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AbstratWe propose a simple game for modeling ontainment of the spread of viruses in agraph of n nodes. Eah node must hoose to either install anti-virus software at someknown ost C, or risk infetion and a loss L if a virus that starts at a random initialpoint in the graph an reah it without being stopped by some intermediate node.We prove many game theoreti properties of the model, inluding an easily appliedharaterization of Nash equilibria, ulminating in our showing that a entralizedsolution an give a muh better total ost than an equilibrium solution. Though itis NP-hard to ompute suh a soial optimum, we show that the problem an beredued to a previously unonsidered ombinatorial problem that we all the sum-of-squares partition problem. Using a greedy algorithm based on sparse uts,we show that this problem an be approximated to within a fator of O(log1:5 n).Key words: omputer virus model, eonomis of seurity, seurity externalities,prie of anarhy, sum-of-squares partitionPreprint submitted to JCSS 9 February 2006



1 IntrodutionConsider a system in whih n mahines, eah of whih may or may not beproteted against viruses, are onneted by a network in the form of a graph,and any virus that infets some mahine eventually infets all of its unpro-teted neighbors. If anti-virus software is available, a natural response wouldbe to protet all the mahines|but perhaps the anti-virus software itself re-ates osts, both in money and time to purhase and install the software and inredued eÆieny or usability of the proteted mahine. Suppose that protet-ing a mahine by installing anti-virus software osts the owner of the mahineC, but that having the mahine be infeted osts L, whih may or may notbe greater than C. If the virus spreads from some initial mahine hosenuniformly at random, on whih mahines does it make sense to install theanti-virus software?The answer will depend on whether we adopt the perspetive of the owner of asingle mahine or of the soiety as a whole. When the anti-virus software ostsmore than the loss from infetion, no eonomially rational mahine owner willinstall the anti-virus software, every mahine will be infeted, and the systemwill inur a soial ost of Ln. But for many graphs, seletive inoulation of? A preliminary version of this paper appeared in the proeedings of SixteenthAnnual ACM-SIAM Symposium on Disrete Algorithms, January, 2005.Email addresses: aspnes�s.yale.edu (James Aspnes), khang�s.yale.edu(Kevin Chang), aleksandr.yampolskiy�yale.edu (Aleksandr Yampolskiy).1 Supported in part by NSF grants CCR-0098078, CNS-0305258, and CNS-0435201.2 Supported by NSF grant CCR-0331548.3 Supported by NSF grants CCR-0098078, ANI-0207399, CNS-0305258, and CNS-0435201. 2



a few entral mahines an limit the spread of infetion to a small subset ofthe graph, greatly reduing the total ost of infetion in return for a smallinvestment in anti-virus software. We an ask how muh of an improvement aentralized solution an provide, and how easy it is to �nd a good entralizedsolution.After disussing some previous work on related problems (in Setion 2), we givea omplete haraterization of the Nash equilibria for an anti-virus softwareinstallation game in whih eah mahine's owner separately hooses whetheror not to install the software, without regard to the e�et on other mahines.(This game is de�ned in Setion 3.) We show (in Setion 4) that �nding eitherthe most or least expensive equilibrium is NP-hard, but that some Nashequilibrium an be omputed in O(n3) time and that any population of nodeswill quikly onverge to a Nash equilibrium by updating their strategies loallybased on the other nodes' strategies. Unfortunately, the ost of any suh Nashequilibrium may be badly suboptimal; the prie of anarhy for this gameis �(n) in the worst ase. This shows that for many graphs and values of Cand L, letting the users hoose individually whether or not to inoulate theirmahines will give bad results.We then onsider (in Setion 5) the possibility of a entralized solution inwhih a ditator omputes and enfores an optimal inoulation plan. We showthat essentially the same argument that shows that extreme Nash equilibriaare hard to �nd applies to the optimal solution as well. However, we showthat the problem of �nding an optimal inoulation plan redues to a graphpartition problem in whih we are asked to partition the graph by removingm nodes; the quality of the partition is measured by the sum of the squaresof the sizes of its omponents. We give (in Setion 6) a polynomial-time ap-3



proximation algorithm that removes O(log1:5 n)m nodes in order to ahieve apartition with quality within O(1) of the optimum. We omplement our al-gorithm with results on the hardness of approximation of the sum-of-squarespartition problem.Conlusions and open problems appear in Setion 7.2 Related workIn this setion, we desribe three lasses of work related to this paper: viruspropagation models, eonomi models of investment in seurity, and game-theoreti models of seurity. We then disuss some work on graph partitioningalgorithms that are related to the sum-of-squares partition problem we on-sider in Setion 6.2.1 Virus propagation modelsTraditional epidemiologial models haraterize the viral infetion in terms ofbirth rate and death rate of the virus [1,2℄. Usually, these models assume thatan infeted individual is equally likely to infet any other individual in the pop-ulation; in ontrast, omputer viruses usually spread via loalized interations.Kephart and White extended the traditional model by transferring it onto adireted random graph [3℄. Later work (e.g., [4{6℄) studied virus propagationover other kinds of graphs, inluding Internet-like power-law graphs [7{9℄. Wedo not restrit the network topology in any way and onsider a general undi-reted graph. Our model is in some ways loser to models in perolation theory(see [10℄): an infeted node infets all of its unproteted neighbors, spreading4



infetion throughout the graph until it is bloked by an anti-virus software.
2.2 Eonomi models of seurityOur work is motivated in part by an observation that seurity tehnologiesexhibit network externalities [11℄. Spei�ally, the bene�t obtained by usingseurity tehnology (anti-virus software in our ase) does not arue only to theuser of the seurity tehnology but rather to all users of the network. Aspnes etal. [12℄ also onsider anti-virus immunization, and proposed studying how toenourage highly onneted nodes to use anti-viral tehniques.We assume that osts of installation and infetion are known. Alternatively,one ould use risk analysis to estimate the osts and bene�ts from installinga seurity tehnology (see, for example, [13℄), or estimate values based onempirial studies of the osts of seurity breahes [14, 15℄.
2.3 Game-theoreti models of seurityAppliation of game theory to network seurity has yielded interesting re-sults [16{18℄. For example, Bell uses a simple game to study network reliabil-ity. In the game, the router tries to �nd a least ost path and a network testertries to maximize this ost by failing links [19℄. Kunreuther and Heal reentlyintrodued the notion of interdependent seurity (IDS) games, in whihdeisions to adopt seurity tehnology by one agent a�et other agents [20℄.Kearns and Ortiz subsequently extended their paper and gave an algorithmfor �nding approximate Nash equilibria in this model [21℄.5



Our work is similar to work on IDS games in ertain respets: eah agent inboth our game and an IDS game makes a deision whether or not to investmoney in a seurity tehnology, and this deision a�ets other agents. Themain di�erenes are that we assume that installing anti-virus software protetsagainst all bad e�ets of viruses, while the IDS work onentrates on negativeside-e�ets of seurity breahes even on proteted parties; and we assume arestrited network topology that ontains the spread of viruses, while the IDSwork assumes a omplete topology.

