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Abstract

We propose a new model for exact learning of acyclic circuits using experiments
in which chosen values may be assigned to an arbitrary subset of wires internal to
the circuit, but only the value of the circuit’s single output wire may be observed.
We give polynomial time algorithms to learn (1) arbitrary circuits with logarithmic
depth and constant fan-in and (2) Boolean circuits of constant depth and unbounded
fan-in over AND, OR, and NOT gates. Thus, both AC0 and NC1 circuits are learn-
able in polynomial time in this model. Negative results show that some restrictions
on depth, fan-in and gate types are necessary: exponentially many experiments are
required to learn AND/OR circuits of unbounded depth and fan-in; it is NP-hard
to learn AND/OR circuits of unbounded depth and fan-in 2; and it is NP-hard to
learn circuits of constant depth and unbounded fan-in over AND, OR, and threshold
gates, even when the target circuit is known to contain at most one threshold gate
and that threshold gate has threshold 2. We also consider the effect of adding an
oracle for behavioral equivalence. In this case there are polynomial-time algorithms
to learn arbitrary circuits of constant fan-in and unbounded depth and to learn
Boolean circuits with arbitrary fan-in and unbounded depth over AND, OR, and
NOT gates. A corollary is that these two classes are PAC-learnable if experiments
are available. Finally, we consider an extension of the model called the synchronous
model. We show that an even more general class of circuits are learnable in this
model. In particular, we are able to learn circuits with cycles.
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1 Introduction

We introduce a new model of active learning for acyclic circuits in which
we may inject chosen values on an arbitrary subset of wires but can observe
only the value of the circuit’s output wire. Our results illuminate the relative
importance of manipulation and observation in discovering the structure of
networks modeled as circuits.

Gene regulatory networks are an important area in which Boolean network
models have been used. In one basic model in this domain, each node in a finite
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network represents a gene, which has a current state of active or inactive. The
states of all nodes in the network are updated synchronously; for each node
there is a Boolean function giving its new state in terms of the current states
of some subset of the other nodes. A key point is that the node states are fully
observable: it is assumed that gene expression data gives the state of every
node in the network at every time step. The discovery problem is to learn the
updating functions of all the nodes, in particular, one needs to learn both the
set of inputs and the functionality of each node. Of course this is difficult if the
updating function may be an arbitrary Boolean function; further assumptions
generally restrict the fan-in or types of the possible updating functions. One of
the main difficulties in this problem is to discover the topology of the network,
that is, which nodes are inputs to which nodes.

Akutsu et al. [1] describe an approach to this discovery problem that models
the experimental capability of multiple gene disruption and overexpression.
At each time step several selected genes may be disrupted (put in the inactive
state), several other selected genes may be overexpressed (put in the active
state), while unaffected genes are updated as usual. In this model the states of
the nodes are fully controllable as well as fully observable. For networks of N
nodes and fan-in bounded by k, Akutsu et al. give an O(N2k) algorithm for the
discovery task. Ideker, Thorsson, and Karp [10] also consider this model and
give more practical discovery methods for acyclic networks, using information
theoretic criteria to select genes to disrupt or overexpress. These results show
that if the class of updating functions is sufficiently restricted, the problem of
learning the structure of a network in this model is tractable.

By contrast, there is ample evidence that learning Boolean circuits or formulas
from their input-output behaviors may be computationally intractable. Posi-
tive learnability results include those for fairly limited classes, including propo-
sitional Horn formulas [5] general read once Boolean formulas [6], and decision
trees [8], and those for specific distributions, including AC0 circuits [15], DNF
formulas [11] and AC0 circuits with a limited number of majority gates [12].
(Note that the algorithms in papers [12,15] for learning AC0 circuits and their
variants run only in quasi-polynomial time.) Valiant gives cryptographic evi-
dence for the difficulty of PAC learning general Boolean circuits [19]. Kearns
and Valiant [13] show that specific cryptographic assumptions imply that NC1
circuits and TC0 circuits are not PAC learnable in polynomial time. These
negative results have been strengthened to the setting of PAC learning with
membership queries [7], even with respect to the uniform distribution [14].

For these results on learning circuits and formulas, observation and control are
both restricted: values on internal wires cannot be observed or manipulated.
A natural question is: What are the relative contributions of full observation
and full control to the tractability of learning Boolean networks?
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Our new model addresses this question: we postulate full control and restricted
observation. Our results show that the ability to inject values into the circuit
gives the learner considerable power, but not as much as would be the case
with full observation. In particular, with value injection queries, NC1 circuits
and AC0 circuits are exactly learnable in polynomial time, but our negative
results show that the depth limitations are necessary. However, if behavioral
equivalence queries are also available, the depth limitations can be removed,
which also implies the polynomial time PAC-learnability of these classes with
value injection queries.

In the other direction, Rivest and Sloan [17] propose an interesting model
of hierarchical learning of Boolean formulas and acyclic circuits, in which
a teacher teaches the circuit one gate at a time to the learner in an order
consistent with the graph of the circuit; examples at each stage are drawn
from a fixed initial distribution. This increases the observability of the values
on internal wires, but not does not provide for their control. Rivest and Sloan
give a polynomial time algorithm that successfully learns arbitrary acyclic
Boolean circuits in their model.

We also consider an extension of our model called the synchronous model, in
which we assume that the circuit runs in discrete time and gates are synchro-
nized. The circuits are allowed to have cycles in this extension. In this model,
we show that an even larger class of circuits are learnable with experiments
only.

2 The Model

2.1 Circuits

We define a variant of the usual circuit model that has no distinguished inputs.
This is the convention in gene regulatory network models; it also allows for
a more uniform theoretical treatment. In this model, gates with no inputs
play the role of input wires: each defaults to a specific constant value, but its
output may be overridden by an experiment to any chosen value.

Also, instead of just the Boolean values 0 and 1, we permit a wire to take any
value from a finite set Σ, where we assume that |Σ| ≥ 2. This means that the
results in this paper apply to models in which gene activations take on a small
number of discrete values. Results for models with larger wire alphabets may
be found in [3].

A circuit C consists of N wires, W = {w1, w2, . . . , wN}, and for each wire wi
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a gate gi that determines the value on this wire. The size of the circuit is N .
The wire wN is assumed to provide the output of the circuit as a whole. A
gate consists of a function mapping Σk to Σ, and a vector of k integers from
[1, N ] specifying the input wires of the gate. The value k is the fan-in of the
gate. Gates of fan-in zero compute constant functions. The maximum fan-in
taken over all the gates in the circuit is the fan-in of the circuit.

We define the circuit graph to have a node for each wire and its corresponding
gate and a directed edge from node i to node j if wi is one of the input wires
to gate j. Until Section 7, we assume that the graph of the circuit is acyclic.

We define the depth of the circuit to be the number of edges in the longest
simple path to the output in the circuit graph. It should be noted that in this
model, a wire is the output of a gate, and a wire may be represented by several
edges in the circuit graph.

As an example, we consider a circuit C0 of 6 wires, as follows.

w6 = AND(w1, w3)

w5 = 0

w4 = 1

w3 = AND(w2, w4)

w2 = 1

w1 = OR(w5, w2)

C0 is also depicted in Figure 1; note that the single wire w2 corresponds to
the two directed edges (w2, w1) and (w2, w3) in the circuit graph of C0.
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Fig. 1. The circuit C0; w6 is the output wire.

2.2 Behavior

We focus on the behavior of a circuit in response to experiments in which
we fix the values of certain wires and observe the final output of the circuit.
Define an experiment to be a vector s in (Σ ∪ {∗})N , where si specifies the
value of wi (if it is in Σ) or leaves the value of wi as whatever gate gi computes
(if it is ∗). If si ∈ Σ, we say wi is fixed in s; otherwise, it is free in s. The value

5



of wi given s, written wi(s), is defined as

wi(s) =





gi(wi1(s), wi2(s), . . . , wiki
(s)) if si = ∗,

si if si 6= ∗. (1)

where gate i has function gi and inputs (i1, i2, . . . , iki
). Gates of fan-in zero,

which compute constant functions, give the base cases for the above recursive
definition. The output of the circuit given an experiment s is the output of
wire wN , that is, wN(s); this is also denoted C(s).

Two examples will help clarify this definition; consider again the circuit C0

defined above. Define the experiment s0 to leave every wire in C0 free, that is,
s0(i) = ∗ for 1 ≤ i ≤ 6. We compute the values wi(s0) as follows: w2, w4 and
w5 have no inputs, and take their default values: w2(s0) = 1, w4(s0) = 1 and
w5(s0) = 0. Having determined the values of the input wires of w1 and w3, we
find their values: w1(s0) = OR(0, 1) = 1 and w3(s0) = AND(1, 1) = 1. Finally,
because the values of the inputs to w6 are determined, we have C0(s0) =
w6(s0) = AND(1, 1) = 1. Thus, when all wires are left free, the circuit C0

outputs 1. As another example, define the experiment s1 to fix w2 to 0 and w3

to 1 and leave all other wires free, that is, s1(2) = 0, s1(3) = 1 and s1(i) = ∗
for i = 1, 4, 5, 6. Then w4 and w5 take their default values, that is, w4(s1) = 1
and w5(s1) = 0, but w2 takes the fixed value 0, so w2(s1) = 0. The values of the
inputs to w1 are now determined and w1 is left free, so w1(s1) = OR(0, 0) = 0.
However, wire w3 is fixed to 1, so w3(s1) = 1, regardless of the values of its
input wires. Finally, the values of the inputs to w6 are determined and w6 is
left free, therefore C0(s1) = w6(s1) = AND(0, 1) = 0. Thus, the output of C0

for experiment s1 is 0.

