory of the previous section for 2-space is indicative of the 3-space results. In our first simulation,

for three values ofr, we track the percentage of nodes whose positions can be determined. We

observe in Fig. 8 an increasingly sharp phase transition in the percentage of localizable nodes as

we increasen.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.04  0.08  0.12  0.16  0.2  0.24

pe
rc

en
ta

ge
 lo

ca
liz

ab
le

 n
od

es

radius

n = 1000
n = 2000
n = 4000

Fig. 8. Percentage of nodes localizable with 4-beacon ITP.

In our second simulation, we calculate the smallest radius at which the percentage of localizable

nodes is greater than95%. We see in Fig. 9 behavior similar to the analytical results of the plane

in the preceding section. Note that the analytical asymptotic result more accurately models actual
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behavior asn increases. The difference for smalln is explained by the contribution of logarithmic

terms in the localization probability that becomes significant whenn is small.
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Fig. 9. Trilateration graph phase transition radius inGn(r).

Our last simulations investigate the number of computational rounds necessary to localize all

nodes that can be localized. In Fig. 10, we observe forn = 2000 that the percentage of localized

nodes at a given step increases dramatically with modest increases in sensing radius. Note that

below the phase transition, atr = 0.1, the procedure fails to localize practically any nodes and

completes in four steps. Forr straddling the phase transition, Fig. 11 plots the number ofsteps

before completion. The spike is due to a sudden increase in connectedness above the phase transition

at which the radius is minimal for total localizability.
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Fig. 10. Time-evolution of the number of localized nodes.

VIII. R ELATED WORK

Network localization is after four years of intense research very much still an active field. The

previous approaches can be classified into two types: coarse-grained [10], [11], [28], [42], [50], [57]
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Fig. 11. Required steps for algorithm completion.

and fine-grained [1], [7], [12], [18], [37], [44], [46], [47], [49], [52], [53], [56]. The focus of this

paper is fine-grained localization. As we discussed in the Introduction, the previous approaches were

mainly heuristics, and a theoretical foundation was lacking. Erenet al. addressed this problem in a

preliminary form in [20], providing the first theoretical analysis of network localization. Since that

work was originally published, the authors in [44] applied our conditions to produce a localization

algorithm based on trilateration graphs under noisy distance measurements which is effective in

relatively dense networks. Our conditions for unique localizability are also applied in [49] in an

algorithm which uses mobility to obtain distance measurements which result in globally rigid

constraint structures. The algorithm presented in [7] usessemidefinite programming and is effective

in relatively dense overconstrained networks. A techniquecalled multidimensional scaling (MDS),

which requires estimation of the complete distance matrix,is applied in [56], yielding good results

in dense networks. Distances between nodes need not necessarily be used in estimation of the

complete distance matrix, so this approach can be seen either as fine or coarse-grained localization.

The work on fine-grained localization which inspired our research into the fundamental theory

of the problem is [53]. The authors produced an innovative algorithm effective in practice for

sufficiently dense networks, but left open the issues of unique localizability and complexity and

did not necessarily localize all localizable nodes.

A related problem called molecular conformation has been studied in the chemistry community,

e.g., [2], [30], [45]. However, the focus of these studies is on 3-space. Also, since the structure of

a molecule is given, they do not consider the network construction process.

One major building block of our analysis is rigidity theory and computational geometry. Rigidity

has been long studied in mathematics and structural engineering (see for example [40], [60], [31],
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[51], [61]) and has a surprising number of applications in many areas.

We formally analyzed the performance of network localization in networks of randomly placed

nodes. Even though some researchers have studied random graphs in sensor networks,e.g., [16],

[17], [22], [39], the focus is mainly on routing but not on localization. Phase transitions for

connectivity in random geometric graphs are explored in [41], and motivated some of our research

on phase transitions for localizability in random sensor networks.

IX. CONCLUSION AND FUTURE WORK

The unique localization of networks from distance measurements shares a number of features

with work in several other active fields of study: rigidity and global rigidity in frameworks; the

coordination of formations of automonous agents; and geometric constraints in CAD. In this paper,

we have drawn on techniques and results from the first two fields, also combined in some previous

joint work [21], as well as specific results on global rigidity [13], [34]. With these concepts, we were

able to lay a coherent solid foundation for the underlying problem of when a network is uniquely

localizable, for almost all configurations of the points. Specifically, we constructed a formation

and then a graph for each network such that the localization problem for the network is uniquely

solvable, almost always, if and only if the corresponding graph is generically globally rigid. From

these connections, we drew specific results and showed that the trilateration networks are uniquely

localizable for almost all initial locations.

It should be noted that global rigidity is a graph property linked with the unique localizability

of an entire network. In work by Goldenberget al. in [26], it was observed that even in networks

with non-globally rigid grounded graphs, there may exist uniquely localizable nodes. A theoretical

investigation of this phenomenon ofglobally linked nodeswas later given by Jordanet al. in [35].

It also deserves note that as stated, the localization problem with precise distance is not in general

numerically well posed since even if it is solvable with the given data, it may be unsolvable with data

arbitrarily “close” to that which is given. In practical terms, this means that special attention must be

paid to the computation process and to assessing the significance of “approximate solutions.” It also

means that only graphs which are generically globally rigidare capable of having computationally

stable solutions for given data sets. This confirms our choice of conceptual framework for this

problem. However, we comment that even approximate solutions are hard to compute due to the

hardness of the localization problem.
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Specifically, we have shown that the localization problem isNP-hard in the worst case for sparse

graphs unless P=NP or RP=NP, if certain mild forms of approximation are permitted. This worst-

case result for sparse graphs stands in contrast to results that show that localization is possible

for dense graphs [7] or with high probability for random geometric graphs. The open questions

that remain are where the boundary lies between our negativeresult and these positive results. In

particular:

• Is there an efficient algorithm forapproximatelocalization in sparse graphs, either by permitting

moderate errors on distances or by permitting the algorithmto misplace some small fraction

of the sensors?

• Given that the difficulty of the problem appears to be strongly affected by the density of nodes

(and the resulting number of known distance pairs), what minimum density is necessary to

allow localization in the worst case?

• How are these results affected by more natural assumptions about communications ranges,

allowing different maximum distances between adjacent nodes or the possibility of placing

small numbers of high-range beacons?

• How does the dimension (e.g., in the plane or in 3-space) affect the problem?

Answers to any of these questions would be an important step toward producing practical

localization algorithms.

One potential direction to resolve the computational complexity issue is to introduce other

modalities. In particular, other work such as [47] approaches network localization with angles,

bearings and headings in addition to some distance constraints. Drawing on more general work on

geometric constraints such as angles and directions in CAD such as in [55], we have further generic

global uniqueness results that can give new insights where certain patterns of angles or headings

are used [21], as well as insights into the complexity of general patterns of angle constraints. This

will be explored further in a future paper.
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