2.4 Graph partition problems
In Setion 6, we desribe and provide an approximate solution for a newgraph partitioning problem. Previous work on other forms of graph parti-tioning inludes the approximation algorithm of Leighton and Rao [22℄ forsparsest ut, from whih the same authors derive a pseudo-approximationalgorithm for b-balaned uts, where eah side of the ut must have sizebjV j or greater. Arora et al. [23℄ reently improved the approximation ratiosof these results. The ase of b = 1=2 is graph bisetion, for whih Feigeand Krauthgamer [24℄ give a good approximation algorithm. Even et al. [25℄give O(logn)-ratio pseudo-approximation algorithms for several balaned par-titioning problems, inluding the �-separator problem and the k-balanedpartitioning problem. 6



3 Our modelWe represent network topology by an undireted graph G = (V;E), whereV = f0; 1; : : : ; n � 1g is a set of network hosts and E � V � V is a set of(bidiretional) ommuniation links. Our basi model for installing anti-virussoftware is a one-round game with the following features:Players. Our game has n players orresponding to nodes of the graph. Ini-tially, all nodes are inseure and vulnerable to infetion.Strategies. We denote the strategy of i by ai. Eah node i has two pos-sible ations: do nothing and risk being infeted or inoulate itself byinstalling anti-virus software. Node i's strategy ai is the probability that itinoulates itself.Nodes' hoies an be summarized in a strategy pro�le ~a 2 [0; 1℄n. If aiis 0 or 1, we say that node i adopts a pure strategy; otherwise, its strategyis mixed. We all nodes that install anti-virus software seure and denotethe set of suh nodes by I~a. We assoiate an attak graph G~a = G � I~awith ~a. It is essentially the network graph with seure nodes and their edgesremoved (see also Figure 1). Note that both I~a and G~a are random variablesunless all strategies are pure.Attak model. After the nodes made their hoies, the adversary piks somenode uniformly at random as a starting point for infetion. Infetion thenpropagates through the network graph. Node i gets infeted if it has noanti-virus software installed and if any of its neighbors beome infeted.Individual osts. Suppose it osts C to install anti-virus software. If a nodeis infeted, it su�ers a loss equal to L. For simpliity, we assume that bothC and L are known and are the same for all nodes; we disuss possible7



onsequenes of removing these assumptions in Setion 7.The ost of a mixed strategy ~a 2 [0; 1℄n to node i isosti(~a) = aiC + (1� ai)L � pi(~a):Here pi(~a) is the probability of node i being infeted given the strategypro�le ~a, onditioned on the event that node i does not install the anti-virussoftware. It is equal to the probability that some vulnerable node reahablefrom i without passing through a seure node is the initial point of infetion.For pure strategies, this is just ki=n, where ki is the size of the onnetedomponent ontaining i in the attak graph G~a.
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GaFig. 1. Sample graph G and its attak graph G~a for ~a = 010100.
Soial ost. The total soial ost of a strategy pro�le is the sum of the in-dividual osts. For pure strategies, there is a simple haraterization of thetotal soial ost in terms of the attak graph G~a. Beause eah node in thesame omponent of G~a has the same hane of infetion, the ki nodes in thei-th omponent between them fae a loss of ki � (Lki=n) = (L=n)k2i . So thesoial ost is 8



ost(~a)= n�1Xj=0 ostj(~a)= n�1Xj=0 ajC + (1� aj)L � pj(~a)=CjI~aj+ Ln lXi=1 k2i ;where k1; k2; : : : k` are the sizes of the omponents in G~a.4 Nash equilibriaWe onsider �rst the hoies that the nodes will make in the absene of oor-dination, by examining the Nash equilibria of the game de�ned in Setion 3.The assumption that the nodes will reah a Nash equilibrium is a very strongone, as it requires assuming that the nodes are aware of eah other's hoiesto install or not and that the nodes an evaluate C (printed on the box forthe anti-virus software) and L (whih is more problemati). It also assumesthat the nodes an ompute a Nash equilibrium in a reasonable amount oftime, whih is not always possible for some games. However, we an show thatNash equilibria for our game are easily haraterized in terms of the sizes ofthe omponents of the attak graph (Setion 4.1), and that a population willonverge to some Nash equilibrium quikly even though �nding the best orworst pure equilibrium as measured by total ost is NP-hard (Setion 4.2).We an further imagine that some of the diÆulties of limited informationould be overome by onsidering an iterated game where nodes pay C to rentthe anti-virus software in eah round and update their strategies based onobservations of losses to viruses and the strategies of other nodes in previousrounds; though we do not analyze this multi-round game formally, a simpli�ed9



version is impliit in our onvergene result. We also show that the hardnessof �nding the worst-ase equilibrium does not prevent obtaining further in-formation about its behavior; for example, its total ost is nondereasing as afuntion of the inoulation ost C (Setion 4.3).Unfortunately, sel�sh behavior proves to be highly undesirable, beause theost of a Nash equilibrium solution may be very far from the soial optimum.In Setion 4.4, we prove that while the prie of anarhy, de�ned as the ratioof total ost between the worst Nash equilibrium and the soial optimumnever exeeds n, this bound is tight up to onstant fators for some graphsand hoies of C and L.
4.1 Charaterization of mixed and pure equilibriaA useful feature of the Nash equilibrium for our game is its simple hara-terization: there is always a omponent-size threshold t = Cn=L suh thateah node will install the anti-virus software if it would otherwise end up ina omponent of vulnerable nodes with expeted size greater than t, and willnot install the software if it would otherwise end up in a omponent with ex-peted size less than t. When the expeted omponent size equals t, the nodeis indi�erent between installing and not installing and may adopt a mixedstrategy. The threshold arises in a natural way: it is the break-even point atwhih the ost C of installing the software equals the expeted loss L(t=n) ofnot installing.We de�ne ~a[i=x℄ to be the strategy vetor that is idential to ~a, exept thei'th omponent ai is replaed by x. Note that attak graph G~a[i=0℄ is the attak10