The behavior of a circuit is the function mapping experiments s to C(s). Two
circuits C and C ′ are behaviorally equivalent, if they have the same behavior,
that is, if ∀s ∈ (Σ ∪ {∗})N , C(s) = C ′(s). To compare our work with previous
work on learning circuits, we treat the gates of fan-in zero as the input gates
and denote the number of input gates by n. An experiment is input-only if
it fixes every input gate and leaves every other gate free. The input-output
behavior of a circuit C is the restriction of its behavior function to input-only
experiments. Clearly behavioral equivalence implies equality of input-output
behaviors but not conversely. Behavioral equivalence is more constrained by
the internal structure of the circuits, though different structures may have the
same behavior (see Figure 2.)

An important special case is Boolean circuits, for which Σ = {0, 1}. The input-
output behavior of a Boolean circuit is just the usual concept of a circuit
computing a Boolean function of n inputs. NC1 circuits are Boolean circuits
with constant fan-in and depth O(log n). AC0 circuits are Boolean circuits of
constant depth and polynomial size whose gates are unbounded fan-in AND,
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OR, and NOT. The threshold function Θt is the Boolean function that is 1 if
and only if at least t of its inputs are 1. TC0 circuits are Boolean circuits of
constant depth and polynomial size whose gates are unbounded fan-in AND,
OR, NOT and threshold gates.

2.3 Queries

We assume that the learner can get information about the circuit by specifying
an experiment s and observing C(s), the output of the circuit. Such an action
is termed a value injection query, abbreviated VIQ. We also define a behavioral
equivalence query, abbreviated BEQ: the learner proposes a circuit C ′, and, if
it is not behaviorally equivalent to the target circuit C, receives in response a
counterexample, that is, an arbitrarily chosen experiment s such that C ′(s) 6=
C(s). To be consistent with previous usage, we use the term membership query,
for a VIQ restricted to an input-only experiment s, although C(s) may be
non-binary, and the term equivalence query, for a query that tests whether the
proposed circuit C ′ has the same input/output behavior as the target circuit
C and returns an arbitrary input-only experiment s witnessing C ′(s) 6= C(s)
if not. Thus, membership queries and equivalence queries necessarily refer
to the input/output behavior of the circuit. An algorithm that learns the
(full) behavior of any circuit from a given class using VIQ’s and BEQ’s also
learns the input/output behavior of any circuit from the class using VIQ’s and
equivalence queries. Then a standard polynomial time transformation yields a
PAC learning algorithm using VIQ’s for input/output behavior of circuits in
the class [2], which implies the following.

Proposition 2.1 If a class of circuits is learnable in polynomial time with
VIQ’s and BEQ’s, then the input/output behaviors of circuits in the class are
PAC-learnable in polynomial time using VIQ’s.

2.4 The Problem

The learning problems we address are: by making VIQ’s (respectively, VIQ’s
and BEQ’s) to a target circuit C, find a behaviorally equivalent circuit C ′.
Both C and C ′ use gates from a specified class F .

It is not possible to discover the exact structure of the target circuit, even when
all wires are relevant. The following example shows that the same behavior
may be exhibited by structurally distinct circuits. The three circuits C1, C2,
and C3 shown in Figure 2 are behaviorally equivalent, where G1 and G2 are
arbitrary gate functions. Only when G2 and V both have value 1 (respectively,
0) can the value of G1 propagate through the depth 1 AND gate (respectively,
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Fig. 2. Three behaviorally equivalent circuits

OR gate). Therefore we cannot decide which one of G2 and V is an input of
G1, and similarly in the other case.

3 Result summary

We investigate the computational tractability of these problems for classes of
circuits defined by restrictions on depth, fan-in, and the class of gate functions
F . Our results are summarized in Table 1.

Table 1
Summary of our results for acyclic circuits

Depth Fan-in Gates Query types Learnability Reference

Unbounded Unbounded AND/OR VIQ 2Ω(N) queries Theorem 4.1

Unbounded 2 AND/OR VIQ NP-hard Theorem 4.2

Constant Unbounded AND/OR/Θ2 VIQ/BEQ NP-hard Theorem 4.5

Logarithmic Constant Arbitrary VIQ Poly-time Theorem 5.13

Constant Unbounded AND/OR/NOT VIQ Poly-time Theorem 5.15

Unbounded Constant Arbitrary VIQ/BEQ Poly-time Theorem 6.1

Unbounded Unbounded AND/OR/NOT VIQ/BEQ Poly-time Theorem 6.4

Section 4 contains negative results for exact learning with VIQ’s and BEQ’s.
In Section 5 we give an algorithm, CircuitBuilder, that takes a class of gates
F and a set U of experiments and constructs a circuit C ′ by making VIQ’s
on experiments in U and their one-symbol perturbations, and then finding
a gate for each wire consistent with the results. If U contains for every wire
and every gate that is wrong for that wire a witness experiment that excludes
the incorrect gate, then the resulting circuit is behaviorally equivalent to the
target circuit. We then show how to construct appropriate sets of experiments
U for the class of log-depth constant fan-in circuits and for the class of AC0
circuits. In Section 6, we extend these methods to use BEQ’s as well as VIQ’s,
and show that the limitations on circuit depth can be removed for both classes.
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Finally, in Section 7, we study the synchronous model. We show that any class
of circuits with gates that are learnable with membership queries in polynomial
time and closed under two natural operations, projection and blurring, (defined
in Section 7) is learnable in this model. This includes any circuits with constant
fan-in gates and AND/OR gates with unbounded fan-in. For these results,
there is no limitation on circuit depth and we do not restrict circuits to be
acyclic.

3.1 Learnability of the gates

What is the relationship between the learnability of circuits in our model and
learnability of the class F of permitted gates? A depth 1 circuit consists of
n input gates and one gate g depending on some subset of the inputs; if any
nontrivial circuits are to be learnable, then depth 1 circuits must be learnable
in the same sense.

For depth 1 circuits, a VIQ reduces to a membership query. Classes F of gates
for which depth 1 circuits are learnable in polynomial time with membership
queries include (1) the class of gates with fan-in at most some constant k
over an arbitrary finite value set Σ and (2) the class of all symmetric Boolean
gates (which includes unbounded fan-in AND, OR, NAND, NOR, threshold
and parity gates.)

Another aspect of the learnability of depth 1 circuits is the consistency prob-
lem. The consistency problem arises when the results of queries rule out certain
possible combinations of inputs and outputs for gates; it is defined as follows.
The input is a set E of prohibited pairs (s, σ) where s is an input-only ex-
periment (recall that an input-only experiment fixes all and only the input
gates), σ ∈ Σ is a value, and the desired output is a depth 1 circuit C ′ over F
such that C ′(s) 6= σ for every pair (s, σ) ∈ E. For Boolean circuits, because
C ′(s) 6= 0 implies C ′(s) = 1 and similarly C ′(s) 6= 1 implies C ′(s) = 0, the
consistency problem can be stated as finding C ′ that agrees with given values
of experiments in E. The consistency problem is a computational problem and
therefore each s should fix all input gates for the problem to be well defined.
One of the major differences between the consistency problem and the prob-
lem of learning with membership queries is that in the consistency problem
no information is provided beyond the set E and hence one may not be able
to query Hamming neighbors of an experiment.

For the class of arbitrary gates with fan-in at most k, the consistency problem
can be solved in time O(|E| · nk). For every possible k-set of inputs, we can
restrict experiments in E to the set of k inputs by simply ignoring assignments
to other inputs. Thus, the restricted version of E contains prohibited values
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for settings to the k inputs. The set of k inputs is not consistent with E, if
there exists one setting to the k inputs such that the set of prohibited values
in E is as large as Σ. (In other words, one cannot find a value for this setting
so as to be consistent with E.) Otherwise, for every setting of the k inputs,
we set the function value to be any value in Σ that is not prohibited.

There is also a polynomial time algorithm to solve the consistency problem
over the class of unbounded fan-in AND, OR, NAND, NOR, NOT and parities.
For these binary functions, each prohibited pair determine the function value
for the corresponding experiment. To learn AND, take all experiments in E
whose function value is 1, and remove all inputs that are ever set 0 in these
experiments. The AND of remaining inputs is a function that is consistent
with E if it is consistent with experiments in E whose function value is 0.
Otherwise, there is no AND function consistent with E. AND, OR, NAND,
NOR can be learned similarly. NOT is easy. The consistency problem for
parities corresponds to a linear system Ax = b in the finite field GF (2), where
E corresponds to the matrix A, the function values correspond to b, and the
set 1’s of in the solution, the 0-1 vector x, corresponds to the set of inputs of
the parity function.

