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Abstract

We introduce a theory of competitive analysis for distributed algorithms. The first steps
in this direction were made in the seminal papers of Bartal, Fiat, and Rabani [18], and of
Awerbuch, Kutten, and Peleg [16], in the context of data management and job scheduling.
In these papers, as well as in other subsequent work [4, 15, 19, 14], the cost of a distributed
algorithm is compared to the cost of an optimal global-control algorithm. (This is also done
implicitly in the earlier work of Awerbuch and Peleg [17].) Here we introduce a more refined
notion of competitiveness for distributed algorithms, one that reflects the performance of
distributed algorithms more accurately. In particular, our theory allows one to compare
the cost of a distributed on-line algorithm to the cost of an optimal distributed algorithm.

We demonstrate our method by studying the cooperative collect primitive, first ab-
stracted by Saks, Shavit, and Woll [57]. We present two algorithms (with different strengths)
for this primitive, and provide a competitive analysis for each one.
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1 Introduction

Introducing a Notion of Competitive Analysis for Distributed Algorithms The
technique of competitive analysis was proposed by Sleator and Tarjan [58] to study problems
that arise in an on-line setting, where an algorithm is given an unpredictable sequence of
requests to perform operations, and must make decisions about how to satisfy its current
request that may affect how efficiently it can satisfy future requests. Since the worst-case
performance of an algorithm might depend only on very unusual or artificial sequences of
requests, or might even be unbounded if one allows arbitrary request sequences, one would like
to look instead at how well the algorithm performs relative to some measure of difficulty for the
request sequence. The key innovation of Sleator and Tarjan was to use as a measure of difficulty
the performance of an optimal off-line algorithm, one allowed to see the entire request sequence
before making any decisions about how to satisfy it. They defined the competitive ratio, which
is the supremum, over all possible input sequences σ, of the ratio of the performance achieved
by the on-line algorithm on σ, to the performance achieved by the optimal off-line algorithm
on σ, where the measure of performance depends on the particular problem.

In a distributed setting there are additional sources of nondeterminism, other than the
request sequence. These include process step times, request arrival times, message delivery
times (in a message-passing system) and failures. Moreover, a distributed algorithm has to
deal not only with the problems of lack of knowledge of future requests and future system
behavior, but also with incomplete information about the current system state. Due to the
additional type of nondeterminism in the distributed setting, it is not obvious how to extend
the notion of competitive analysis to this environment.

Awerbuch, Kutten, and Peleg [16], and Bartal, Fiat, and Rabani [18], took the first steps
in this direction. Their work was in the context of job scheduling and data management. In
these papers, and in subsequent work [4, 15, 14, 19], the cost of a distributed on-line algorithm
1 is compared to the cost of an optimal global-control algorithm. (This is also done implicitly
in the earlier work of Awerbuch and Peleg [17].) As has been observed elsewhere (see, e.g. [15],
paraphrased here), this imposes an additional handicap on the distributed on-line algorithm
in comparison to the optimal algorithm: In the distributed algorithm the decisions are made
based solely on local information. It is thus up to the algorithm to learn (at a price) the relevant
part of the global state necessary to make a decision. The additional handicap imposed on the
on-line distributed algorithm is that it is evaluated against the off-line algorithm that does not
pay for overhead of control needed to make an intelligent decision.

We claim that in some cases a more refined measure is necessary, and that to achieve this the
handicap of incomplete system information should be imposed not only on the distributed on-
line algorithm but also on the optimal algorithm with which the on-line algorithm is compared.
Otherwise, two distributed on-line algorithms may seem to have the same competitive ratio,
while in fact one of them totally outperforms the other. Our approach is ultimately based
on the observation that the purpose of competitive analysis for on-line algorithms is to allow

1Because most distributed algorithms have an on-line flavor, we use the terms distributed algorithm and
distributed on-line algorithm interchangeably.
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comparison between on-line algorithms; the fictitious off-line algorithm is merely a means to
this end. Therefore, the natural extension of competitiveness to distributed algorithms is
to define a distributed algorithm as k-competitive if for each sequence of requests, and each
scheduling of events, it performs at most k times worse than any other distributed algorithm.

This is the approach introduced in this paper. An algorithm that is k-competitive according
to the competitive notion of all current literature on competitive distributed algorithms [4, 15,
16, 18, 19, 14], is at most k-competitive according to our notion, but may be much better.
(A concrete example appears below.) Thus, the competitive notion in this paper captures the
performance of distributed algorithms more accurately than does the definition used in the
literature.

Under both the definition of Sleator and Tarjan and the one introduced by [16, 18], one
only has to show that the competitive algorithm performs well in comparison with any other
algorithm that deals with one type of nondeterminism: the nondeterminism of not knowing the
future requests and system behavior. In contrast, using the new definition one must show that
the competitive algorithm performs well in comparison with any other algorithm that deals
with two types of nondeterminism: the nondeterminism of not knowing the future requests
and system behavior, and the nondeterminism of having only partial information about the
current system state. Our measure is defined formally in Section 4 and is one of the central
contributions of the paper.

Cooperative Collect To demonstrate our technique we study the problem of having pro-
cesses repeatedly collect values using the cooperative collect primitive, first abstracted by Saks,
Shavit, and Woll [57]. In many shared-memory applications processes repeatedly read all
values stored in a set of registers. If each process reads every register itself, then the com-
munication costs increase dramatically with the degree of concurrency, due to bus congestion
and contention. Interestingly, this is the (trivial) solution that is used in current literature
on wait-free shared-memory applications, including nearly all algorithms known to us for con-
sensus, snapshots, coin flipping, bounded round numbers, timestamps, and multi-writer regis-
ters [1, 2, 5, 7, 8, 9, 10, 11, 13, 20, 21, 24, 25, 26, 28, 30, 32, 38, 34, 35, 39, 40, 46, 59]2. Indeed,
the cost of this näıve implementation is easily shown to be a lower bound on the worst-case
cost of any implementation. Here, the worst case is taken over the set of adversarially chosen
schedules of events (we give more details below). In this paper we show that in the interesting
cases – those in which concurrency is high – it is possible to do much better than in the näıve
solution. This suggests that a competitive analysis of the problem may be fruitful.

We assume the standard model for asynchronous shared-memory computation, in which n
processes communicate by reading and writing to a set of single-writer-multi-reader registers.
(We confine ourselves to single-writer registers because the construction of registers that can
be written to by more than one process is one of the principal uses for the cooperative collect
primitive.) As usual, a step is a read or a write to a shared variable. We require our algorithms
to be wait-free: there is an a priori bound on the number of steps a process must take in order
to satisfy a request, independent of the behavior of the other processes.

2An exception is the consensus algorithm of Saks, Shavit, and Woll [57]. We discuss their results in Section 2.
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In the cooperative collect primitive, processes perform the collect operation – an operation
in which the process learns the values of a set of n registers, with the guarantee that each
value learned is fresh: it was present in the register at some point during the collect.3 If
each process reads every register, then this condition is trivially satisfied. However, more
sophisticated protocols may allow one process p to learn values indirectly from another process
q. The difficulty is that these values may be stale, in that q obtained them before p started its
current collect, and the contents of the registers have changed in the interim. Thus, additional
work must be done to ascertain that the values are fresh, and if they are not, to obtain fresh
values.