graph in whih player i never installs the anti-virus software.Theorem 1 (Charaterization of mixed equilibria): Suppose S(i) is the ex-peted size of the inseure omponent that ontains node i of the attak graphG~a[i=0℄, (i.e. S(i) = npi(~a)).Fix C;L. Let the threshold be t = Cn=L. A strategy pro�le ~a is a Nash equi-librium if and only if(a) For all i suh that ai = 1, S(i) � t.(b) For all i suh that ai = 0, S(i) � t.() For all i suh that 0 < ai < 1, S(i) = t.
PROOF.Suppose ~a is a Nash equilibrium and onsider node i. The expeted ost tonode i is aiC + (1� ai)(L=n)S(i).(1) Suppose ai = 0. Then node i has expeted ost (L=n)S(i). If (L=n)S(i) >C, then i will want �nd the situation ai = 1 with ost C preferable. Thus,we must have S(i) � CL=n = t.(2) Suppose ai = 1. Then node i has expeted ost C. If (L=n)S(i) < C,then i would �nd the situation ai = 0 with expeted ost (L=n)S(i) < Cpreferable. Thus, we must have S(i) � CL=n = t.(3) Suppose 0 < ai < 1. If (L=n)S(i) > C, then i will �nd the situationai = 1 preferable. If (L=n)S(i) < C, then i will �nd the situation ai = 0preferable. Thus, we must have S(i) = CL=n = t.Thus, ~a satis�es ondition (a), (b), and () above.11



Conversely, suppose ~a satis�es onditions (a), (b) and () of the theorem.Consider node i.(1) Suppose ai = 0. Then node i will have expeted ost (L=n)S(i) < C,and thus will not want to swith to a di�erent ai that puts any weighton installing at ost C.(2) Suppose ai = 1. Then node i will have ost C, and thus will not want toswith to a di�erent ai that puts any weight on being inseure at expetedost (L=n)S(i) � C.(3) Suppose 0 < ai < 1. Then node i will have expeted ost aiC + (1 �ai)(L=n)S(i) = C. Swithing to any other strategy will have the sameexpeted ost.Thus, ~a is a Nash equilibrium. 2A speial ase of Theorem 1 is the following haraterization for pure Nashequilibria. Beause nodes in a pure Nash equilibrium do not make randomizedhoies, the attak graph is not a random objet, but a determined graph. Wehave the same threshold onditions as before, but the removal of randomnesssimpli�es the situation.Corollary 2 (Charaterization of pure equilibria) Fix C;L. Let the thresholdbe t = Cn=L. A strategy pro�le ~a is a pure Nash equilibrium if and only if(a) Every omponent in attak graph G~a has size at most t.(b) Inserting any seure node j 2 I~a and its edges into G~a yields a omponentof size at least t.For example, let C = 0:5 and L = 1, and onsider the graph in Figure 1. The12



threshold for this graph is t = Cn=L = 3. Then Corollary 2 tells us that purestrategy ~a = 010100 must be a Nash equilibrium for these C and L.4.2 Computing pure Nash equilibriaDesigning algorithms for �nding mixed Nash equilibria or proving hardnessresults for �nding optimized mixed equilibria would most likely involve esti-mating or otherwise manipulating the expeted value of the sizes of ompo-nents in the attak graph, whih is at the very least a non-trivial problem.Furthermore, in the absene of entral ontrol, nodes attempting to alulatetheir best strategy based on a mixed strategy paradigm would possibly runinto similar omputational issues.Thus, we turn our attention to the omputation and hardness of pure Nashequilibria. Corollary 2 gives us a powerful tool with whih to reason aboutpure Nash equilibria. We now show that omputing the best or worst pureNash equilibria is hard, but that �nding some intermediate Nash equilibriumis easy. A onsequene of this algorithm is that the existene of a pure Nashequilibrium is always guaranteed. (The existene of a mixed Nash equilibriumis a onsequene of Nash's theorem.)Theorem 3 Both omputing the pure Nash equilibrium with lowest ost andomputing the pure Nash equilibrium with highest ost are NP-hard problems.
PROOF. We redue vertex over to the deision problem \Does thereexist a pure Nash equilibrium with ost less than ?" and we redue inde-pendent dominating set to \Does there exist a pure Nash equilibrium13



with ost greater than ?"Fix some graph G = (V;E), and set C=L = 1:5=n so that t = Cn=L =1:5, where t is the omponent size threshold from Corollary 2. Then fromCorollary 2, in any Nash equilibrium the omponents of the attak graph allhave size at most 1, and any seure node is adjaent to some inseure node(as otherwise it ould uninstall its software and be in a omponent of size atmost 1). It follows that in a Nash equilibrium (a) every vulnerable node iseither isolated or has all neighbors seure, and (b) every seure node has aninseure neighbor.We now argue that G has a vertex over of size k if and only if the inoulationgame on G with the above settings of C and L has a Nash equilibrium withk or fewer seure nodes, or equivalently an equilibrium with soial ost Ck +(n�k)L=n or less, as eah inseure node must be in a omponent of size 1 andontribute exatly L=n expeted ost. Given a minimal vertex over V 0 � V ,observe that installing the software on all nodes in V 0 satis�es ondition (a)beause V 0 is a vertex over, and (b) beause V 0 is minimal. Conversely, ifV 0 is the set of seure nodes in a Nash equilibrium, then V 0 is a vertex overby ondition (a). This onludes the proof that �nding a minimum-ost Nashequilibrium is NP-hard.For a maximum ost equilibrium, onsider the set of inseure verties. Theseonsist of isolated nodes (whih are already in omponents of size 1) andnodes that do not install the software beause all their neighbors do. Givenan independent dominating set V 0 � V , installing the software on all nodesexept the nodes in V 0 satis�es ondition (a) beause V 0 is independent and (b)beause V 0 is a dominating set. Conversely, the inseure nodes in any Nash14