However, Lemma 4.4 shows that the consistency problem is NP-hard over the
class of unbounded fan-in AND, OR, and thresholds. CircuitBuilder makes use
of algorithms for the consistency problem. Lemma 4.3 shows that polynomial
time learnability with VIQ’s and BEQ’s implies a polynomial time algorithm
for consistency in certain cases.

3.2 Relation to circuit testing

A central challenge for learning algorithms in our model is to propagate the
effects of a changed value on some internal wire to the observable output
of the circuit. Our methods are similar in some respects to the idea of path
sensitization in circuit testing, used to detect whether the output of some gate
is “stuck” at a constant value instead of computing the correct value of its
inputs [9].

In path sensitization, a path in the correct circuit from a gate g to the output
is constructed, and an input x is sought such that the output of g would be
the complement of the “stuck” value, and the values of the other inputs to
gates along the chosen path are set so as to propagate the output of g (or its
complement) to the output of the circuit.

Path sensitization is not a complete method: there are examples of single
stuck-at faults in acyclic circuits that cannot be detected by path sensitization,
though they are detectable by other tests. In our model, the ability to inject
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values on internal wires gives the approach greater power. However, this power
does not trivialize the problem; the negative results in Section 4 illustrate the
subtle “shadowing” or “filtering” effects that limit the power of VIQ’s.

Fujiwara [9] considers the computational problem of deciding, for a given cir-
cuit, gate, and stuck-at value, whether there is any test to detect the fault.
He shows that the problem is NP-complete, even when restricted to AND/OR
circuits of depth three. By contrast, since this class is contained in AC0, we
show that it is polynomial time learnable using VIQ’s.

4 What Cannot be Learned Efficiently?

Figure 3 presents a gadget, which is an AND/OR circuit of fan-in 2 that
computes Y = Θ2(X, V, W ). We can view V and W as controlling a switch:
only when their values are different will the value of X be passed on to Y .
Gadgets can be concatenated to get a gadget chain (see Figure 4), in which
the value of X is passed on to Y only when every pair Vi and Wi have different
values. The chain can be used to “hide” part of the circuit unless the values
of Vi and Wi are complements of each other. In Figure 4, exactly one of each
pair Vi and Wi is an input to the big AND gate. The learner has to guess
which combination of them are the inputs to the AND gate, which yields the
following negative result.
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Fig. 3. The gadget
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Fig. 4. A hidden AND gate and the gadget chain

Theorem 4.1 Learning the class of acyclic Boolean AND/OR circuits re-
quires 2Ω(N) VIQ’s.

PROOF. Suppose an adversary reveals the gadget chain and the fact that
the last gate is an AND gate with exactly one of each pair Vi and Wi as an
input, but hides the exact combination. When there exists a pair Vi and Wi

that are both 0 or both 1, the output of the circuit is determined by the gadget
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chain. In particular, it is determined by the pair with smallest index that are
both set 0 and 1 (the pairs are ordered according to their distances to the
output gate as in Figure 4). The adversary answers 0 if the pair are set 0 and
1 if the pair are set 1.

Only when for every pair, Vi and Wi are set differently, will the value of the
big AND gate affect the output of the circuit. There are 2n such settings of
V ’s and W ’s. The adversary answers 0 until only one setting remains. The
theorem then follows because N = O(n). 2

Theorem 4.1 gives an exponential information-theoretic lower bound, using a
deep circuit and a gate of large fan-in. The following construction uses the
gadget chain to give a computational hardness result for deep circuits with
fan-in 2.
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Fig. 5. G ∧ (x1 ∨ x2 ∨ x3)

Theorem 4.2 Learning the class of fan-in 2 AND/OR circuits using VIQ’s
is NP-hard.

PROOF. We use the implicit negation enforced by the gadget chain to con-
struct a circuit representing a CNF formula, for which a satisfying instance
must be found in order to expose a hidden part of the circuit. (Using a NOT
gate would not achieve the same effect because we can override its output
in an experiment.) We associate a Boolean variable xi with each pair Vi and
Wi, and let xi = 1 if Vi = 1, Wi = 0 and 0 if Vi = 0,Wi = 1 (we only deal
with the case that Vi and Wi are set differently thanks to the gadget chain).
Then the circuit in Figure 5 computes G ∧ (x1 ∨ x2 ∨ x3). We can chain such
clauses by replacing G with the output of the succeeding clause and finally
connect the output of the first clause to the gadget chain shown in Figure 4
(note that the big AND gate is not part of the gadget chain). Let g be an
AND gate of fan-in 2 with inputs I1 and I2. We connect the output of g to
the last clause of the clause chain (by replacing G of the last clause by the
output of g). In order to learn the circuit, we have to be able to observe the
output of g because we are not able to distinguish between this circuit and the
circuit with g being replaced by an OR gate if we can not observe g’s output.
In this construction, the functionality of g matters if and only if there exists
an assignment satisfying all the clauses.
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As in the proof of Theorem 4.1, when there exists a pair Vi and Wi that are
both set to 0 and 1, the output of the circuit is determined by the gadget chain
regardless of other parts of the circuit. Suppose every pair of Vi and Wi are set
differently. In order to observe g’s output, we must compute an assignment to
V ’s and W ’s that satisfies all clauses in the clause chain, since otherwise the
circuit output will simply be 0. In other words, we have to solve the 3-SAT
problem. Because the gadget chain consists of AND/OR gates of fan-in 2, the
theorem follows. 2
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Fig. 6. The “filtering” circuit and an illustration of a filtering path Ps with three
input wires.

The gadget chain is a deep circuit, but in the following construction we use
AND and OR gates to achieve a constant depth filter that forces a learning
algorithm to solve the consistency problem for F (defined in Section 3.1).
Given (1) any depth 1 circuit with input wires w1, w2, . . . , wn and gate g from
a class F of Boolean gates and (2) a set E of input-only experiments, we add
the following structure to construct another circuit C as follows (see Figure
6). For each s ∈ E, which assigns each wi to 0 or 1, we add a distinct directed
path Ps of length 3 consisting of g, a new AND gate, a new OR gate, and the
output gate. Let each wire wi that is set 0 in s be an input of the OR gate of
Ps. Let each wire wi that is set 1 in s be an input of the AND gate of Ps. The
construction has the property that if the assignment to w1, w2, . . . , wn is not
s, either the output of the AND gate or the output of the OR gate in Ps is
determined, and hence the output of g can not be passed through the path Ps.
Therefore, Ps “filters” out all assignments in E other than s. Finally, we take
the output gate of the whole circuit to be an AND gate. (Note that we cannot
use the same method to replace the gadget chain because it would require |E|
to be exponential.) We will call the circuit a filtering circuit.

Lemma 4.3 Any algorithm that learns the class of filtering circuits with input-
only experiment set E and function class F (both E and F are known to the
learner) using VIQ’s and BEQ’s solves the consistency problem for E and F .

PROOF. We will show how to use the learning algorithm to solve the con-
sistency problem. Given E and F , we construct the filtering circuit as above
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and run the learning algorithm. We answer the algorithm’s VIQ’s by evaluat-
ing the circuit. We need to answer BEQ’s only when the learning algorithm
proposes a circuit C ′ with a gate function g′ (where the true gate is g) that
does not solve the consistency problem. We are done otherwise. When g′ does
not solve the consistency problem, we will find a counterexample to C ′ with
which to answer the BEQ.

Note that the proposed gate g′ and the true gate g correspond to the same
wire, denoted by w. Since g′ does not solve the consistency problem, there
must exist an s ∈ E such that g′(s) 6= g(s). Suppose w.l.o.g. that g(s) =
1 and g′(s) = 0. If C(s) 6= C ′(s), s is itself a counterexample. Otherwise,
C(s) = C ′(s). Construct s0 (s1) by fixing w to 0 (1) in s. Under experiment
s, w takes value 1 in circuit C but takes value 0 in C ′. Thus, C(s) = C(s1)
and C ′(s) = C ′(s0). Now, we have

C ′(s0) = C ′(s) = C(s) = C(s1) 6= C(s0)

The last inequality holds because, by the structure of the filtering circuit C,
C(s1) = 1 6= C(s0) = 0. 2

Lemma 4.4 The consistency problem is NP-hard for the class of unbounded
fan-in AND, OR, and Θ2 gates.

PROOF. We reduce a 3-SAT instance φ over the variables xi for i ∈ [1, n]
to the consistency problem for this class. The input wires are

{I1, I2, I3, V1,W1, V2,W2, . . . , Vn,Wn}.

Let W denote the output wire of the unknown gate. We define a correspon-
dence between literals of φ and wires: literal xi corresponds to wire Vi, and
literal xi corresponds to wire Wi. We design the set of experiments and their
outputs as follows, so as to constrain the unknown gate to be a Θ2 gate with
its inputs corresponding to a satisfying assignment of φ.

• For each of the eight experiments assigning 0 and 1 to I1, I2, and I3, with
all Vi = Wi = 0, the output value is Θ2(I1, I2, I3). This guarantees that the
gate function for W cannot be AND or OR, and must therefore be a Θ2

gate whose inputs include I1, I2, and I3.
• For each i, on the experiment with I1 = Vi = Wi = 1 and all other input

wires assigned 0, the output value is 1. This implies at least one of Vi and
Wi is an input of wire W .