Competitive Analysis of Cooperative Collect Algorithms We assume that the sched-
ule – which processes take steps at which times, when requests for collects arrive, and when the
registers are updated – is under the control of an adversary. Intuitively, if the adversary sched-
ules all n processes to perform collect operations concurrently, the work can be partitioned so
that each process performs significantly fewer than n reads. However, suppose instead that the
adversary first schedules p1 to perform a collect in isolation. If p2 is later scheduled to perform
a collect, it cannot use the values obtained by p1, since they might not be fresh. For this reason
p2 must read all the registers itself. Continuing this way, we can construct a schedule in which
every algorithm must have each process read all n registers. Thus, the worst-case cost for any
distributed algorithm is always as high as the cost of the näıve algorithm.

The example above shows that a worst-case measure is not very useful for evaluating coop-
erative collect algorithms. Unfortunately, a similar example shows that a competitive analysis
that proceeds by comparing a distributed algorithm to an ideal global-control algorithm gives
equally poor results. The underlying difficulty arises because a global-control algorithm knows
when registers are updated. Thus in the case where none of the registers have changed since
a process’s last collect, it can simply return the values it previously saw, doing no read or
write operations. On the other hand, any distributed algorithm must read all n registers to be
sure that new values have not appeared, which gives an infinite competitive ratio, for any dis-
tributed algorithm. Thus the competitive measure of [16, 18] does not allow us to distinguish
between the näıve algorithm and algorithms that totally dominate it.

The competitive measure presented here allows us such a distinction. To characterize the
behavior of an algorithm over a range of possible schedules we define the competitive latency
of an algorithm. Intuitively, the competitive latency measures the ratio between the amount
of work that an algorithm needs to perform in order to carry out a particular set of collects,
to the work done by the best possible algorithm for carrying out those collects given the
same schedule. As discussed above, we refine previous notions by requiring that this best
possible algorithm be a distributed algorithm. Though the choice of this champion algorithm
can depend on the schedule, and thus it can implicitly use its knowledge of the schedule to
optimize performance (say, by having a process read a register that contains many needed
values), it cannot cut corners that would compromise safety guarantees if the schedule were

3This is analogous to the regularity property for registers [47]: if a read operation R returns a value that
was written in an update operation U1, there must be no update operation U2 to the same register such that
U1 → U2 → R.
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different (as it would if it allowed a process not to read a register because it “knows” from the
schedule that the register has never been written to).

Our Algorithms Using the trivial collect algorithm, even if n processes perform collects
concurrently, there are a total of n2 reads. We present the first algorithms that cross this
barrier. The basic technique is a mechanism that allows processes to read registers coopera-
tively, by having each process read registers in an order determined by a fixed permutation of
the registers. The proof of competitiveness for our algorithms has two parts, each of which
introduces a different technique. In the first part, we partition the execution into intervals,
each of which can be identified with a different set of collect operations, and in each of which
any distributed algorithm must perform at least n steps. This technique demonstrates how an
algorithm can be compared with an optimal distributed algorithm, i.e., with an algorithm that
does not have global control. In the second part we show how to construct a set of permuta-
tions so that a set of concurrent collect operations will take at most kn steps to be completed,
for some k, independent of the scheduling of the processes’ steps. A first step in this direction
was made by Anderson and Woll in their elegant work on the certified write-all problem [6]
(see Section 2). Due to the requirement of freshness, our adversary is less constrained than
the adversary in [6], where freshness is not an issue. Thus, we need additional insight into the
combinatorial structure of the schedule. In particular, for this part of the proof we prove that
if the adversary has a short description, then there exists a good set of permutations. We then
show that the adversary is sufficiently constrained in its choices by our algorithm, that it has
a short description.

We present two deterministic algorithms; the differences between them come from using
different sets of permutations. The first algorithm uses a set of permutations with strong
properties that allows a very simple and elegant algorithm; however, the construction of the
permutations is probabilistic, although suitable permutations can be found with high proba-
bility. The second algorithm uses a constructible but weaker set of permutations, and requires
some additional machinery.

In the non-constructive algorithm, the number of reads for n overlapping collects is at most
O(n3/2 log2 n). We show this yields a competitive latency of O(n1/2 log2 n). In the explicit
construction, the number of reads for n overlapping collects is at most n(7/4)+ε log2 n, where ε
tends to zero as n goes to infinity. This will yield a competitive latency of O(n(3/4)+ε log2 n).
These bounds are in contrast to the Ω(n)-competitiveness of the trivial solution. In addition,
we have an absolute worst-case bound on the work done for each collect: both algorithms are
structured so that no collect ever takes more than 2n operations, no matter what the schedule.

Our Upper Bounds versus a Lower Bound For comparison, we show that no algorithm
can have expected competitive latency that is better than Ω(log n). (This of course implies
that for each deterministic algorithm, there is a fixed schedule on which its competitive latency
is at least Ω(log n).) Our lower bound holds also for randomized algorithms and against an
adversary that does not need to know the algorithm, i.e., an adversary weaker than the usual
oblivious adversary. In particular, the adversary determines a probability distribution over
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schedules under which any cooperative collect algorithm, even one that uses randomization,
will have an expected latency competitiveness of Ω(log n). In contrast, our algorithms are
deterministic and their competitiveness is measured against a stronger, worst-case (adaptive)
adversary.

The Ω(log n) lower bound matches our upper bound rather tightly in the following sense.
Our algorithms have a structure in which processes are partitioned into

√
n groups of size√

n. The processes in each group will collaborate to read
√
n blocks of

√
n registers; there

is no collaboration between groups. Loosely stated we show that for each of these groups,
the work ratio, between the amount of work performed by the group to the work done by all
processes in the best possible algorithm for this schedule, is O(p log n) for our first algorithm
and O(pn(1/4)+ε log n) for our second algorithm, where pn is the number of atomic steps a
process needs to perform in order to complete an atomic snapshot scan operation on n registers.
The competitive latency is obtained by multiplying these ratios by the number of groups (cf.
end of Section 5.5).

Since the best known atomic snapshot in our model of computation, due to Attiya and
Rachman [13], requires a process to perform O(n log n) atomic steps for each atomic snapshot,
it follows that for each of the

√
n groups, the ratio between the amount of work performed by

it in our faster algorithm, to the work done by all processes in the best possible algorithm for
this schedule is O(log2 n). Thus, despite the powerful adversary, each of these groups comes
very close to our almost trivial lower bound of Ω(log n). This also shows that in order to
improve significantly the upper bound obtained in this paper, one has to allow the groups
to collaborate in some way. The combinatorial problem of reasoning about the interactions
between the processes, which is already quite hard even when collaboration is done solely
within the groups, becomes significantly harder.

Organization The remainder of the paper is organized as follows. Section 2 describes some
additional related work. Section 3 describes our model of computation. Section 4 presents
our competitive measure. Section 5 describes our faster cooperative collect algorithm and
its competitive analysis. Section 6 describes our second cooperative collect algorithm, whose
construction is explicit, and analyses its competitiveness. Section 7 derives a lower bound for
the competitive latency of any cooperative collect algorithm.