equilibrium are independent by ondition (a) and dominating by ondition(b). This shows that G has an independent dominating set of size k if andonly if it has a Nash equilibrium with no more than k inseure nodes, whihours only if it has a Nash equilibrium with at least n � k seure nodes or,equivalently, a ost of at least C(n� k) + (L=n)(k). 2Theorem 3 says that �nding extreme pure equilibria is hard. But what ifwe just want to onverge to some equilibrium, but we don't are whih one?Suppose we implement the proess of onvergene implied by the Nash equilib-rium: at eah step, exatly one partiipant, whose urrent strategy is subopti-mal given the others' strategies, swithes (if there are several suh partiipants,we break ties randomly). This is an easy proess to implement beause eahpartiipant an detet if its strategy is suboptimal using the t = Cn=L om-ponent size threshold from Corollary 2. 4 But does this proess onverge to aNash equilibrium? If it does, how long does it take?By hoosing an appropriate potential funtion, we an show that this proessdoes indeed onverge to a Nash equilibrium quikly:Theorem 4 Starting from any pure strategy pro�le ~a, if at eah step somepartiipant with a suboptimal strategy swithes its strategy, the system on-verges to a pure Nash equilibrium in no more than 2n steps.PROOF. Let t = Cn=L. For any strategy pro�le ~a, onsider the set Sbig(~a)4 We must assume in this implementation either that the hoie to install softwareor not is reversible, or that eah player an observe the other players' intendedations and respond aordingly. 15



of \big" omponents of G~a of size greater than t and the set Ssmall(~a) of \small"omponents of G~a of size less than or equal to t. De�ne a potential funtion� by �(~a) = XA2Sbig(~a) jAj � XA2Ssmall(~a) jAj:It is easy to see that �n � �(~a) � n for any ~a. We will now show that eahstep of the proess redues � by at least one. There are two main ases:(1) Some node i swithes from inseure to seure. In this ase i was previouslyan element of a omponent in Sbig of size m > t. This former omponentbeomes one or more new omponents with total size m� 1; if all of theresulting omponents are big, � is redued by exatly one; otherwise, �is redued by more than one as some omponents move from the positiveto the negative side of the ledger.(2) Some node i swithes from seure to inseure. In this ase the resultingomponent ontaining i has m � t elements, and it replaes one or moreold omponents with total size m � 1. As both the new omponent andthe old omponents are small, the net e�et on � is to derease it by one.If eah step redues � by one, the number of steps must be less than thedi�erene between the initial and �nal value of �, whih is at most n�(�n) =2n. 2
As a speial ase, we an start with ~a = 1n and onverge to an equilibrium fromabove by heking eah node one. Eah suh test requires omputing the sizeof the omponent in the attak graph, whih takes time O(jV j+ jEj) = O(n2)using depth-�rst searh; this gives: 16



Corollary 5 A Nash equilibrium an be omputed in time O(n3).It is not hard to see that the 2n in Theorem 4 is lose to the best possiblebound, although a more areful analysis might redue it slightly. A lowerbound of n steps is trivial: in a system with C < L=n and no players seurein the initial strategy pro�le, it takes n steps for all players to install theanti-virus software. To get loser to 2n, onsider a line with t = pn� 12 . Nowonsider an exeution of the proess where initially players 1 through n�pn,in inreasing order, install to esape the single overlarge omponent; but thenall players not at positions kpn for some k uninstall; this takes 2n � 2pnsteps.We also have:Corollary 6 A pure Nash equilibrium always exists.4.3 Consequenes of hanges in the inoulation ostThough Theorem 3 suggests that we annot hope to haraterize the worstpure Nash equilibrium exatly, we an give a desription of how it reats tohanges in the inoulation ost C.Theorem 7 The ost of the worst pure Nash equilibrium is a non-dereasingfuntion of C when C ranges over [2L=n; L).PROOF. Fix some prie of anti-virus software, C � 2L=n so that bCn=L �2. We shall use ost(~a;C) to denote the ost of strategy pro�le ~a when theprie is C. 17



Suppose we inrease the prie from C to C 0 = C + � (� > 0). We denotethe worst-ost Nash equilibrium when the prie is C by ~a and the worst-ostequilibrium when the prie is C 0 by ~b.If the prie inrement is � � L=n, then the threshold (in Theorem 1) inreasesby at most one; that is, bC 0n=L � bCn=L+ 1. We onsider two ases:Case 1: ~a is a Nash equilibrium for C 0. This ase is easy. Beause ~b is aworst-ost Nash equilibrium for C 0, we have:ost(~a;C) < ost(~a;C 0) � ost(~b;C 0):Case 2: ~a is not a Nash equilibrium for C 0. This an happen only if bC 0n=L =bCn=L+1: Spei�ally, there must exist a node w 2 I~a suh that adding itinto attak graph G~a yields a omponent of size bCn=L but not bC 0n=L.Let us denote the sizes of omponents adjaent to w in G by k1; : : : ; ks. 5We then have: Psi=1 ki = bCn=L � 1.We de�ne a new strategy ~a0 = ~a[w=0℄, whih is the same as ~a exept weno longer install anti-virus software on node w. Moreover,ost(~a0;C 0)� ost(~a;C)= Ln bCn=L2 �  C + Ln sXi=1 k2i!� Ln 0�bCn=L2 �  sXi=1 ki!21A� C= Ln �bCn=L2 � (bCn=L � 1)2�� C: (1)Equation (1) is non-negative whenever2 bCn=L � 1 � Cn=L;whih always holds by assumption for all C � 2L=n.5 We say that a omponent K � V is adjaent to node w if 9v 2 K s.t. (v; w) 2 E.18



We repeat this proess until there do not exist any nodes violating Nashequilibrium ondition. At eah step, the ost of our new strategy does notderease. Therefore, if at the end we get a Nash equilibrium ~d, thenost(~a;C) � ost(~a;C 0) � ost(~d;C 0) � ost(~b;C 0):Beause we hose C arbitrarily, our argument holds for all values of �.24.4 Prie of anarhy
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...Fig. 2. Star graph G = K1;n used in the proof of the lower bound.The notion of the prie of anarhy was introdued by Koutsoupias andPapadimitriou in [26℄. It is de�ned as the worst-ase ratio between the ost ofa Nash equilibrium and the ost of the optimal solution, and is thus a measureof how far away a Nash equilibrium an be from the soial optimum. 6 Whenthe network graph is G and the osts are C;L, we use �(G;C; L) to denotethe prie of anarhy.We show that, in our game, the prie of anarhy is quite high, �(n). This isa onsequene of two simple lemmas:6 Beause our game has a random omponent, the ost is an expeted ost.19