• For each i, on the experiment with Vi = Wi = 1 and all other input wires
assigned 0, the output value is 0. This implies not both Vi and Wi are inputs
of wire W .
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• For each clause of φ, on the experiment that sets I1 and the three wires
corresponding to the three literals in the clause to 1 and all other wires to
0, the output is 1. This ensures that at least one wire corresponding to a
literal in the clause is an input of wire W .

It is easily verified that φ is satisfiable if and only if there is a gate g for
wire W from the specified class of gate functions consistent with these exper-
iment/value pairs. 2

Lemma 4.3 and Lemma 4.4 establish the following theorem.

Theorem 4.5 Learning constant depth AND/OR/Θ2 circuits with VIQ’s and
BEQ’s is NP-hard.

5 Learning with experiments

In this section, we give algorithms for arbitrary circuits with logarithmic depth
and constant fan-in and Boolean circuits of constant depth and unbounded
fan-in over AND, OR and NOT gates. Therefore, we show that both AC0 and
NC1 circuits are learnable in polynomial time with VIQ’s. One of the main
issues is to learn a viable set of inputs for each gate. The gates in the circuit
that the algorithms output may not have the same set of inputs as the target
circuit (see Figure 2).

First we develop some definitions and basic results. A partial experiment is
a partial function from [1, N ] to Σ ∪ {∗}. Wires in the domain of a partial
experiment are specified as fixed (a value in Σ) or free (∗); wires not in the
domain of the experiment are unspecified. Let s be an experiment and τ be a
partial experiment. Define s|τ to be the experiment obtained by replacing in
s the settings of all wires that are specified in τ by the corresponding settings
in τ . Let s and t be two experiments. We say that t ¹ s if the set of free wires
in t is a subset of the set of free wires in s, and every wire with a fixed value in
s has the same fixed value in t. ¹ defines a partial order among experiments.
We say t ≺ s if t ¹ s and there is at least one free wire in s that is fixed in t.
Let s be an experiment with wire w set free. We call s|w=σ, where σ ∈ Σ, the
(w, σ)-perturbation of s. If C(s) 6= C(s|w=σ), we say s is (w, σ)-exposing.

Consider any gate g with inputs (i1, i2, . . . , il). We overload g to take an ex-
periment s as an argument. That is, let g(s) = g(wi1(s), wi2(s), . . . , wil(s)),
where wi(s) is the value of wire wi on s in the target circuit C. The following
useful facts are easily verified.

15



Proposition 5.1 Let s and t be two experiments with the output wire set free.
If s and t assign the same value to every wire that is either free in s or is an
input to a wire that is free in s then C(s) = C(t).

Proposition 5.2 C(s) = C(s|w=w(s)).

This is meaningful only when w is set free in s. In this case, w(s) is the value
the corresponding gate computes. The proposition thus says that if we fix w
to the value it takes on an experiment s, the circuit output stays the same.

Proposition 5.3 Let w and u be two wires and suppose there is no path from
w to u in the graph of the circuit. Then u(s) = u(s|w=σ) for any experiment s
and σ ∈ Σ.

This says that changing the value on wire w cannot affect the value on wire u
if there is no path from w to u in the graph of the circuit.

The main task of our learning algorithms is to find a “correct” gate function
for each wire. Formally, a gate g is wrong for a wire w, if there exists an
experiment s that fixes all of g’s inputs and is (w, g(s))-exposing. We call such
an s a witness experiment for g and w. Otherwise, we say that g is correct for
w.

Lemma 5.4 Let C ′ be a circuit with the same set of wires as C. If C ′ is
acyclic and every gate of C ′ is correct for the corresponding wire in C, C ′ is
behaviorally equivalent to C.

PROOF. Suppose to the contrary that C ′ is not behaviorally equivalent to C.
Let s be a minimal (with respect to the partial order ¹) experiment such that
C ′(s) 6= C(s). Let w be a free wire in experiment s and g be its corresponding
gate in C ′, chosen so that all g’s inputs are fixed in s (such a wire exists
because C ′ is acyclic and the input gates of C ′ are considered to have fixed
inputs because they have no inputs). By Proposition 5.2, we have C ′(s) =
C ′(s|w=g(s)). By the minimality of s, we have C ′(s|w=g(s)) = C(s|w=g(s)), which
then implies that C(s|w=g(s)) 6= C(s). This contradicts the fact that g is correct
for w. 2

5.1 Constructing a circuit

Let F be a class of gates containing all of the gates in the target circuit C. We
describe an important subroutine, CircuitBuilder (Algorithm 1), that takes a
set of experiments U and constructs an acyclic circuit C ′ using gates from
F . CircuitBuilder builds C ′ from the bottom up, starting with gates of fan-in
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Algorithm 1 CircuitBuilder

INPUT: U and F .
OUTPUT: C ′.
1: Let Uw denote the set of experiments in U with w set free.
2: ∀w, ∀s ∈ Uw, ∀σ ∈ Σ, let V contain the (w, σ)-perturbation of s. Also, let

Vw denote the set of experiments in V with w set free.
3: Make a VIQ on every experiment s ∈ U ∪ V .
4: C ′ ← ∅. Z ← W .
5: while Z is not empty do
6: for w ∈ Z do
7: if there exists a function g ∈ F that depends only on wires in C ′,

such that ∀s ∈ Uw, C(s) = C(s|w=g(s)) then
8: Add w and g to C ′ and remove w from Z.
9: ∀s ∈ Uw ∪ Vw, replace s by s|w=g(s).

10: break

zero. At each iteration, CircuitBuilder attempts to add another wire to C ′ by
choosing a gate in F among those that depend only on wires that are already
in C ′. This method has the advantage of building an acyclic circuit, which
is crucial because the dependence between gates is not always clear, as in
Figure 2.

Define U to be a sufficient set of tests for C and F if for every wire wi in C
and every gate g ∈ F that is wrong for wi, U contains at least one witness for
g and wi. In the remainder of this section we prove the following.

Theorem 5.5 If U is a sufficient set of tests for C and F then C ′ is behav-
iorally equivalent to C, where C ′ is the circuit constructed by CircuitBuilder.
Moreover, CircuitBuilder is non-adaptive.

In CircuitBuilder, since before we replace s by s|w=g(s), we check whether
C(s) = C(s|w=g(s)) for s in Uw, we do not need to make queries on the re-
placing experiments in U . However, we may have to make queries on the
perturbations of replacing experiments. This would require the algorithm to
make queries adaptively. Instead, in CircuitBuilder, we maintain another set
of experiments V which contains all possible perturbations of experiments in
U at the beginning of the algorithm. In Lemma 5.7, we will show that after
replacement, V still contains all necessary perturbations of experiments in
U . In Lemma 5.8, we show that even in V , a replacing experiment will have
the same circuit output as the original one. Therefore, we only need to make
queries on U ∪ V at the beginning of the algorithm. Thus, the algorithm is
non-adaptive.

At each iteration of the algorithm, experiments in U ∪V may be replaced. We
make the following claims about the replacements.
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Lemma 5.6 At any iteration, for any s ∈ U ∪ V , no wire in C ′ is set free in
s.

PROOF. CircuitBuilder fixes each wire it adds to C ′. 2

The following lemma says that if s ∈ U and t ∈ V are an experiment and
perturbation pair, and w is the corresponding wire, they will continue to be
such a pair until w is added to C ′.

Lemma 5.7 Consider any iteration, any w ∈ Z and any s ∈ Uw, and let s0

be the version of s at the start of the algorithm. For any σ ∈ Σ, let t0 be the
(w, σ)-perturbation of s0 at the start of the algorithm and t be the replacement
of t0 at the iteration considered. Then t is a (w, σ)-perturbation of s.

PROOF. The statement is clearly true at the start of the algorithm. At each
subsequent iteration, at most one setting of s and t will be changed. We only
need to show that each replacement will replace the same value for s and t.
Note that the replaced value is the output of a function that depends on wires
that do not include w (w has not been added to C ′ yet). Since s and t differ
only at their settings of w, the function has the same inputs and hence outputs
the same values. 2

Together with Lemma 5.7, the following lemma shows that although we need
to compare the circuit outputs of replacement experiments and their pertur-
bations, we do not need to make any further VIQ’s.

Lemma 5.8 Suppose U is a sufficient set of tests for C and F . At any iter-
ation consider any s ∈ U ∪ V and let s0 be the version of s at the start of the
algorithm. Then we have C(s) = C(s0).

If s ∈ U , there is nothing to prove since the algorithm checks the equality
before making the replacement. The case that s ∈ V is a little bit trickier. We
prove an even more general lemma, from which the case s ∈ V follows.

Lemma 5.9 Suppose U is a sufficient set of tests for C and F . Let g be the
function that CircuitBuilder chooses for gate w. Then g is correct for w. That
is, for all s with g’s input wires fixed, C(s) = C(s|w=g(s)).