2 Other Related Work

Saks, Shavit, and Woll were the first to recognize the opportunity for improving the efficiency of
shared-memory algorithms by finding a way for processes to cooperate during their collects [57].
They devised an elegant randomized solution, which they analyzed in the so-called big-step
model. In this model, a time unit is the minimal interval in the execution of the algorithm
during which each non-faulty process executes at least one step. In particular, if in one time
interval one process takes a single step, while another takes 100 steps, only one time unit is
charged. Thus, the big-step model gives no information about the number of accesses to shared
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memory (“small” steps) performed by the processes during an execution of the algorithm. This
stands in contrast to our work, which focuses on shared-memory accesses.

The cooperative collect resembles the problem of arranging for processes to collaborate in
order to perform a set of tasks. The closest problem in the literature is the certified write-
all problem (CWA). In this problem, the first variant of which was introduced by Kanellakis
and Shvartsman [41], a group of processes must together write to every register in some set
(the write-all), and every process must learn that every register has been written to (the
certification). This paper was followed by a number of others that consider variants of the
basic problem (see, for example, [6, 23, 41, 42, 44, 45, 48, 49]). All of the work on the CWA
assumes some sort of multi-writer registers. In a model that provides multi-writer registers,
the cooperative collect would be equivalent to the certified write-all (CWA) problem, were it
not for the issue of freshness. The reason for the equivalence is that if a process learns that
some register has been written to, it must be because of information passed to it from some
process that wrote to that particular register. Thus, given a certified write-all algorithm, one
can replace each of the writes to the registers by a read, and pass the value read along with
the certification that that particular register was touched. Thus when each process finishes,
because it possesses a certification that each register was touched, it must also possess each
register’s value.

The CWA is useful in simulating a synchronous PRAM on an asynchronous one. Specif-
ically, the CWA can be used as a synchronization primitive to determine that a set of tasks
– those performed at a given step in the simulated algorithm – have been completed, and it
is therefore safe to proceed to the simulation of the next step. If each instance of the CWA
is carried out on a different set of registers (a solution not relevant to our problem), then is-
sues of freshness do not arise. If registers are re-used the problem becomes more complicated,
particularly in a deterministic setting. We know of no work on deterministic algorithms for
the CWA problem that addresses these issues in our model of computation. (For example, [6]
assumes Compare&Swap and a tagged architecture, in which associated with each register is a
tag indicating the last time that it was written.)

In the asynchronous message-passing model, Bridgeland and Watro studied the problem
of performing a number t of tasks in a system of n processors [22]. In their work, processors
may fail by crashing and each processor can perform at most one unit of work. They provide
tight bounds on the number of crash failures that can be tolerated by any solution to the
problem. In the synchronous message-passing model, Dwork, Halpern, and Waarts studied
essentially the same problem [29]. Their goal was to design algorithms that minimized the
total amount of effort, defined as the sum of the work performed and messages sent, in order
for each non-faulty process to ensure that all tasks have been performed. Their results were
recently extended by Prisco, Mayer and Yung [56].

A related notion to the competitive measure suggested in this paper is the idea of compar-
ing algorithms with partial information only against other algorithms with partial information,
which was introduced by Papadimitriou and Yannakakis [54] in the context of linear program-
ming; their model corresponds to a distributed system with no communication. A generaliza-
tion of this approach has recently been described by Koutsoupias and Papadimitriou [43].
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In addition, there is a long history of interest in optimality of a distributed algorithm given
certain conditions, such as a particular pattern of failures [27, 31, 37, 50, 52, 53], or a particular
pattern of message delivery [12, 33, 55]. These and related works are in the spirit of our paper,
but differ substantially in the details and applicability to distinct situations. In a sense, work
on optimality envisions a fundamentally different role for the adversary in which it is trying
to produce bad performance both in the candidate algorithm and in what we would call the
champion algorithm; in contrast, the adversary used in competitive analysis usually cooperates
with the champion.

3 Model of Computation

We assume a system of n processes p1, . . . , pn, that communicate through shared memory.
Each location in memory is called a register. Registers can be read or written in a single
atomic step. Our algorithms will assume that the registers are single-writer-multi-reader, i.e.
that each register can be written to only by a single processor (its owner) and read by all
processors. We assume a completely asynchronous system. Each process can receive stimuli
(requests) from the outside world. A process’s local state can change only when it takes a
step (performs a read or a write of a register) or in response to an external stimulus. Each
process has a set of halting states. A process in a halting state takes no steps and cannot
change state except in response to an outside stimulus. A process in a non-halting state is,
intuitively, ready to take a step. On being activated by the scheduler, such a process accesses
a register and enters a new state. The new state is a function of the previous state and any
information read, if the step was a read of a register. This formalizes the usual assumption
in an asynchronous algorithm, that a process cannot change state solely in response to being
given, by the scheduler, the opportunity to take a step. We assume that the schedule of events,
that is, the interleaving of step times and outside stimuli, is under the control of an adversary.

4 Competitive Analysis

Traditionally, the competitiveness of an algorithm has been measured by comparing its per-
formance to the performance of an omniscient being (the off-line algorithm). The intuition is
that if the on-line algorithm “does well” when measured against an omniscient being, then it
certainly “does well” when compared to any other algorithm that solves the problem. This
notion of competitiveness can be extended naturally by restricting the class of things (omni-
scient beings, or algorithms) against which the given algorithm is to be compared, provided
the resulting comparison says something interesting about the algorithm studied.

As discussed in the introduction, in order to get a more refined measure of the performance
of a distributed algorithm, we compare its performance to that of other distributed algorithms:
algorithms in which processes get no “free” knowledge about the current state of the system.
To measure the competitiveness of an algorithm for a certain problem P, we compare its cost
on each schedule σ, to the cost of the best distributed algorithm on σ. We refer to the algorithm
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being measured as the candidate, and we compare it, on each schedule σ to the champion for
σ. Thus, we can imagine that the champion guesses σ and optimizes accordingly, but even if
the schedule is not σ the champion still operates correctly. Note that we have restricted our
comparison class by requiring that the champion actually be a distributed algorithm for P –
that is, that it solve problem P correctly on all schedules. On the other hand, we permit a
different champion for each σ. This is a departure from the usual model, in which there is a
single off-line algorithm.

In this paper we focus on a particular cost measure based on the work done by an algorithm.
The result is a competitive ratio which we call competitive latency.

4.1 Competitive Latency

In this paper we are interested in algorithms for carrying out a sequence of tasks. Each request
from the scheduler is a request to carry out a particular task. To complete a task a process
must enter into one of its halting states. (Naturally, to be correct, the algorithm must in fact
have successfully carried out the specified task when it enters into this halting state.)

We consider only schedules in which each process in the candidate algorithm completes its
current task before being asked to start a new one. (This is consistent with the use of the
cooperative collect in all the algorithms mentioned above.) Similarly, for each such schedule,
we will only consider as possible champions algorithms in which each process happens to finish
its task before the next task arrives. Algorithms that have this property will be said to be
compatible with the given schedule. We will charge both the candidate and the champion for
every read or write operation that they carry out as part of the tasks.