Lemma 8 (Lower bound). Let G be the star graph K1;n (see Figure 2). Letthe prie of the anti-virus software be C = L(n� 1)=n. Then�(G;C; L) = n=2:
PROOF. The given C and L satisfy t = Cn=L = n � 1. From Corollary 2,it follows that installing anti-virus software on exatly one node is a Nashequilibrium. If pure Nash strategy ~a installs anti-virus software on some nodethat is not the enter node, the ost will be C + L(n� 1)2=n = L(n� 1).An optimal strategy for the star with the given C and L is ~a� = (1; 0; : : : ; 0)(i.e., only the enter node installs anti-virus software.) Its ost is C + L(n �1)=n = 2L(n� 1)=n.The prie of anarhy is thereforeL(n� 1)2L(n� 1)=n = n2 :2Lemma 9 (Upper bound). Fix any graph G and osts C;L. Then�(G;C; L) � n:
PROOF. Let ~a� denote the optimum solution.If C > L, no node in a Nash equilibrium will install anti-virus software. Hene,there is only one Nash equilibrium ~a = 0n, whose ost is Ln. If the optimumsolution ontains at least one seure node, then ost(~a�) � C > L. (Otherwise,20



~a� = 0n and �(G;C; L) = 1.) We thus have:�(G;C; L) � LnL = n:If C � L, then the expeted ost of the worst Nash equilibrium ~a is at mostCn, beause the expeted ost to eah node is at most C (if the expetedost to a node is greater than C, then it will want to swith to installing thesoftware with probability 1.) If the optimum solution ontains at least oneseure node, then ost(~a�) � C. Otherwise, the optimum solution ontains noseure nodes and hene ost(~a�) � L � C.
�(G;C; L) � CnC = n:2

5 OptimizationAllowing users to sel�shly hoose whether or not to install anti-virus softwaremay be grossly ineÆient, relative to the soial optimum. An alternative ap-proah to this problem is for a benevolent ditator to attempt to maximizesoial welfare by entrally omputing a solution and imposing it on all nodes.DiÆulties with this approah arise from the hardness of omputing the op-timum solution to the inoulation problem. In the �rst two setions, we givea haraterization of the optimum solution and use it to show that the ino-ulation problem is NP-hard.This suggests omputing an approximate solution. We an �nd in polynomial21



time a solution with approximation ratio at most O(log1:5 n); suh a solu-tion is substantially better than the �(n) ratio derived from the worst Nashequilibrium.
5.1 CharaterizationWe have a graph-theoreti haraterization of optimum strategies, similar toour haraterization of Nash equilibria in Theorem 1:Theorem 10 Fix C;L and let t = Cn=L. If ~a is an optimum strategy, thenevery omponent in attak graph G~a has size at most max(1; (t+ 1)=2).
PROOF. Strategy ~a partitions G into disjoint omponents. Pik some om-ponent K � V from the attak graph, where k = jKj is at least two. (If wean't �nd a omponent with at least two nodes, then all omponents in theattak graph have size one, and the theorem follows.)If we install the anti-virus software on some node of K, we may get m newomponents in G~a, where 0 � m � k � 1. Let us denote the sizes of thesenew omponents by k1; : : : ; km, where Pmi=1 ki = k � 1. Beause ~a is alreadyan optimal strategy, installing the anti-virus software on an extra node annotimprove the total ost. Therefore, we have:C + Ln  mXi=1 k2i! � Lk2n, k2 �  mXi=1 k2i! � t: (2)22



If m = 0, then Equation (2) beomes:k � pt � (t+ 1)=2:Meanwhile, for m > 0,k2 �  mXi=1 k2i!� k2 �  mXi=1 ki!2= k2 � (k � 1)2=2k � 1: (3)Combining Equations (2) and (3), we get:k � (t+ 1)=2:2Unfortunately, the optimal solution is hard to ompute.Theorem 11 It is NP-hard to ompute an optimal strategy.PROOF. The proof is by redution from vertex over and is similar tothe proof of Theorem 3. 25.2 Redution to sum-of-squares partitionBeause it is unlikely that we an �nd an optimal solution, we naturally on-sider approximation algorithms.The optimization problem that de�nes the inoulation problem an be posedas follows: hoose the set of seure nodes I~a that minimizes the following23



objetive funtion: CjI~aj+ Ln XV 2�(I~a) jV j2;where �(I~a) is the set of onneted omponents reated by the removal ofnodes in I~a.For the purposes of our approximation algorithm for the inoulation problem,we assume that we an guess m = jI~aj, the number of seure nodes in anoptimum on�guration. This assumption is without loss of generality, beausewe an run our algorithm on all possible hoies of m = 1; : : : n and take thebest solution.Thus, a solution to the inoulation problem is redued to �nding a solution tothe problem of removing m nodes from a given graph to minimize the sum ofthe squares of the sizes of the surviving omponents. We disuss this problemin Setion 6.
6 Sum-of-squares partitionsIn Setion 5.2, we enountered the following problem, whih we now analyzein more detail.Sum-of-Squares Partition Problem: Given a graph G = (V;E), re-move a set F � V of at most m nodes in order to partition the graph intodisonneted omponents H1; : : : ; Hl, suh that Pi jHij2 is minimized.Although we have arrived at this ombinatorial optimization problem throughour study of the network seurity problem, it may be of independent interest.24



Note that it is NP-hard by redution from the inoulation problem. The edgeut version of the sum-of-squares-partition problem is similar, but asks for theremoval of m edges, rather than nodes, to disonnet the graph.We all an algorithm for the sum-of-squares partition problem an (�; �)-biriterion approximation algorithm, for �; � � 1, if it outputs a node utonsisting of at most �m nodes that partitions the graph into onneted om-ponents fHig suh thatP jHij2 � ��OPT, where OPT is the objetive funtionvalue of the optimum solution that removes at most m nodes.In Setion 6.1, we present an algorithm for this problem and in Setion 6.2 weprove omplementary lower bounds. Our main result is:Theorem 12 There exists a polynomial time �O(log1:5 n); O(1)�-biriterionapproximation algorithm for the sum-of-squares partition problem.An immediate onsequene of Theorem 12 is the existene of an approximationalgorithm for the inoulation problem:Corollary 13 If OPTNS is the ost of the optimum solution for the inoulationproblem, there exists a polynomial-time approximation algorithm that �nds asolution with ost at most O(log1:5 n) �OPTNS.PROOF. Suppose an optimum solution ontains m seure nodes, and thesizes of the inseure node omponents are k1; : : : ; kp, so that OPTNS = Cm+L=nPi k2i . Using our approximation algorithm for the sum-of-squares partitionproblem, we an �nd a set of O(log1:5 n)m seure nodes suh that the sum ofthe squares of the orresponding inseure omponents is at most O(1)Pi k2i .Thus, the ost of the approximate solution is:25