PROOF. W.l.o.g., let w be the first wire added to C ′ for which the statement
in the lemma does not hold. That is, g is wrong for w. By the assumption that
U is sufficient for C and F , there exists an experiment s0 ∈ U at the start of
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the algorithm such that s0 fixes all g’s inputs, and C(s0) 6= C(s0|w=g(s0)). Let
s ∈ U be the replacement of s0 at the iteration w is added to C ′. We have
that C(s) = C(s0) 6= C(s0|w=g(s0)) = C(s|w=g(s0)), by the assumption that w
is the first wire violating the condition. Moreover, g(s) = g(s0) because s0 and
s both fixes all g’s input wires and therefore should agree on them. Therefore,
we have

C(s) 6= C(s|w=g(s))

which contradicts the choice of g by CircuitBuilder. 2

Lemma 5.9 together with Lemma 5.4 show that if U is a sufficient set, C ′ is
behaviorally equivalent to C. Lemma 5.7 and 5.8 show that all the queries
can be made at the beginning of the algorithm, which establishes Theorem
5.5. Lemma 5.6 validates the operation of picking a function g, which amounts
to solving the following consistency problem (defined in Section 3.1). Let E
be the projection of Uw to C ′ (note that all wires in C ′ are fixed) and let
the prohibited pairs (t, σ) be those t ∈ E and σ ∈ Σ such that there is an
experiment in Uw that agrees with t and is (w, σ)-exposing.

The next lemma shows that the algorithm terminates in N iterations.

Lemma 5.10 At each iteration, the algorithm adds one wire to C ′.

PROOF. First we observe that there is at least one wire w in Z whose input
wires are all contained in C ′, because the circuit graph of C is acyclic. The
true gate of w in C will survive every if-test in the algorithm. 2

5.2 Test paths

One of the key ideas of our algorithms is to use test paths. A test path is an
experiment whose free wires are a directed path from some wire w to wN ,
through which w is exposed. Let a side wire of a test path be a fixed wire that
is an input to a gate whose corresponding wire is set free. The meaning of test
paths is made clear in the following lemma, which says that using test paths
is sufficient.

Lemma 5.11 Let s∗ be a minimal (w, σ)-exposing experiment, where σ ∈ Σ.
Then the free wires in s∗ are a directed path in the graph of C, which starts
with w and ends with the output wire wN . (s∗ is a test path.)

PROOF. When w = wN , the directed path is just wN itself. Suppose the
claim is true for any free wire whose corresponding gate has w as an input.
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First we claim that only those wires that w can reach (in the underlying
digraph) can be free in s∗. This is because wires that w cannot reach take the
same values in s∗ and the perturbation s∗|w=σ (see Proposition 5.3). Thus, we
can set them to the corresponding values and the resulting experiment is still
(w, σ)-exposing, which contradicts the minimality of s∗.

Let u be a free wire in s∗ whose only free input wire is w. u must exist,
because the underlying digraph is acyclic. Let σ0 = w(s∗) and β0 = u(s∗) and
β = u(s∗|w=σ). We claim that s∗|w=σ0 is a minimal (u, β)-exposing experiment.
Let us view the circuit as a function of the values of w and u. That is, let
F (x, y) = C(s∗|w=x,u=y). By the assumption, we have F (σ0, β0) 6= F (σ, β). By
the minimality of s∗, we have F (σ0, β) = F (σ, β). Thus, we have

F (σ0, β) 6= F (σ0, β0)

which implies that s∗|w=σ0 is (u, β)-exposing.

Now, we need to show that s∗|w=σ0 is a minimal (u, β)-exposing experiment.
Suppose on the contrary that there exists s′ ≺ s∗|w=σ0 that is (u, β)-exposing.
We set w free in s′ and let the resulting experiment be s′′. Thus, s′′ ≺ s∗. Let
F ′′(x, y) = C(s′′|w=x,u=y). Again, by the assumption and the minimality of s∗,
we have

F ′′(σ0, β0) 6= F ′′(σ0, β) = F ′′(σ, β)

Therefore, we conclude s′′ is (w, σ)-exposing by observing that w(s′′) = σ0,
u(s′′) = β0 and u(s′′|w=σ) = β, which contradicts the minimality of s∗.

Therefore, we conclude that s∗|w=σ0 is a minimal (u, β)-exposing experiment.
By induction, its free wires consist of a directed path starting with u and
ending with wN . We append w to this path to obtain the directed path in
s∗. 2

5.3 Learning log depth circuits with constant fan-in

We use CircuitBuilder to give an algorithm that learns an arbitrary log depth,
constant bounded fan-in circuit. The algorithm does not perform any ad-
ditional queries and hence is non-adaptive. The main idea is based on the
observation that in an acyclic circuit of depth d and fan-in k, a test path has
at most d free wires and at most kd side wires. There are at most |Σ|O(kd)

settings of these wires. If we randomly assign one of the symbols of Σ ∪ {∗}
to each wire with equal probability, the probability that we generate one of
the settings is 1/|Σ|O(kd). We can generate all settings using |Σ|O(kd) log 1

δ
ran-

dom experiments, which succeeds with probability at least 1− δ. We can also
generate them deterministically using a universal set construction. The fol-
lowing definition of universal set is adapted from Seroussi and Bshouty [18].
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An experiment set U is called (N, l)-universal if for every set of indices
R = {r1, r2, . . . , rl} ⊆ [N ], the projection of U to R contains all (|Σ| + 1)l

l-tuples. It is shown in [16] that a (N, l)-universal set of size 2O(l log |Σ|) log N
can be constructed in polynomial time. 4

Lemma 5.12 Let C be a circuit of depth d and fan-in k, F be the class of all
gates of fan-in at most k, and U be an (N, (d + 1)(k + 1))-universal set. U is
a sufficient set for C and F .

PROOF. Let s be a witness experiment that g is wrong for w; all g’s inputs
are fixed in s. Let s∗ ¹ s be a minimal (w, g(s))-exposing experiment. Accord-
ing to Lemma 5.11, there are at most d free wires and dk side wires in s. Since
U is a universal set, there exists an experiment s0 ∈ U at the beginning of
CircuitBuilder, such that s0 agrees with s∗ in all s∗’s free wires and side wires
and also all g’s inputs (there are at most (d + 1)(k + 1) wires). Proposition
5.1 shows that s0 is a witness experiment that g is wrong for w. 2

Whenever kd = O(log N), the size of U is polynomial in N and so is that of
V . We reach the following theorem.

Theorem 5.13 Log depth, constant bounded fan-in circuits can be learned
non-adaptively in polynomial time using VIQ’s.

PROOF. Combining Theorem 5.5 and Lemma 5.12, we can learn a cir-
cuit of depth d and fan-in k, by applying CircuitBuilder with U being an
(N, (d+1)(k +1))-universal set. When k is O(1) and d is O(log N), the query
complexity 2O(kd log |Σ|) is polynomial. The time complexity depends mainly on
the complexity of the consistency problem, which is polynomial for constant
fan-in circuits (see Section 3.1). The algorithm is non-adaptive since Circuit-
Builder is non-adaptive. 2

5.4 Learning AC0 circuits

Theorem 4.5 precludes polynomial time algorithms for learning constant depth
unbounded fan-in circuits with fairly simple gates. In this section, we show
that if we allow only AND and OR gates (it is easy to extend it to NAND, NOR

4 The paper [16] only deals with binary vectors. But it can be easily extended to
the non-binary case by viewing each non-binary literal in Σ∪{∗} as a binary vector
of size dlog(|Σ|+ 1)e.
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and NOT), constant depth unbounded fan-in Boolean circuits are learnable.
Thus we show that AC0 circuits are learnable with VIQ’s.

We are not able to use a universal set, since k can be as large as Ω(N). Instead,
we use Algorithm 2 to gather the necessary test paths adaptively. Algorithm 2
begins with learning the output gate, which can be easily done for AND and
OR gates. It then sets one of its input wires free and fixes the other input
wires so that the free input wire is still relevant. In particular, it sets the other
input wires to 1 if the output gate is an AND gate, or 0 if the output gate is
an OR gate. This partial experiment is then used to find (some of) the inputs
of the corresponding gate. The algorithm goes on exploring the whole circuit.
Algorithm 2 alone is not sufficient, because some input wires may be fixed as
side wires and therefore hidden to the learner.

Algorithm 2 Gathering test paths for a constant depth AND/OR circuit

1: Let Γ contain the partial experiment that sets the output wire free, {wN =
∗}. {Γ is the agenda.}

2: Let 1 (0) be an experiment that sets all wires to 1 (0),
3: while Γ is not empty do
4: Pick τ ∈ Γ and remove it from Γ.
5: if C(1|τ ) 6= C(0|τ ) then
6: Let Z = {w | w is unspecified in τ , and C(1|τ,w=0) 6= C(1|τ ) or

C(0|τ,w=1) 6= C(0|τ ) }.
7: for w ∈ Z do
8: if C(1|τ,w=0) 6= C(1|τ ) then
9: Add τ |w=∗,∀w′∈Z\{w},w′=1 to Γ. {AND gate.}

10: else if C(0|τ,w=1) 6= C(0|τ ) then
11: Add τ |w=∗,∀w′∈Z\{w},w′=0 to Γ. {OR gate.}

The following lemma shows the correctness of the learning algorithm.

Lemma 5.14 Let U contain all tests that are made in Algorithm 2 with target
circuit C and F be all AND and OR gates. U is sufficient for C and F .