The total work done by an algorithm A under an adversary schedule s is just the number of
reads and writes in s.4 Writing this quantity as work(A, s), the competitive ratio with respect
to latency of an algorithm is defined to be:

sup
s

work(A, s)
infB work(B, s)

where s ranges over all finite schedules that are compatible with A and B ranges over all
correct distributed algorithms that are compatible with s. The restriction to finite schedules
is required for the ratio to be defined. For any fixed infinite schedule, we can define the
competitive ratio to be the limit supremum of the ratio for increasingly long finite prefixes of
the schedule. But this leads to the same result once the supremum over all schedules is taken.

Note that the definition above is sufficient for our purposes as we consider only deterministic
algorithms. For a randomized algorithm it would be necessary to take expectations over both
the algorithm’s choices and the adversary’s responses to them.

4This quantity is not simply the length of the schedule since a process does no work while in its halting state.
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5 The Speedy Collect Algorithm

In this section we present a non-constructive algorithm that is O(
√
n log2 n)-competitive with

respect to latency.

Our starting point is the Certified Write-All algorithm of Anderson and Woll [6]. In their
algorithm, every process pi has a fixed permutation πi of the integers {1, . . . , n}. When pi
takes a step it writes to the first location in πi that has not yet been written. Intuitively, it is
to the adversary’s advantage if many processes write to the same location at the same time,
since this causes wasted work. For each adversary scheduler Anderson and Woll showed that
the number of cells that are written can be bounded above as follows.

A longest greedy monotonic increasing subsequence (lgmis) of a permutation π with respect
to an ordering σ is constructed by starting with the empty sequence, then running through the
elements of π in order and adding each to the subsequence if and only if it is larger (according
to σ) than all elements already in the subsequence. Let σ be the order in which the cells are
first written, under this adversary schedule. Anderson and Woll showed that the total number
of writes performed by each pi in this schedule is bounded above by the length of the longest
greedy monotonic increasing subsequence of πi with respect to σ. It was shown probabilistically
in [6] that there exists a set of n permutations on the numbers {1, . . . , n} such that the sum of
the lengths of all longest greedy monotonic increasing subsequences on the set with respect to
any ordering σ is O(n log n). Later, J. Naor and R. Roth [51] obtained an explicit construction
in which this quantity is O(n1+ε log n), where ε tends to zero when n tends to infinity.5

In the speedy collect algorithm, we also have each process choose its actions (which are
now read operations instead of the write operations of Certified Write-All) according to a fixed
permutation that is distinct for each process. Similarly, we adopt a rule that a process does
not carry out a read of a particular register if some other process has already supplied it with a
fresh value for that register, with freshness detected by the use of timestamps. This additional
requirement that the secondhand values be fresh, however, means that the set of reads done by
a process does not correspond to a greedy monotonic increasing subsequence of the process’s
permutation, and in consequence the known results bounding the sizes of lgmiss do not help
us find a “good” set of permutations that will make our algorithm competitive. Instead, we
can show that a “good” set of permutations exists, using a probabilistic argument based on a
demonstration that the effect of the adversary can be described in a small number of bits.

5.1 Description of the Algorithm

We partition the processes into groups of size
√
n. The processes in each group will collaborate

to read
√
n blocks of

√
n registers; there is no collaboration between groups. Each process p

has a shared variable collect-nump, initially zero and incremented each time p begins a new
collect. Throughout the algorithm, p repeatedly computes timestamps. A timestamp is an
array of collect numbers, one for each process. Intuitively, p will trust any value tagged with a

5Specifically, ε = O(log log logn/ log logn).
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timestamp whose component for p equals collect-nump because these values are necessarily
read after p’s collect began.

The views of processes in a group are read and updated using the atomic snapshot algorithm
of Attiya and Rachman [13]. The basic operation of the Attiya-Rachman algorithm on an array
A is Scan-Update(v), where v can be null. When a process p performs Scan-Update(v) for
a non-null v, it has the effect of updating p’s current value to v and returning a copy of the
entire contents of A (a snapshot), with A[p] = v. When it performs Scan-Update(v) for a
null v, it simply returns the snapshot of A. In the following, all Scan-Update() operations
are applied to the array view. Since the Attiya-Rachman algorithm is an atomic snapshot
algorithm, there is a total serialization order on the Scan-Update() operations that preserves
the real time order of the operations and that corresponds to the apparent ordering determined
by examining which Scan-Update() operations return which values. The Scan-Update(v)
operation has a cost of O(m logm), where m is the number of processes (and also the size
of the array); in this paper we will generally be using snapshots only within a group of

√
n

processes, in which case the cost will be O(
√
n log n).

For technical reasons, not every atomic snapshot algorithm can be used here without mod-
ification. The main restriction is that the algorithm must have, in addition to the above
properties common to all snapshot algorithms, the property that the very first step of a
Scan-Update(v) operation is a write of the new value v, and that this value must be in-
cluded in the result of any Scan-Update() that starts after the value is written, even if the
Scan-Update(v) operation has done no work yet beyond that very first write. Fortunately,
the Attiya-Rachman algorithm has this property.

Each process p is given a fixed permutation πp of the blocks. On first waking (beginning
a collect), p performs Scan-Update(newviewp), where newviewp contains only p’s newly
incremented collect number. From then on, p repeatedly performs the following operations.

1. read-group: Obtain an atomic snapshot of the current view of all processes in the group
by invoking Scan-Update() (O(

√
n log n) operations). Extract from this a snapshot of

the vector of collect numbers, but do not write this snapshot to shared memory at this
point. Call this snapshot a timestamp.

2. read-block: Read the registers in the first block in πp that, in the union of the views
obtained in the snapshot, is not tagged with a timestamp whose pth component is
collect-nump (

√
n operations).

3. write-view: Tag the block just read with the current timestamp. Let newviewp

consist of (a) this block, (b) the most recent values of each block b seen in the snapshot,
along with their timestamp tags, and (c) the value collect-nump (which is unchanged).
Update view[p] by invoking Scan-Update(newviewp) (O(

√
n log n) operations).

This loop repeats until all
√
n blocks appear in view[p] tagged with a timestamp whose pth

component is collect-nump.

10



To ensure that in the worst case process p performs at most O(n) operations, we interleave
the execution of this loop with a näıve collect. That is: after each atomic operation performed
in the loop above, insert a single read operation for a register for which the process does not yet
have a trusted value (i.e., a value in a block tagged with a timestamp whose pth component
is collect-nump). The values learned through these single reads are not included in the
process’s view and do not affect its behavior in the above loop; however, if the union of its
view and these directly-read values include fresh values for all n registers, the process finishes
its collect as soon as it is done with its current Scan-Update() operation.

It is worth noting that instead of using as a timestamp the vector of collect numbers seen
by the read-group operation (through an atomic snapshot), one can use the sum of the

√
n

components of this vector. Refer to this sum as a round number, and refer to the sum of the
collect numbers obtained by the first read-group of a collect as an initial round number in
this collect. From the fact that the collect numbers of a process increase monotonically and
the linearizability of the snapshot object, it follows that a process can trust values tagged by
round numbers that are not less than its initial round number in this collect. Use of this shorter
timestamps will decrease the registers’ size by a factor of n. For simplicity of exposition, we
overlook this possible optimization.