O(log1:5 n) � Cm +O(1) � Ln Xi k2i �O(log1:5 n) � Cm+O(log1:5 n) � Ln Xi k2i=O(log1:5 n) �OPTNS:26.1 Proof of Theorem 12Our proof of Theorem 12 is based on the algorithm PartitionGraph givenin Figure 3. It uses known approximation algorithms for sparse uts, whihusually solve edge ut problems. For our purposes, uts that involve remov-ing nodes in order to disonnet the graph are more relevant. Fortunately,the O(plogn) approximation algorithm of Arora, Rao, and Vazirani [23℄ for�nding sparse uts in graphs with uniform demands an be easily extended tonode uts; there is a well-known proedure for reduing a node ut algorithmin an undireted graph to an edge ut algorithm in a direted graph. 7 SineAgarwal et al. [27℄ extended the algorithm from [23℄ to �nd sparse edge uts indireted graphs, these results an be extended to node uts. The following the-orem is impliit in the disussion of balaned node uts in Leighton and Rao'spaper [22℄ on multiommodity ows and sparse uts, with the approximationratio updated to reet the improved algorithms:Theorem 14 There exists an O(plogn)-approximation algorithm for the fol-lowing problem: Given graph G, �nd a node ut that partitions the nodes of G7 The redution is as follows: Given graph G for whih we want a node ut, formdireted graph G� with vertex set V � = fvjv 2 V g [ fv0jv 2 V g and edge set E� =f(v; v0)jv 2 V g[f(v0; v)jv 2 V g[f(v0; u)j(u; v) 2 Eg[f(u0; v)j(u; v) 2 Eg. The ostsof the f(v; v0)jv 2 V g edges are 1, and all other edges have ost in�nity.26



into three sets: two sets de�ning disonneted subgraphs with node sets V1 andV2, and a set of removed nodes R, suh that the quantity�jV1j+ jRj2 � �jV2j+ jRj2 �jRj (4)
is maximized.We refer to the quantity in expression (4) as the sparsity of the ut. Inthe literature, sparsity is usually de�ned as the inverse of expression (4), and�nding the sparsest ut is a minimization problem. We have presented it as amaximization problem, sine this is more natural for our appliation.Our algorithm for solving the sum-of-squares partition problem, Partition-Graph (see Figure 3), ahieves the approximation results laimed in Theo-rem 12. The general approah of the algorithm is similar to the greedy logn-approximation algorithm for set over. A high-level desription is that we re-peatedly remove the node ut that gives us the best per-removed-node-bene�t,quanti�ed as its ost-e�etiveness.Suppose we have a onneted subgraph H with k nodes. If node ut R reatesonneted omponents with node sets V1 and V2, this ut has dereased theobjetive funtion value (P size of onneted omponent2) by k2�jV1j2�jV2j2.We thus de�ne the ost-e�etiveness of node ut R by (k2�jV1j2�jV2j2)=jRj.The ost-e�etiveness of R is equal to27



k2 � jV1j2 � jV2j2jRj = (jV1j+ jV2j+ jRj)2 � jV1j2 � jV2j2jRj= jRj2 + 2jV1jjV2j+ 2jRj(jV1j+ jV2j)jRj= 2jV1jjV2jjRj + jRj+ 2(k � jRj)= 2jV1jjV2jjRj + 2k � jRj:We then have the following relationship between �nding sparse uts and ost-e�etive uts.Lemma 15 Let H be a graph with k nodes. If �� is the maximum ost-e�etiveness of all node uts of H, the Arora-Rao-Vazirani sparse ut algo-rithm will �nd a ut with ost-e�etiveness at least ��=(plog k), for someonstant .PROOF. The sparsity of a node ut that removes node set R and partitionsthe remaining nodes of H into onneted omponents with node sets V1 andV2 is given by:�jV1j+ jRj2 � �jV2j+ jRj2 �jRj = jV1jjV2j+ jRj24 + jRj2 (jV1j+ jV2j)jRj= jV1jjV2jjRj + jRj4 + 12(k � jRj)= jV1jjV2jjRj + k2 � jRj4 :We then have the following relations between the ost-e�etiveness of a ut,�, and its sparsity, �.� = jV1jjV2jjRj + k2 � jRj4 = �2 � k2 + jRj4 � �4 :28



and � > 2�:Thus, we know there exists a node ut with sparsity at least ��=4 (i.e. the utwith the highest ost-e�etiveness). The sparse ut algorithm on H will �nd anode ut with sparsity at least ��=(plog k), for some onstant . This nodeut will have ost-e�etiveness at least 2��=(plog k). 2Input: A Graph G and an integer m > 0.Initialize: G1  G. F  ;. ` 0.(1) Use a sparse ut algorithm to �nd an approximate most ost-e�etiveut in eah onneted omponent of G`.(2) Let H1; : : : ; Hk be the omponents of G` in whih the sparse ut algo-rithm found a ut that removes at most (20plogn)m nodes, where is the onstant from Lemma 15. If no suh omponent exists, then haltand output the partition of G that results from removing all nodes inset F .(3) Otherwise, hoose the omponent Hj from among those onsidered inStep 2 for whih the ost-e�etiveness is highest. Let R be the ut thatpartitions Hj into disonneted omponents V1 and V2 suh that Hj =V1 [ V2 [R.(4) Set F  F [R and let G`+1 be the residual graph indued by removingR from G`. If jF j > (36 log1:5 n)m, then halt and output the partitionof G that results from removing all nodes in set F .(5) Otherwise, set ` `+ 1 and repeat.Fig. 3. Algorithm PartitionGraphWe now give some lemmas that haraterize the behavior of the Partition-Graph algorithm. 29