PROOF. Suppose s is a witness experiment that g is wrong for w and s∗ ¹ s
is a minimal (w, g(s))-exposing experiment. Let u be the successor of w in the
directed path from w to wN (Lemma 5.11). We define two partial experiments
τu and τw. τu sets all free wires in the directed path before u and their side
wires as in s∗ and sets u free. τw is similarly defined. We claim that τw is added
to Γ in Algorithm 2. We assume inductively τu has been added to Γ.

Compare τu and τw. Those wires unspecified by τu but specified by τw are side
wires that are inputs only to u. They are set to 1 in τw if the corresponding
gate of u is an AND gate and 0 if the corresponding gate of u is an OR gate
so as to keep w relevant. Furthermore, we observe that
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(1) If the corresponding gate of u is an AND gate, C(1|τu) 6= C(0|τu) and
C(1|τu,w=0) 6= C(1|τu);

(2) If the corresponding gate of u is an OR gate, C(1|τu) 6= C(0|τu) and
C(0|τu,w=1) 6= C(0|τu).

Therefore, τw must be added. Thus U must contain the following experiments
0|τw ,1|τw , and for all w′ unspecified in τw, 1|τw,w′=0, and 0|τw,w′=1.

Let g∗ be the gate for w in the target circuit C. The two projected functions
g|τw and g∗|τw (fixing some inputs of the functions) must be different, because
otherwise it contradicts the fact that s∗ is a witness experiment. Since g and
g∗ are AND, OR or constant gates, their projections g|τw and g∗|τw can be
AND, OR and constant gates.

We show, by the following case analysis, that we can find an experiment s0 in
aforementioned experiments such that g|τw(s0) 6= g∗|τw(s0). By the way that
τw is constructed, we know that C(s0|w=0) 6= C(s0|w=1), that is, the difference
in w is reflected in the circuit output, and thereby s0 is a witness experiment
that g is wrong for w.

(1) g|τw and g∗|τw are both constant gates, their constant outputs must be
different. Any of the experiments is good for us.

(2) One of them is a constant gate and the other is not. The non-constant
gate must have different outputs for inputs 0|τw and 1|τw . Therefore, one
of 0|τw and 1|τw serves the purpose of s0.

(3) Both of them are AND gates. The two AND gates must have different
relevant inputs. Let w′ be a relevant input to one of the two gates but
not to the other. The two gates must have different outputs on 1|τw,w′=0.

(4) Both of them are OR gates. This case is similar to the previous one. Only
this time 0|τw,w′=1 serves the purpose of s0.

(5) One of the two gates is an AND gate and the other an OR gate. If their
relevant input sets are the same, both 1|τw,w′=0, and 0|τw,w′=1, where w′

is a relevant input to both gates, show their difference. If their relevant
inputs sets are different, either we can find a w′ relevant to the AND gate
but not to the OR gate, or we can find a w′ relevant to the OR gate but
not to the AND gate. In the former case, 1|τw,w′=0 is what we look for; in
the latter case, 0|τw,w′=1 is what we look for. 2

It is clear that each partial experiment collected by Algorithm 2 corresponds
to a directed path in the circuit C. Thus the number of partial experiments is
bounded by O(Nd) = poly(N) when the depth d is a constant. The size of U
and the number of tests are hence polynomially bounded. The theorem then
follows from the fact that the consistency problem for AND/OR gates can be
solved in polynomial time.
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Theorem 5.15 Constant depth, unbounded fan-in AND/OR circuits are learn-
able in polynomial time using VIQ’s.

6 Learning with experiments and counterexamples

BEQ’s overcome the obstacles of Theorem 4.1 and Theorem 4.2, because the
counterexample has to give away the combination when an appropriate hy-
pothesis circuit is presented. However, the result in Theorem 4.5 still applies.
Assuming both VIQ’s and BEQ’s are available, we give polynomial time algo-
rithms to learn both arbitrary constant fan-in circuits and AND/OR circuits
with unbounded depth.

Both algorithms repeatedly make a BEQ on a candidate circuit C ′ until C ′

is behaviorally equivalent to the target circuit. Each counterexample s is pro-
cessed to give a minimal counterexample s∗ ¹ s such that C ′(s∗) 6= C(s∗).
This process, Minimize, can easily be done with O(N) VIQ’s. The minimal
counterexample is then used in rebuilding the candidate circuit C ′. As in the
proof of Lemma 5.4, a minimal counterexample is a witness experiment that a
candidate gate g is wrong for a wire w. Therefore, each counterexample elim-
inates at least one candidate gate for at least one wire. For constant fan-in
circuits, this immediately leads to a polynomial-time learning algorithm, since
there are at most |Σ||Σ|k

(
N
k

)
candidate gates to eliminate (for each of the

(
N
k

)

combinations of k inputs, there are |Σ||Σ|k candidate functions). In fact, we

will receive at most |Σ| · |Σ|k
(

N
k

)
counterexamples for each wire as shown in

the following theorem.

Theorem 6.1 Bounded fan-in circuits are learnable in polynomial time using
VIQ’s and BEQ’s.

PROOF. The algorithm is described in the previous paragraph, except that
we haven’t specified how to build the candidate circuit C ′. We will use Cir-
cuitBuilder, but instead of checking each gate with respect to U , we just pick
a gate that is not eliminated for the corresponding wire. For each of the

(
N
k

)

combinations of k inputs, any for each of the |Σ|k settings to the k inputs,
there are at most |Σ| many possible counterexamples, each of which rules out
one possible output. Therefore, there are at most |Σ| · |Σ|kNk counterexamples
for each wire. Thus, the algorithm will receive at most (|Σ|N)k+1 counterex-
amples in total, which is polynomial when k is a constant. Because we use
CircuitBuilder, it is not hard to see that the number of V IQ′s and the total
running time are also polynomial. 2
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However, the same method does not work for AND/OR circuits, because |F| is
exponential. But each minimal counterexample will still help us learn the gate
function of an individual wire. Let us denote each counterexample by a pair
indicating the outputs of the true gate and the proposed gate. For example,
in a (1, 0) counterexample for wire w, the true gate of w outputs 1 but the
proposed gate outputs 0. A (0, 1) counterexample is the opposite. It is not
hard to see that a (1, 0) counterexample eliminates the constant 0 gate for the
wire and similarly a (0, 1) counterexample eliminates the constant 1 gate.

Now we will see how counterexamples help to learn AND/OR gates. There are
3 cases in terms of the proposed gate and the true gate: both are AND; both
are OR; one is AND and the other is OR. In all three cases, counterexamples
can be divided into two types, namely, input removing and input demanding
counterexamples. The first two cases are similar and we will start with them.

Assume that the proposed gate and the true gate are both AND gates. In
the following, let w be the wire that receives the counterexamples. A (1, 0)
counterexample says that the 0-inputs (inputs that are set 0) of the proposed
gate are not inputs of the true gate of w, and thus should be removed from the
set of potential inputs. Therefore, in this case, a (1, 0) counterexample is an
input removing counterexample. Let R∧

w contain all inputs removed by input
removing counterexamples for wire w.

On the other hand, a (0, 1) counterexample implies that the inputs of the
proposed gate do not include all inputs of the true gate of w. Thus, a (0, 1)
counterexample demands that the learner include more inputs for wire w,
and hence is input demanding in this case. (As in CircuitBuilder, to avoid
building a cyclic circuit, we cannot learn each wire/gate as a function of all
other N − 1 wires at the same time. Therefore, we use only some of the other
wires as inputs for each wire/gate.) Let the set of inputs of the proposed gate
be T . An input demanding counterexample says that any AND gate whose
inputs are completely contained in T cannot be the true gate of w. Let T∧

w be a
collection of sets like T . That is, whenever an input demanding counterexample
is received, we will add the set of inputs of the proposed gate to T∧

w . T∧
w will

serve as constraints on candidate gates for wire w.

Similar arguments can be made when the proposed gate and the true gate
are both OR. However, in this case, a (0, 1) counterexample is input removing
while a (1, 0) counterexample is input demanding. Let R∨

w be analogous to R∧
w

and T∨
w be analogous to T∧

w .

When the true gate and the proposed gate are of different types, we will reduce
them to the first two cases. If the proposed gate is AND, but the true gate of
w is OR, we process the counterexamples as if the true gate is AND (there is
no way to tell anyway). Thus, we will add 0-inputs of the proposed gate to R∧

w
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upon receiving a (1, 0) counterexample, and add the whole set of inputs of the
proposed gate to T∧

w upon receiving a (0, 1) counterexample. The important
fact is that although we attempt to learn w as AND, the true gate, the OR
gate will never be eliminated. The constraints imposed by R∧

w and T∧
w are valid

constraints only on candidate AND gates. Since we learn w as an OR at the
same time, we might either figure out that it cannot be an AND or find an
OR gate that is correct. Similar arguments can be made when the proposed
gate is OR, but the true gate of w is AND.

Now we are ready to give our algorithm for learning AND/OR circuits. (NAND
gates can be dealt with in a way similar to AND gates. NOR gates can be dealt
in a way similar to OR gates.) The overall algorithm runs in the same cycle
of proposing a circuit, receiving and processing a counterexample, and then
proposing a new circuit. Each counterexample is processed by Minimize first
and then used either to eliminate a constant gate from Kw, which contains a
constant 1 gate and a constant 0 gate at the beginning of the algorithm, or
to update R∧

w and T∧
w or R∨

w and T∨
w , which are all empty at the beginning of

the algorithm, depending on the type of proposed gate function for wire w.
To build the proposed circuit, we use Algorithm 3.