The key to the performance of the algorithm is the choice of good permutations. In order
to be able to choose the permutations well we need to formulate a more precise description of
the effect of the adversary scheduler. In particular, we would like to show that the effect of the
adversary can be described in only O(n log n) bits. In this case we can show that a “good” set
of permutations exists, using a combinatorial lemma described in Section 5.2. In Section 5.3
we describe a succinct representation of the adversary. This representation, and the “good”
permutations that follow from its existence, are then used to prove the competitiveness of the
algorithm in Sections 5.4 and 5.5.

5.2 Good Permutations Exist

In Anderson and Woll’s Certified Write All algorithm, it is possible to describe the schedule as
a single permutation σ that specifies the order in which values are first written. The reason for
this simplicity is that in the Certified Write All problem freshness is not an issue, so writing
a register advances the goals of all processes equally. This symmetry does not hold for the
cooperative collect problem, and in consequence it is necessary to model each adversary a as
a collection Ra1, R

a
2, . . . , R

a
n of permutations, one for each process.

Intuitively, Rai captures the behavior of adversary a that is relevant to process pi, in that we
can show that the reads performed by each process are bounded above by the longest greedy
monotonic increasing subsequence of πi with respect to Rai . The relation between the Ri’s and
the adversary scheduler is as follows. In the algorithm of [6], Rai describes the order in which
the cells 1 . . . n are first written; thus Rai = Raj for all i, j, a. In our scenario, for each process
pi we are concerned with the ordering of the writes of blocks of registers which can be trusted
by pi to be fresh. Thus in our scenario Rai describes the order of the first trustworthy writes of
each block (that is, values tagged with a timestamp that includes collect-numpi). Therefore,
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for each a it is not necessarily the case that Rai = Raj , and thus a näıve representation of our
adversary requires more than n log n bits. Nonetheless, as we show in Section 5.4, it is actually
possible to describe the adversary in O(n log n) bits. This is because the relationship between
Rai and Raj is not completely unconstrained. For example, intuitively, if pj begins its collect
before pi does, then values trusted by pi will also be trusted by pj .

The fact that we can describe an adversary succinctly is important in light of the following
combinatorial lemma, which ties the existence of a good set of permutations to the length of
the description of the adversary. Specifically, if the adversary can be described in O(n log n)
bits, then there is a set of permutations for which the sum of the longest greedy monotone
increasing subsequences for each pair (Rai , πi) is O(n log n).

Denote by `(σ, π) the length of the greedy monotone increasing subsequence (lgmis) of a
permutation π according to the ordering σ.

Lemma 5.1 Assume that n is a positive integer and A is a set so that each element of a ∈ A
is a sequence a = Ra1, . . . , R

a
n where Rai is an ordering of the set {1, . . . , n}. For all c1, c2 > 0,

there exists c3, so that if n is sufficiently large, |A| ≤ 2c1n logn, and the permutations π1, . . . , πn
are taken at random independently and with uniform distribution on the set of all permutations
of {1, . . . , n}, then with a probability of at least 1 − e−c2n logn we have that for all a ∈ A,∑
i l(R

a
i , πi) ≤ c3n log n.

Proof: The main step in proving the lemma is to show that for any single adversary a, the
sum of the lgmis’s is small with high probability. To simplify the argument, note that if we fix
an adversary a and a permutation σ,

∑
i l(R

a
i , πi) =

∑
i l(σ(Rai )

−1Rai , σ(Rai )
−1πi) =

∑
i l(σ, π

′
i),

where the π′i are independent, uniformly distributed random permutations. Consequently, as
long as we are considering only the distribution of the random variable

∑
i l(R

a
i , πi) for a single

fixed a, we may assume without loss of generality that Rai = σ for all i.

First we show:

Claim 5.2 There is an α > 0 so that if n is sufficiently large, σ is a fixed ordering on
{1, . . . , n}, and πi is a random permutation of {1, . . . , n}, then for all r, where α log n < r ≤ n,
we have that P (l(σ, πi) > r) < e−r/4.

Proof: We may assume that σ is the natural ordering of the numbers {1, . . . , n}. Let
u1, . . . , ut be the lgmis of permutation πi with respect to the ordering σ. Note that for
any m = 1, . . . , n− 1 and j = 1, . . . , n− 1 the distribution of uj+1, conditioned on uj = m, is
uniform on the set {m+ 1, . . . , n}.

Let Dj , j = 1, 2, . . . be the following random variable: If uj does not exist then Dj is 0
or 1 with a probability of 1/2, 1/2. If uj is defined, then Dj=1 if n − uj < 1

2(n − uj−1), and
Dj = 0 otherwise.

Observe that the inequality n − uj <
1
2(n − uj−1) may hold for at most log2 n distinct
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values of j. Thus, for any fixed integer r ≤ n, if l(σ, πi) > r, then
∑r
i=1Di ≤ log2 n. Therefore,

P (l(σ, πi) > r) ≤ P (
∑r
i=1Di ≤ log n).

We estimate the probability pr = P (
∑r
i=1Di ≤ log n). Clearly for any j = 1, . . . , n and for

any 0, 1 sequence δ1, . . . , δj−1, we have that

P (Dj = 1|D1 = δ1, . . . , Dj−1 = δj−1) ≤ 1/2.

(Because, if uj is not defined then the above probability is 1/2; if it is defined then, as we
have said earlier, uj is uniform in {uj−1 + 1, . . . , n} and therefore P (uj > 1

2(n+uj−1)) ≤ 1/2.)
Thus, if D′i, i = 1, . . . , r are mutually independent random variables and D′i = 0, or 1 with
probabilities 1/2, 1/2 for all i = 1, . . . , r, then pr ≤ p′r = P (

∑r
i=1D

′
i ≤ log n).

To complete the proof of the claim we estimate p′r. If r > 2 log n then

p′r =
logn∑
j=0

(
r

j

)
2−j2j−r = 2−r

logn∑
j=0

(
r

j

)
≤ 2−r(1 + log n)

(
r

[log n]

)
.

Let d = [logn], using that d! ≥ (d/e)d, we get that

2−r
(
r

d

)
≤ 2−rrd/d! ≤ 2−rrd(d/e)−d = e−r log 2+d log r−d log d+d def= K(r).

Assume now that α > 0 is picked so that for all x > α we have x log 2 > 2(log x + 1). Let
ρ = r/d. Then for all r > αd,

K(r) = K(ρd)
= e−ρd log 2+d log d+d log ρ−d log d+d

= e−ρd log 2+d log ρ+d

≤ e−(ρ/2)d log 2 = e−
1
2
r log 2.

Consequently for all r > α log n, P (l(σ, πi) > r) ≤ pr ≤ p′r ≤ (1 + log n)e−
1
2
r log 2 < e−r/4, and

we are done.

Next we show:

Claim 5.3 Assume α > 0 is the constant in Claim 5.2, β > 0 is an arbitrary real number,
n is sufficiently large, σ is a fixed ordering on {1, . . . , n}, and, for each i = 1 . . . , n, πi is a
random permutation of {1, . . . , n}. Let B be the event∑

{l(σ, πi)|l(σ, πi) > α log n} > (4β + 12)n log n,

then P (B) < e−βn logn.
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Proof: Let X = {i|l(σ, πi) > α log n}. Then X = {x1, . . . , xt} for some t. Let u =
〈x1, . . . , xt, l(σ, πx1), . . . , l(σ, πxt)〉. For each t0 that is a fixed number in {1, . . . , n}, and for
each u0 = 〈v1, . . . , vt0 , w1, . . . , wt0〉 that is a fixed sequence of length 2t0 whose elements are
integers between 1 and n, define Bt0,u0 to be the following event: “B and t = t0 and u = u0”.