Lemma 16 PartitionGraph outputs a node ut with at most O(log1:5 n)mremoved nodes.PROOF. Sine the algorithm halts as soon as we augment the set of markednodes suh that jF j > (36 log1:5 n)m, we know that at the beginning of eahiteration, F ontains at most (36 log1:5 n)m marked nodes. Sine we add atmost (20plogn)m marked nodes in the �nal iteration, the total number ofmarked nodes is at most O(log1:5 n)m. 2Fix an optimum solution for the sum-of-squares partition problem and let F �be the optimum set ofm removed nodes. In the next few proofs, we will denotethe order of graph G (i.e. the number of nodes) by jGj = jV (G)j. We will alsodenote an \intersetion" of a graph G and a node set V by G \ V , whih isthe set of nodes that G and V share.Lemma 17 Suppose after a number of iterations, the graph G` onsists of konneted omponents H1; : : : ; Hk, and let S = P jHij2.Either S � 72 �OPT or there exists a omponent Hi suh that the Arora-Rao-Vazirani algorithm will �nd a node ut in Hi with at most �20plogn�m re-moved nodes and ost-e�etiveness at least S=(18mplogn) (or possibly both).PROOF. Assume that S > 72 � OPT. Note that the node ut de�ned bythe set F � \G` divides G` into a graph with objetive funtion value at mostOPT. This node ut thus indues a ost derease of at least S � S=72 > S=2.De�ne F �i = F � \ Hi and mi = jF �i j. Also, let the subgraph indued byremoving verties in F �i \Hi from Hi be omposed of onneted omponents30



Hji for j = 1; : : : ; ri (i.e, the optimum set of marked nodes partitions Hi intothese omponents). Note that PiPj jHji j2 � OPT.Sine the total redution in our objetive funtion value from removing [iF �ifrom G` is at least S=2 due to our assumption that S > 2 �OPT, we have:Xi 0�jHij2 �Xj jHji j21A � S2 ; (5)beause the outer summand on the left hand side of the inequality is theamount the objetive funtion is redued in eah omponent.Let I be the set of indies i for whih �jHij2 �Prij=1 jHji j2� =mi � S=(4m) (i.e.the per-node-bene�t is at least S=(4m)).We have two ases. We show that the �rst ase is onsistent with the statementof the lemma, whereas the seond ase is impossible.(1) There exists an i 2 I suh that for all j = 1; : : : ; ri, jHji j � 1=3jHij. We as-sume that mi < jHij=50, beause otherwise removing all nodes in Hi willgive us a trivial node ut with ost-e�etiveness at least jHij2=(50mi) >S=(18mplogn) for suÆiently large n. With this assumption, we knowthat there exists a set R � F �i that de�nes a node ut of Hji that re-ates two onneted omponents, V1 and V2, suh that 1=3jHij � jV1j and1=3jHij � jV2j. The ost-e�etiveness of this ut will be2 jV1jjV2jjRj + 2jHij � jRj � 2jHij29mi � 2 �jHij2 �Prij=1 jHji j2�9mi � S18m:Lemma 15 guarantees that the sparse ut algorithm will �nd a ut in Hiwith ost-e�etiveness at least S=(18mplogn). The node ut output bythe algorithm annot ontain more than 20mplogn nodes. Suh a nodeut would have ost-e�etiveness at most S=(20mplogn), sine any ut31



in G` an derease the objetive funtion value by at most S, whih isless than the guaranteed ost-e�etiveness of S=(18mplogn).(2) For eah i 2 I, there exists a j� suh that jHj�i j > 1=3jHij. Also, note thatOPT > Pi2I jHj�i j2. We prove, by ontradition, that this ase annotour. Thus, assume the ase does our.Claim: Pi2I �jHij2 �Pj jHji j2� � S=8.Proof of laim: Let I be the set of intervals suh that �jHij2 �Prij=1 jHji j2� =mi �S=(4m). Realling equation (5), we haveS=2 �Xi2I 0�jHij2 �Xj jHji j21A+Xi2I 0�jHij2 �Xj jHji j21A :Also, we haveXi2I 0�jHij2 �Xj jHji j21A=Xi2I mi�jHij2 �Pj jHji j2�mi�Xi2I mi S4m� S4mXi2I mi � S4 :Combining these two inequalities proves the laim. We have the inequal-ities: OPT >Xi2I jHj�i j2 �Xi2I 19 jHij2 � 19 � S8 ;where we used our laim for the last inequality. Thus, OPT � S=72. Thisis a ontradition to the assumption we made at the �rst line of the proof.2We now present the proof of Theorem 12.Let aj be the number of onneted omponents that omprise the graph Gjat the beginning of the jth iteration, and let those onneted omponents be32



Hj1 ; : : : ; Hjaj . Let Sj = Paji=1 jHji j2 be the value of the objetive funtion atthe beginning of the j'th iteration; thus S0 � n2 is its initial value. Let l bethe number of iterations the algorithm needs to terminate, and Sl+1 be theobjetive funtion's �nal value.We wish to show that after the algorithm terminates, we have redued theobjetive funtion value to Sl+1 = O(1) � OPT. Let F be the �nal set ofmarked nodes removed from G. If the algorithm terminates at Step 2 of thel'th iteration beause the sparse ut algorithm only found node uts withmore than (20plogn)m removed nodes, then from Lemma 17 we know thatSl+1 � 72�OPT. Thus, we assume this does not our. Furthermore, we assumethat Sl+1 � 72 �OPT (in order to apply the \either" part of Lemma 17 to alliterations).In order to reason about the derease in the objetive funtion value after eahiteration, we impute to eah node in F a per-node-derease in the objetivefuntion value, given by the ost-e�etiveness of its node ut. We then showthat the total imputed derease will derease the objetive funtion by a fatorof O(1)=n2, from whih the theorem will follow.More formally, suppose the set of marked nodes is given by the sequeneF = ff1; : : : ; fkg, where the nodes are in the order in whih they were removedfrom the graph: nodes removed at an earlier iteration our earlier in thesequene. From Lemma 16, we know that k = jF j = �(log1:5 n)m.Let bj be the iteration in whih fj was removed. We impute to fj the valueÆj = ost-e�etiveness of ut removed in iteration bj. From Lemma 17, weknow that Æj � Sbj=(18mplogn). 33