Algorithm 3 Building the proposed circuit

INPUT: ∀w ∈ W , R∧
w, T∧

w , R∨
w, T∨

w and the set of constant functions Kw that
have not yet been eliminated.

OUTPUT: C ′.
1: C ′ ← ∅. Z ← (w1, w2, . . . , wN).
2: while Z is not empty do
3: Pop the first wire w in Z.
4: if Kw 6= ∅ then
5: Add w to C ′ with any function in Kw.
6: else if ∀T ∈ T∧

w , C ′\R∧
w * T then

7: Add w to C ′ with AND of wires in C ′\R∧
w.

8: else if ∀T ∈ T∨
w , C ′\R∨

w * T then
9: Add w to C ′ with OR of wires in C ′\R∨

w.
10: else
11: Put w at the end of Z.

At each iteration, we try to add a wire w in Z to C ′. As in CircuitBuilder,
we try to learn w as a function of wires that have already been added to C ′.
We organize Z as a queue and let the initial order be w1, w2, . . . , wN . At each
iteration, the first wire in Z will be considered. If it is not added to C ′, it will
be put at the end. We add the wire to C ′ if and only if one of the following is
true. One of the two constant functions is not eliminated, or in other words,
Kw is not empty; C ′\R∧

w is not contained in any set in T∧
w , and hence AND of

C ′\R∧
w does not violate any counterexample; C ′\R∨

w is not contained in any
set in T∨

w , and hence OR of C ′\R∨
w does not violate any counterexample. We

add the wire to C ′ with a constant function, AND of wires in C ′\R∧
w, or OR
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of wires in C ′\R∨
w, respectively.

Now we bound the number of counterexamples each wire can receive. There
are at most 2 counterexamples that eliminate constant functions. There are
at most O(N) input removing counterexamples. The most subtle case is input
demanding counterexamples. We identify the phase number of the learning
algorithm with the number of counterexamples it has received. Algorithm 3
is called to rebuild the circuit at each phase. In the process of Algorithm 3,
let the round number of an iteration be the number of times the wire being
considered has been popped from Z. Let Iw(t) be the round number of the
iteration that w is finally added to C ′ at phase t. We will show that Iw(t) will
never decrease in the following. The intuition is that we add more constraints
on learning w as we receive more counterexamples.

Let C ′
(w,i)(t) be the set of wires in C ′ when w is considered at round i in phase

t. If we order pairs in W × [1, N ] first by their round number and then by
the order of wires in W , we have that C ′

(w,i)(t) = {w′|(w′, Iw′(t)) ≤ (w, i)}.
Together with Rw’s and Tw’s, C ′

(w,i)(t) decides whether w can be added to the
circuit at round i in phase t. In the following, we show that C ′

(w,i)(t) never
gets bigger as t grows. The key observations are that if a set C ′ cannot pass
the test

∀T ∈ T∧
w , C ′\R∧

w * T,

(1) no subset of C ′ can pass the test;
(2) C ′ cannot pass the test if we add more wires to R∧

w or more sets to T∧
w .

The same statements can be said about C ′, R∨
w and T∨

w .

Lemma 6.2 C ′
(w,i)(t+1) ⊆ C ′

(w,i)(t). (To avoid triviality, we define C ′
(w,i)(t) =

∅, if w is added to C ′ before round i at phase t, or in other words, there is no
round i for w at phase t)

PROOF. We do induction on the pairs (w, i). The lemma clearly holds for
(w1, 1) because C ′

(w1,1)(t) is always empty; w1 is the first wire considered each
time Algorithm 3 runs.

Suppose it holds for all pairs that precede (w, i). Suppose there exists a wire w′

in C ′
(w,i)(t + 1)\C ′

(w,i)(t). We have that (w′, j = Iw′(t + 1)) ≤ (w, i). Therefore,

w′ is added at the jth round at phase t+1 but after the jth round at phase t. In
other words, C ′

(w′,j)(t) fails the test with R∧
w′ and T∧

w′ (or R∨
w′ and T∨

w′) at round
j, while C ′

(w′,j)(t + 1) succeeds. By our inductive assumption, C ′
(w′,j)(t + 1) ⊆

C ′
(w′,j)(t). This contradicts observations (1) and (2). 2

It follows again by observations (1) and (2), and the same observations on C ′,
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R∨
w and T∨

w that

Corollary 6.3 Iw(t) is non-decreasing as t grows.

Now let us bound Iw(t). Recall that the true gate will never be eliminated.
Therefore, whenever C ′ contains all inputs of the true gate, w will be added.
Thus, if the true gate of w is a constant gate, Iw(t) = 1. If the true gate
of w depends only on constant gates, Iw(t) ≤ 2. In general, we have that
Iw(t) ≤ max(Iwi1

(t), Iwi2
(t), . . . , Iwik

(t)) + 1, where wij(j ∈ [1, k]) is an input
of a true gate of w. Therefore, Iw(t) ≤ d.

Each input demanding counterexample for wire w at phase t+1 will eliminate
the gate that Algorithm 3 picked for w at round Iw(t) at phase t, by adding all
inputs of the gate to T∧

w or T∨
w as constraints. By Lemma 6.2 and observations

(1) and (2), this means that at phase t + 1, we cannot pick gates of the
same type again for w at or before round Iw(t). Thus Iw(t) will increase when
w receives at most 2 input demanding counterexamples, one for AND gates
and the other for OR gates. Therefore, we can bound the number of input
demanding counterexamples by O(d) per wire. Thus we can bound the total
number of BEQ′s by a polynomial in N and it follows that the total number
of V IQ′s and the total running time are polynomial as well. We reach the
main theorem.

Theorem 6.4 AND/OR circuits with unbounded fan-in and unbounded depth
are learnable in polynomial time using VIQ’s and BEQ’s.

7 Learning synchronous circuits with cycles

In this section, we study a new learning model called the synchronous model,
where time is quantized and we can inject values as well as observe the out-
put of the circuit at each time step. The value of each wire at time t + 1 is
determined either by the injected value at time t+1 or by its inputs at time t
if it is set free. An experiment sequence is a series of experiments. We require
the first experiment in an experiment sequence to fix all wires for the sake
of completeness. Two circuits are equivalent in the synchronous model, if and
only if they have the same set of wires, and produce the same output sequence
given the same experiment sequence.

In this section, circuits are allowed to have cycles. Although cycles incur con-
flicts in the previous circuit model, they do not cause the same cyclic depen-
dence between gates in the synchronous model, because the computation of
gates is timed and each gate depends only on the status of its input gates in
the previous time step. In fact, for a finite experiment sequence, the circuit

28



in the synchronous model works like an acyclic circuit in the previous model.
For an experiment sequence of length m, we can build an acyclic circuit of m
layers, each corresponding to a time step, by making one copy of each wire
at each layer. An experiment sequence of length m then corresponds to an
experiment for the new acyclic circuit. In this circuit, a copy of a wire at layer
t + 1 depends on the copies of its input wires at layer t and has the same
gate function as its original, except for the wires at the first layer, which are
always fixed by an experiment sequence. The following diagram illustrates a
cyclic circuit in the synchronous model and its corresponding acyclic circuit
of 3 layers.

Fig. 7. A cyclic circuit and its corresponding 3-layer acyclic circuit.

The ability to inject values at each time step in the synchronous model gives
us more power to learn. To some extent, it allows us to isolate and examine
each individual gate as we will see later in this section. We will show that
any circuit over a large class of gates, including constant fan-in gates and
AND/OR gates, are learnable in the synchronous model.

Let us first define two operations on gate functions. Let g(u1, u2, . . . , uk) be
a function from Σk to Σ. For all σ ∈ Σ, i ∈ [1, k], let g|ui=σ = g(u1, . . . , ui =
σ, . . . , uk) be a projection of g. Let P ⊆ 2Σ be a partition of Σ. Let p from Σ
to P be the corresponding partition function, i.e., p maps a symbol to the set
that contains it in P . Let p(g(u1, u2, . . . , uk)) be a blurring of g. A blurring
of g is only interesting when |Σ| > 2, since when |Σ| = 2, the only possible
blurring of g is a constant function.

The idea of blurring is natural in our setting, because blurred versions of
gates are all that the learner observes, that is, the learner is able to observe
the difference between two values α and β for a wire w only when they make
a difference to the circuit output. On the other hand, the difference between
α and β is only relevant when it makes a difference to the circuit outputs.
Therefore, for a gate and a setting of its inputs, the learner is only able to and
only needs to identify a set of values, any of which can be used as the function
value.

Let G be the collection of all classes F of gates that are closed under projection
and blurring and learnable with membership queries in polynomial time. The
main theorem of this section is the following.
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Theorem 7.1 Circuits (which may have cycles) with gates from a class F in
G are learnable in polynomial time in the synchronous model.

The classes of constant fan-in gates and AND/OR gates each belong to G.
Therefore, the theorem applies to these classes of gates. In the following, we
assume all gates are from a class F in G and hence there is a polynomial-time
learning algorithm that learns projections and blurrings of gates from F using
membership queries.