We estimate the probability of Bt0,u0 . By Claim 5.2, for any fixed j = 1, . . . , t0 the proba-
bility that l(σ, πvj ) = wj is at most e−wj/4. (Here we used the fact that wj ≥ α log n.) Since
these events for each j = 1, . . . , t0 are independent, we have that

P (Bt0,u0) <
t0∏
j=1

e−wj/4 ≤ e−1/4
∑

wj ≤ e−(β+3)n logn.

Since t0 is an integer between 1 and n, u0 is a sequence of length 2t0 ≤ 2n, and each element
of u0 is an integer between 1 and n, there are at most n2n+1 choices for the pair t0, u0. Thus,

P (B) ≤
∑
t0,u0

P (Bt0,u0) < n2n+1e−(β+3)n logn ≤ e(2n+1) logne−(β+3)n logn ≤ e−βn logn,

which completes the proof of the claim.

Since each number l(σ, πi) which is not included in the sum in Claim 5.3 is at most α log n,
their total is at most αn log n, and it follows that

Claim 5.4 Assume α > 0 is the constant in Claim 5.2, β > 0 is an arbitrary real number,
n is sufficiently large, σ is a fixed ordering on {1, . . . , n}, and, for each i = 1, . . . , n, πi is a
random permutation of {1, . . . , n}. Let B be the event∑

l(σ, πi) > (4β + 12 + α)n log n,

then P (B) < e−βn logn.

Because
∑
i l(σ, πi) has the same distribution as

∑
i l(R

a
i , πi), the above claim applies equally

well to the more general case where we replace σ with a possibly distinct permutation for each
i. This completes the main step of the proof.

To obtain the full lemma, given c1, c2, choose c3 = 4(c1 + c2) + 12 + α, where α is the
constant of Claim 5.2. For each fixed a ∈ A, let Da be the event

∑
i l(R

a
i , πi) ≤ c3n log n.

Claim 5.4 implies that for each fixed a, P (Da) ≥ 1− e−(c1+c2)n logn. Therefore,

P (∀a ∈ A, Da) ≥ 1− |A|e−(c1+c2)n logn

≥ 1− 2c1n logne−(c1+c2)n logn

= 1− e−c2n logn,

which completes the proof of the lemma.
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5.3 Representing the Scheduling Adversary as a Combinatorial Object

Given a set Π of m permutations on {1, . . . ,m}, the adversary, denoted by σ, consists of
three parts, as described below. We remark that the definition below is purely combinatorial;
the interpretations given below of each of the parts in terms of what values are “trusted” by
processes is intended solely to give an intuitive explanation of why this representation was
chosen.

1. The first part of the adversary attaches to each process a number between 1 and m,
which will be called the process’ trusting threshold. At least one process will have
trusting threshold m. Intuitively, the trusting thresholds reflect the serialization order of
updates to the vector of collect numbers. A process p will trust only values attached with
a snapshot that contains p’s current collect number. Thus, p only trusts values tagged
with timestamps that are serialized after p’s most recent update of collect-nump. A
lower trusting threshold corresponds to an earlier timestamp and represents a process
that is more likely to trust other processes’ values. Specifying the trusting thresholds
takes m logm bits.

2. The second part of the adversary, denoted by σ′, is an ordered list of at most 2m elements.
Each element in σ′ is an ordered pair of numbers, each of which is an integer between
1 and m. The first number appearing in a pair is referred to as the value of the pair,
and the second is referred to as the trustworthiness of the pair. The value of the pair
represents the index of a block of registers, while the trustworthiness reflects a timestamp
with which the block was tagged.

The sequence σ′ is constructed by mixing two sequences of length m. The first sequence
contains one element for each block between 1 and m; this element has as its value the
number of the block, and has trustworthiness m. These pairs are ordered according to the
order in which universally trusted versions of these blocks are first written. The second
sequence consists of a pair for each process p recording p’s last write of a block that
is not universally trusted (if there is such a block). The elements of the two sequences
are interleaved together according to the serialization order of the corresponding write
operations. Since each of the at most 2m elements of σ′ can be specified in 2 logm bits,
the number of bits needed for this part of the adversary is again O(m logm).

3. The third and last part of the adversary provides for each trusting threshold (i.e. each
number between 1 and m) a subset of the integers {1, . . . ,m} that will correspond to it.
This subset is called an old subset corresponding to the trusting threshold. Old subsets
are required to be totally ordered under inclusion; that is, the old subset for a particular
threshold must be contained in the old subset for any lower threshold (the containment
need not be proper). Intuitively, values in an old subset of trusting threshold t are trusted
to be fresh only by processes of trusting threshold less than or equal to t. Intuitively,
the union of the old subsets will contain all values that are trusted only by some of the
processes.

Because the old subsets are ordered by inclusion, they too can be represented in only
O(m logm) bits.
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Observe that the adversary is fully defined using O(m logm) bits.

Now we show how the above adversary imposes an order Ri on πi. First, erase from πi
all elements that are contained in the old set corresponding to i’s trusting threshold. Call the
remaining permutation π′i. We first define the sequences Si as follows:

• Si contains exactly the elements that appear in π′i.

• An element p precedes q in Si iff the first occurrence of a pair with value p that is trusted
by i (according to i’s trusting threshold) appears in σ′ before the first occurrence of a
pair with value q that is trusted by i. Said differently, consider only the pairs in σ′ with
second component (trustworthiness) at least as large as the trusting threshold assigned
to i. Then p precedes q in Si if in this restricted list of pairs the first pair of the form
(p, ·) precedes the first pair of the form (q, ·).

Note that the sequences Si are together completely determined by the adversary σ and can
therefore be described using only O(m logm) bits.

We abuse notation slightly and denote by l(π′i, σ) the length of the greedy monotonic
increasing subsequence in π′i according to Si, where π′i, Si are constructed using σ as described
above. Define

Γ(Π) = max
σ

n∑
i=1

l(π′i, σ).

Padding the Si with a prefix containing the elements in πi but not in π′i, we can then use
Lemma 5.1 to prove the following theorem:

Theorem 5.5 There is a constant c such that for each m there is a set Π of m permutations
π1, . . . , πm of m values each such that Γ(Π) ≤ cm logm.