Set T0 = S0 and Ti = Ti�1 � Æi to be the value of the objetive funtionafter node fi's per-node-derease ontribution has been aounted for. NoteTk = Sl+1.Claim: For all i, Ti � Ti�1 � Ti�1=(18mplogn)Proof of laim: Proving the laim redues to proving that Æi = Ti�1 � Ti �Ti�1=(18mplogn). Fix an i. We have two ases.(1) bi = bi�1 (i.e. fi and fi�1 were removed in the same iteration). ThenÆi � Sbi=(18mplogn), but Sbi > Ti, sine Sbi is the objetive funtionvalue at the beginning of iteration bi, whereas Ti is the objetive funtionvalue \during" iteration bi.(2) bi = bi�1+1 (i.e. fi was removed in the iteration after fi�1 was removed).Then Æi � Sbi=(18mplogn) = Ti=(18mplogn), sine in this ase Ti isthe objetive funtion value at the start of iteration bi.This proves the laim.We therefore have Tk � T0(1�1=(18mplogn))k � n2(1�1=(18mplogn))k.Sine k > 36m log1:5 n, it follows that Sl+1 = Tk = O(1) � O(1) � OPT,onluding the proof of Theorem 12.The algorithm given above an be adapted in a straightforward way to yieldan algorithm for the edge ut version of the sum-of-squares partition problem(instead of taking sparse node uts, take sparse edge uts), from whih ananalog to Theorem 12 may be derived. The above analysis of the node utalgorithm is more ompliated than the orresponding analysis of the edgeut algorithm, sine node uts modify the node set, ausing many diÆulties.34



6.2 Hardness of ApproximationIn this setion, we prove that it is hard to ahieve a biriterion approximationof (�; 1), for some onstant � > 1, by redution from vertex over. Hastad [28℄proved that it is NP-hard to approximate vertex over to within a onstantfator of 8=7 � �, for any � > 0. We show that if we have a graph G with avertex over of size m, then a (15=14� �; 1) algorithm for the sum-of-squarespartition problem an be used to �nd a vertex over in G of size at most(8=7� 2�)m.Theorem 18 It is NP-hard under Cook redution to approximate the sum-of-squares partition problem to within a biriterion fator (15=14 � �; 1), forany � > 0.PROOF. Suppose graph G = (V;E), jV j = n, ontains a vertex over Consisting of m nodes. Removing the m nodes of C and their inident edgeswill remove all edges from the graph. This will partition the graph into n�mdisonneted omponents onsisting of 1 node eah.If we onsider C as a solution to the sum-of-squares partition problem forremoving m nodes, the solution will have an objetive funtion value of n �m. Thus, an (�; 1) approximation algorithm for sum-of-squares partition willremove a set R � V of nodes, suh that jRj � �m, in order to ahieve anobjetive funtion of at most n�m. Let V 0 = V nR be the remaining nodes,and fHig be the onneted omponents in the residual graph.Let S be the nodes of V 0 that are ontained in onneted omponents of sizegreater than 1 in the residual graph. It follows that R [ S is a vertex over of35



G. We seek to bound the ardinality of R [ S.We �rst observe that the number of nodes that are ontained in onnetedomponents of size 1 is jV 0 nSj = n�jRj� jSj. Using the fat that if jHij � 2,then jHij2 � 2jHij, we note thatn�m�Xi jHij2� Xi:jHij=1 jHij2 + Xi:jHij�2 jHij2�n� jRj � jSj+ 2jSj�n� jRj+ jSj:This implies that jSj � jRj � m � �m � m, whih implies that jR [ Sj �(2�� 1)m.Thus, a (15=14� �; 1)-biriterion approximation algorithm for sum-of-squarespartition will �nd a vertex over of size (8=7 � 2�)m in G. If OPTVC is theardinality of the optimum vertex over, then we an searh for an approxi-mately minimum vertex over by running the algorithm desribed above forall m = 1; : : : ; n and outputting the best vertex over, whih will have size atmost (8=7� 2�) �OPTVC. 2As mentioned before, sum-of-squares partition is intimately related to theproblems of sparsest ut, balaned ut, and �-separator, all with uniformdemands (i.e. the nodes all have weight 1). Presently, there are no knownhardness of approximation results for any of these problem; we speulate thattehniques for proving hardness of approximation for both � and � would yieldhardness of approximation for some of these fundamental ut problems, whihhave proved elusive thus far. We note that Chawla et al. [29℄ and Khot andVishnoi [30℄ have proved super-onstant hardness of approximation results for36



stronger versions of these problems, spei�ally sparsest ut and balaned utwith general demands, assuming the unique games onjeture of Khot [31℄(whih is a stronger assumption than P 6= NP).7 Conlusions and future researhWe have desribed a simple eonomi game that represents the diÆult prob-lem of hoosing on whih nodes to install anti-virus software to ontain thespread of omputer viruses in a network. The Nash equilibria of this gamehave a simple haraterization, and we an show that in the worst ase, theratio between the soial ost of a Nash equilibrium and a soial optimum anbe linear in the number of nodes.Our model makes some very strong simplifying assumptions: every infetednode eventually infets all unproteted neighbors; the osts of installing theanti-virus software and beoming infeted are known and equal for all nodes;the virus imposes no osts on proteted nodes; and nodes an observe whih ofthe other nodes intend to install the anti-virus software and adjust their ownstrategies in response. None of these assumptions orrespond ompletely toreality, but we believe that as a �rst step the resulting model is a reasonableompromise between auray and analyzability, and that the results obtainedwith the model (espeially the haraterization of Nash equilibria) are similarto what one might expet with a more omplex model that took into aountlimited information and learning by individual nodes. The natural next stepis to inorporate more details in the model and see if suh hanges a�et theresults; this might involve both theoretial work to predit the e�et of hangesand experimental or observational work to study how real-world deision-37



makers hoose whether or not to deploy spei� seurity mehanisms.We have also shown how a near-optimal deployment of anti-virus software anbe omputed by redution to the sum-of-squares partition problem, a newvariant of lassial graph partitioning problems where the goal is to removem verties so as to minimize the sum of the squares of the sizes of survivingomponents. Though it is NP-hard to solve this problem exatly, we give apolynomial-time �O(log1:5 n); O(1)�-biriterion approximation algorithm forsum-of-squares partition, whih yields a orresponding approximation algo-rithm for anti-virus software deployment. This algorithm may be of use asa network administration tool for hoosing how to deploy anti-virus softwareto minimize the ombined osts of deployment and infetion and as a publi-health tool for designing inoulation strategies for ontaining outbreaks ofhighly-infetious diseases when a good approximation to the interation graphan be omputed but the initial soure of ontagion is unknown. Whether ornot a polynomial-time algorithm with a better approximation ratio exists re-mains open.8 AknowledgmentsThe authors would like to thank Joan Feigenbaum, Hong Jiang, and YangRihard Yang for many useful disussions.Referenes[1℄ N. T. Bailey, The Mathematial theory of infetious diseases and itsappliations, Hafner Press, 1975. 38
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