The main idea is natural. First we observe that an experiment s0 that fixes all
wires followed by an experiment s1 that sets wN free can be used to simulate a
membership query on the output gate, as we can observe the value gN(s0) after
s1 is applied. In general, given an experiment sequence ξ = (s1, s2, . . . , sm),
we can simulate a membership query s0 on a gate g by inserting s0 at the
beginning of the experiment sequence, and setting the corresponding wire w
free in s1, i.e., we test the experiment sequence (s0, s1|w=∗, s2, . . . , sm). How-
ever, we can not observe g(s0) if the gate is not the output gate. But as usual,
we can compare the circuit outputs of an experiment sequence and its per-
turbations. Let τ be a partial experiment. Let ξ|τ be an experiment sequence
obtained by modifying the first experiment of ξ by τ . More specifically, when
ξ = (s1, s2, . . . , sm), we have ξ|τ = (s1|τ , s2, . . . , sm). We compare the circuit
outputs of (s0, ξ|w=∗) and (s0, ξ|w=β) for some β ∈ Σ to determine whether
g(s0) = β, or more precisely, determine whether g(s0) 6= β. More formally,
we say an experiment sequence ξ is (w, α, β)-exposing if the circuit output
sequences are different given two experiment sequences, ξ|w=α and ξ|w=β. If
we partition Σ such that α and β are put in the same partition if and only if ξ
is not (w,α, β)-exposing, and let gξ be the blurring of g under this partition,
we can simulate a membership query on gξ by comparing the circuit outputs
of (s0, ξ|w=∗) with (s0, ξ|w=β), ∀β ∈ Σ.

By our assumption, we can learn gξ in polynomial time with membership
queries. Given a collection of experiment sequences ξ1, ξ2, ξ3, . . ., we can learn
gξ1 , gξ2 , gξ3 . . . For an s0 that fixes all wires, each g gives us a suggested set of
possible outputs, the intersection of which gives a more accurate guess on what
g(s0) should be. Or in other words, the intersection of the gξi(s0)’s gives a set
of outputs for g(s0) that are consistent with ξ1, ξ2, ξ3, . . . Another way to view
the blurrings is that each gξi(s0) distinguishes g(s0) from the symbols in the
complement Σ\gξi(s0) (i.e., ξi is (w, g(s0), β)-exposing ∀β ∈ Σ\gξi(s0)). The
union of all the complements is the set of symbols ξ1, ξ2, ξ3, . . . can distinguish
g(s0) from.

Therefore, in Algorithm 4, our goal is to collect a sufficient set of (w, α, β)-
exposing experiment sequences. It starts with an arbitrary length 1 experiment
sequence s1, which is surely an exposing experiment sequence for the output
wire wN for any pair of distinct symbols in Σ. We will show in the following
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Algorithm 4 Learning a synchronous circuit

OUTPUT: C ′ = {∀i ∈ [1, N ], (wi, g
′
i)}.

1: Let ξ0 be an arbitrary length 1 experiment sequence. Let V be a database
of experiment sequences, with the keys being tuples in W×Σ×Σ. Initialize
V to be empty. Add ξ0 to V with the key (wN , α, β) for any α, β ∈ Σ and
α 6= β; all entries are initially unmarked.

2: while there exists an unmarked experiment sequence ξ with key (u, α′, β′)
in V do

3: Mark ξ.
4: Simulate the membership query algorithm to learn gξ, where g is the

true gate of wire u.
5: for w ∈ W , α, β ∈ Σ do
6: if the key (w,α, β) is not in V then
7: Compute s0 such that (s0, ξ|u=∗) is (w, α, β)-exposing or decide that

s0 does not exist (as described above).
8: if s0 exists then
9: Add the unmarked entry (s0, ξ) to V with the key (w,α, β).

10: For all i ∈ [1, N ] and for all s0 that fixes all wires, let g′i(s
0) = σ, where σ ∈⋂

ξ∈V gξ
i (s

0).

how to extend a known experiment sequence to experiment sequences for other
wires using the membership query algorithm for F .

The idea is simple. If there exists s0 such that gN(s0|w=α) 6= gN(s0|w=β),
we can extend the experiment sequence to (s0, s1|wN=∗), which is a (w, α, β)-
exposing experiment sequence. In general, given an experiment sequence ξ =
(s1, s2, . . . , sm) and a wire u, let the gate function of u be g and let w be an
input of gξ. We want to compute an s0 such that (s0, s1|u=∗, s2, . . . , sm) is a
(w, α, β)-exposing experiment sequence.

First we learn gξ using the simulated membership query learning algorithm.
Consider the two projections gξ|w=α and gξ|w=β. s0 does not exist if the two
projections are equivalent (i.e., they output the same value for every input).
Otherwise, we can simulate the learning algorithm to learn gξ|w=α. One query
must be made to distinguish the two projections as they both belong to the
class of gates by our assumption. That is, the learning algorithm must make a
query on an s0 such that gξ|w=α(s0) 6= gξ|w=β(s0). This s0 serves our purpose.
After we have learned gξ, we can answer the membership query of gξ|w=α

by computation. Thus, no additional value-injecting experiment is needed to
compute s0.

We claim that Algorithm 4 collects all exposing experiment sequences.

Lemma 7.2 For any wire w, and α, β ∈ Σ, if there exists a (w, α, β)-exposing
experiment sequence, there exists one in V .
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PROOF. Suppose ξ = (s0, s1, . . . , sm) is a (w, α, β)-exposing experiment se-
quence, but there is no corresponding (w, α, β)-exposing experiment sequence
in V . Assume further that ξ has the minimum length among all experiment
sequences that are exposing but do not have counterparts in V .

Consider the two experiment sequences ξ|w=α and ξ|w=β. Consider the second
time step (after we apply s1). Suppose wire wi takes values αi in ξ|w=α and
βi in ξ|w=β. We claim that there must be no (wi, αi, βi)-exposing experiment
sequence in V .

We do not need to prove anything if αi = βi. When αi 6= βi, wi must set
free in s1 (if wi is fixed, we will have that αi = βi) and gi(s

0|w=α) = αi and
gi(s

0|w=β) = βi. Therefore, given a (wi, αi, βi)-exposing experiment sequence

ξ′ in V , we will have that gξ′
i (s0|w=α) 6= gξ′

i (s0|w=β), in which case, Algorithm 4
will extend it to a (w, α, β)-exposing experiment sequence.

By the minimality assumption on ξ, there does not exist any (wi, αi, βi)-
exposing sequence of length less than m + 1. Let s1

α = s1|∀wi,wi=αi
and

s1
β = s1|∀wi,wi=βi

. We can conclude that (s1
α, s2, . . . , sm) has the same circuit

outputs as (s1
α|w1=β1 , s2, . . . , sm), as well as (s1

α|w1=β1,w2=β2 , s2, . . . , sm), as well
as (s1

α|w1=β1,w2=β2,w3=β3 , s2, . . . , sm), etc., and finally that it has the same cir-
cuit outputs as (s1

β, s2, . . . , sm), which leads to a contradiction. 2

Since the number of keys in V is bounded by |Σ|2N , the running time of
Algorithm 4 is polynomial in N . We now show that the constructed circuit C ′

is equivalent to C in the synchronous model.

PROOF. (of Theorem 7.1) As we have seen in the beginning of this section,
for any experiment sequence ξ of length m, we can build the corresponding
m-layer acyclic circuit C̃ and C̃ ′, and the outputs of C̃ and C̃ ′ are the last
circuit outputs of C and C ′ over ξ. We will show the equivalence of C̃ and C̃ ′

for any m, which establishes the theorem.

First, we show that, if there exists a (w′, α, β)-exposing experiment s in C̃,
where w′ is a layer t copy of wire w, there exists a (w, α, β)-exposing exper-
iment sequence for C. All free wires in layer t must have the same values in
s|w′=α and s|w′=β, because they are not reachable from w′. Therefore, if we
fix them to these values, the resulting experiment s′ will still be (w′, α, β)-
exposing. If we take first t layers of s′, the corresponding experiment sequence
will be (w,α, β)-exposing for C.

Since V contains a representative of every possible (w,α, β)-exposing experi-
ment sequence and gate functions are picked to be consistent with them, we
conclude that every gate function of C̃ ′ is correct (note that in C̃ and C̃ ′ every
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copy of the same wire has the same gate function). The equivalence of C̃ and
C̃ ′ is then established by Lemma 5.4. 2

8 Discussion

The learning algorithms and lower bounds in this paper outline the possibili-
ties for tractable learning of circuits with small alphabets of wire values using
value injection queries, with and without behavioral equivalence queries. Fur-
ther results concerning the cases of large alphabets and analog values may be
found in [3]. Another important topic is the learnability of probabilistic circuits
or Bayesian networks using value injection queries; gate functions in poten-
tial applications are likely to be probabilistic. For circuits containing cycles,
our synchronous model gives encouraging positive results, but its assumptions
may be too strong in practice. In particular, the transient behavior of a circuit
in response to an experiment may be hard to observe or asynchronous. Under-
standing the effects of relaxing these assumptions is important. An interesting
open problem for acyclic circuits is whether there is an efficient non-adaptive
algorithm to learn constant-depth, unbounded fan-in circuits over AND, OR,
and NOT using value injection queries.
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