Proof: By construction, the sets Si can together be described using only O(m logm) bits.
For each i, let Oldi denote the set of elements in πi but not in π′i. For each i, let us define Ri to
be the elements of Oldi (in any order) followed by the sequence Si. Note that the assumptions
on the concise representation of the Si’s and the containment chain property of the old subsets
imply that the Ri’s can be represented using only O(m logm) bits. Moreover, for every i, and
every permutation πi, the length of the lgmis of πi with respect to Ri is at least as great as
the length of the lgmis of π′i with respect to Si. To see this, consider two cases. In the first
case πi begins with an element in π′i. In this case, the elements in Oldi are irrelevant to the
lgmis of πi with respect to Ri, by definition of lgmis and the fact that all elements in Oldi

are smaller in Ri than elements in πi. We actually have equality in this case. In the second
case, πi begins with an element in Oldi. Here, elements in Oldi can add to the lgmis, but
their addition cannot affect the addition of elements in π′i because elements in Oldi are all
less, according to Ri, than anything in π′i. Once the first element in π′i has been added to the
lgmis, no other elements in Oldi will be added, and they will be irrelevant after this point.
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Now, let us start with a good set Π of permutations guaranteed by Lemma 5.1. We have
shown that the adversary can be described with O(m logm) bits. We have also shown how,
given Π and the description of the adversary, we can construct the permutations π′i and the
sequences Si. Applying the construction of the previous paragraph, we can construct from
these the orderings Ri, so that together these can be described with O(m logm) bits. Thus
the orderings satisfy the conditions of the Lemma, and we conclude that the sum over all i of
the length of the lgmis of πi with respect to Ri is at most cm logm for some constant c that
does not depend on m. Finally, we have shown that this quantity is greater than or equal to
Γ(Π), so Γ(Π) ≤ cm logm.

In the next section we show that the effect of an adversary scheduler on the Speedy Collect
algorithm can be completely captured by a 3-part adversary σ of the type described above.
Thus, choosing the set of permutations Π whose existence is guaranteed by Theorem 5.5 yields
an algorithm with good latency.

5.4 Collective Latency of the Speedy Collect Algorithm

Define the collective latency of a set of processes G at a point t in time as the sum over all
p ∈ G of the number of operations done by process p between t and the time that it completes
the last collect that it started at or before t. (Recall that a process is considered as having
completed its collect only when it enters into a halting state.) We show that for a suitable set
of permutations our algorithm gives a small collective latency for each of the

√
n-sized groups

of processes; in Section 5.5 we use this fact to show that our algorithm is competitive with
respect to latency when all of the processes are taken together. The following theorem is at
the core of our proof of competitiveness:

Theorem 5.6 Let Π be a set of m =
√
n permutations on {1, . . . ,m}. Suppose that the set

of permutations Π for each group satisfies Γ(Π) = O(T (m)), where Γ(Π) is as defined in Sec-
tion 5.3. Then the collective latency for each group using our algorithm is O (T (m)

√
n log n).

Proof: Fix an arbitrary time t and let G be the set of processes performing collects at time
t. Since for each read-block phase there is at most one read-group and one write-

view phase, together requiring O(
√
n log n) operations, we can get a bound on the number of

operations after t by bounding the number of read-blocks. We distinguish between read-

blocks after time t whose values are trusted by every process in G (“globally trusted” read-

blocks), and other (“partially trusted”) read-blocks.

Bounding the number of partially trusted read-blocks. It is not difficult to see that
each process performs at most one partially trusted read-block after time t, as the read-

group preceding its second read-block will get the current collect-nump values for all
processes in G. (This is the place where we use the requirement that a Scan-Update()
operation returns all values that have already been written when it starts, and that its very
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first operation writes out the new value. Without this requirement, it would be possible for a
process to start a collect without affecting other processes’ views of its collect-nump value.)

Overview of bounding the number of globally trusted read-blocks. To bound the
number of globally trusted read-blocks, we start by constructing a three-part adversary σ
consistent with the representation described in Section 5.3. Intuitively, the three parts are as
follows. The first part of σ is determined by the serialization order on the processes’ initial
calls to Scan-Update(), in which they write their new collect numbers for the collects that
are in process at t. The ordering σ′ is determined by the serialization order on the globally
and partially trusted blocks performed in the write-view phases. Finally, the serialization
order on the timestamps orders the sets trusted by the individual members of G by inclusion.

The remainder of the analysis shows that the read-blocks done by process i correspond
to a greedy monotonic increasing subsequence according to the sequence Si described in Sec-
tion 5.3. Applying Theorem 5.5 yields a bound of Γ(Π) = O(T (m)) on the number of globally
trusted read-blocks. The cost of each of these read-blocks and their associated write-

view and read-group phases is O(
√
n log n).

Partitioning the read-blocks into new and old. Keeping this overview in mind, let
us get into the details of the proof. For every process p ∈ G, let G-collect-nump denote
the collect number of p current at t, and let G-initial-updatep denote the Scan-Update()
operation in which p updates its collect number to have the value G-collect-nump. Since
the G-initial-update operations are serialized by the Scan-Update() procedure, we can
define Last-G-initial-update to be the last, according to this ordering, over all p ∈ G, of
the operations G-initial-updatep. Recall that during a read-group phase a process takes
a snapshot of the collect numbers of all processes in the group. We partition the read-block

phases performed by processes p ∈ G into those that started after p takes a snapshot serialized
after Last-G-initial-update and to those that started before this point. We refer to the
first class of read-block phases as new read-blocks and to the second class as old read-

blocks. We refer to the corresponding read-groups as new and old, respectively. The new
read-blocks are globally trusted: they obtain values that will be accepted as trustworthy by
all processes in G.

The bulk of the remainder of the proof obtains a bound on the number of new globally
trusted read-blocks. This is a little different from counting the number of read-blocks
that occur after time t, and indeed it must be. This is because the atomic snapshot scan
algorithm yields no real notion of time, just a serialization order on snapshots and updates that
is consistent with the real-time order of events. On the other hand, the definition of collective
latency requires us to bound the number of operations (reads and writes of shared registers)
that occur after time t. We first argue that no process can take more than O(

√
n log n) steps

after time t and before beginning a new read-group.
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Bounding the work corresponding to old globally trusted read-blocks. Consider
a process q ∈ G. When q begins its collect current at t, the first thing it does is perform an
atomic snapshot update Scan-Update(G-collect-numq), and the first step of this update
operation is a write of G-collect-numq. Moreover, it is a property of the Attiya-Rachman
Scan-Update() algorithm that any atomic snapshot scan begun after this write will be seri-
alized after this update.

Now, by definition, every process q ∈ G writes G-collect-numq no later than time t (since
these are the collects in process at t). It follows from the above discussion that any atomic
snapshot scan begun after time t is serialized after Last-G-initial-update. In particular, any
read-group begun after time t returns a snapshot serialized after Last-G-initial-update

and is therefore a new read-group by definition. It thus follows from the algorithm that
each process p can perform at most O(

√
n log n) steps after time t and before beginning a new

read-group.

Bounding the number of new globally trusted read-blocks. Next we must bound
the number of new read-blocks. Define an adversary permutation σ as follows.

1. Letm =
√
n. Consider the linearization order on the updates G-initial-updatep, p ∈ G.

Attach a trusting threshold between 1 and m to each process in G consistent with this
order and such that the process p whose update G-initial-updatep is serialized last
among all updates G-initial-updateq, q ∈ G will have trusting threshold m.

2. We construct σ′ by merging two lists of
√
n pairs each. We start with the first list.

Recall that the processes are partitioned into
√
n groups, and G is a (not necessarily

proper) subset of the processes in a particular group. Consider all the write-views that
are done by processes in this group and that correspond to new read-groups. We call
these write-views new write-views. Since we are using atomic snapshots to perform
write-views and read-groups, these operations are totally ordered. Hence, for each
block there is a first time (according to this ordering) in which its values are written by
a new write-view. Let i1, . . . , i√n be this order, i.e. for each j = 1, . . . ,

√
n − 1, the

values of block ij are written by some new write-view before the values of block ij+1

are written by any new write-view. Let σ′ initially contain the
√
n pairs of elements

(i1,
√
n), . . . , (i√n,

√
n), in order. This gives us an ordered list of

√
n pairs.

The second list of
√
n pairs is constructed as follows. For each process p in the

√
n-sized

group that contains G consider the last old read-block done by p (i.e., the last read-

block by p that follows a read-group whose atomic snapshot was not serialized after
Last-G-initial-update). We refer to the corresponding write-view by p as an almost
new write-view. There are at most

√
n such write-views (one for each process in the

group). For each such almost new write-view, we construct a pair whose value is the
index of the block read in the corresponding read-block, and whose trustworthiness
is determined by the timestamp on the block as follows. The timestamp is a vector of
collect numbers, some of which were written by updates G-initial-updateq, q ∈ G.
Of these updates, consider the update that is serialized last, and let r be the process
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executing this last update. Then the trustworthiness of the pair is the trusting threshold
of r, determined above. Order this set of pairs according to the serialization order of
the write-views corresponding to the pairs: if p’s almost new write-view is serialized
before q’s almost new write-view, then order the pair corresponding to p’s almost new
write-view before the pair corresponding to q’s almost new write-view. This gives
us a second list of

√
n pairs.

Finally, we merge the two lists as follows. A pair (i,
√
n) from the first list precedes a pair

(j, t) from the second list if and only if the first write-view containing block i tagged
with trusting threshold corresponding to

√
n (that is, the first write of block i trusted by

everyone in G) is serialized before the almost new write-view that gave rise to the pair
(j, t). Since all the write-views are serialized this merging is well-defined and results
in an ordered list of 2

√
n elements.

3. For the third part of the adversary, consider all (block, timestamp) pairs written (at
any time) by a write-view done by a process in the group containing G, in which the
timestamp is serialized before Last-G-initial-update. For each process p in the group
containing G, remove from this set of pairs the last pair to be written by p; that is,
remove the pair written in p’s almost new write-view. We call the resulting set old
pairs. Now, for each process p ∈ G, we define old subset associated with p’s trusting
threshold to be the set of all block names b for which there exists an old pair (b, ts)
where ts is a timestamp serialized after G-initial-updatep. The values in this subset
are trusted by p, but not necessarily by processes with a higher trusting threshold than
p has. Observe that since there is a total order on the timestamps and the updates
G-initial-updatep, for p ∈ G, these old subsets are also totally ordered.

Clearly, the adversary above is a legitimate adversary according to our definition of the
previous section. Hence it follows from the theorem assumption that the sum of the lgmiss of
the π′i with respect to this adversary σ is O(T (m)). Thus, to complete the proof we show:

Lemma 5.7 For each process i, the id’s of the blocks read by it while performing new read-

blocks appear in the longest greedy monotonic increasing subsequence of π′i with respect to
σ.

Proof: Suppose the claim does not hold. Then there is a process i that does a read-block

of block q, and q either does not appear in π′i, or there is some block p that precedes q in π′i
but is larger than q according to Si.

Recall that π′i is obtained from πi by erasing all the elements that are contained in the old
subset corresponding to i’s trusting threshold. Thus, if q does not appear in π′i, then q is in the
old subset associated with i’s trusting threshold. By definition of the old subsets, this means
that q was written by an old write-view but not by an almost new write-view. Any read-

group serialized after Last-G-initial-update is by definition a new read-group (that is,
it is associated with a new read-block). Thus, no almost new read-group can be serialized
after Last-G-initial-update. It follows that no old write-view can be serialized after

20



Last-G-initial-update, since such a write-view must be followed by an almost new read-

group, but any read-group begun after such a write-view will necessarily be serialized
after Last-G-initial-update, and hence will be new. Thus, q was written by a write-view

serialized before Last-G-initial-update, and was tagged by a timestamp trusted by i. Thus
i learns a trusted value for q no later than during its first new read-group, contradicting the
assumption that it reads q during a new read-block.

Finally, assume there is some block p that precedes q in π′i but is larger than q according to
Si. Since p precedes q, i must have read a trustworthy value of it before it read-blocks q. It
follows from Si, that a trustworthy value of q was already written before the trustworthy value
of p. Thus i must have read also a trustworthy value for q at the same time, contradicting the
fact it read-blocks it later.

Combining the result of the lemma with the fact shown above that the sum of the lgmiss
of the π′i with respect to the adversary σ is O(T (m)), thus yields a bound of Γ(Π) = O(T (m))
on the number of new globally trusted read-blocks. To complete the proof of Theorem 5.6,
observe that the collective latency for each group is bounded by

√
n times the maximum amount

of work performed by any process p after time t and before p begins a new read-group, plus
O(T (m)) (the upper bound on the number of new globally trusted read-blocks) times the
cost of an iteration of the main loop of the algorithm. Thus, the collective latency for each
group using our algorithm is O(n log n+ T (m)

√
n log n) = O(T (m)

√
n log n).

5.5 Using Collective Latency to Bound the Latency Competitiveness

The following theorem is the key to the relationship between collective latency and the com-
petitive latency measure. To make this connection, it is useful to have the following definition:
given a particular schedule, the work ratio for a group of processes G is the ratio between the
total number of operations performed by processes in G in the candidate algorithm to the total
number of operations performed by all processes in the champion algorithm.

Note that in this section we consider only finite schedules.

Theorem 5.8 For any cooperative collect algorithm A, any group G of processes, and any
schedule that is compatible with A, if there exists a bound L such that for all times t the
collective latency for G at t is at most L, then the work ratio for G is at most L/n+ 1, where
n is the number of values to be collected.

Proof: By the definition of latency competitiveness (Section 4.1), it is enough to consider
finite prefixes of the schedule. Consider an arbitrary finite prefix, and let te be the time at
which the last atomic step in this prefix takes place. The key to the proof is that whenever
some process starts a collect in algorithm A, the same process starts a collect in the champion
algorithm. So we can define a partition of the schedule into intervals I1, I2, etc., which have the
property that: (a) the champion performs at least n operations during each interval; and (b)
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algorithm A requires at most L+n operations to complete the collects performed by processes
in G that start during each interval. Fact (a) is proved by demonstrating that during each
interval every register must be read at least once to obtain fresh values. Fact (b) is proved by
applying the definition of collective latency to the endpoint of each interval.

This slicing is carried out recursively. To simplify its description, let us treat the schedule
as assigning operations not to processes but to individual collects; an operation will be assigned
to a particular collect C if it is assigned to C’s process and occurs after C starts but before
C’s process starts any other collect.

As long as ti < te, we will choose ti+1 ≤ te so that Ii = (ti, ti+1] is the longest interval
starting at ti in which the number m of operations assigned to collects that start during Ii
and that are performed by processes in G is at most n. Let Ci be the set of collects that begin
during Ii. We claim that either:

1. ti+1 = te, or

2. ti+1 < te, and m = n.

The proof of this claim is that if (ti, ti+1] contains fewer than n operations from collects in
Ci, and there is some first operation α after ti+1, we can increase ti+1 to include α without
violating the definition. Since these n operations must be carried out by somebody, we also
have that if ti+1 < te then Ci is nonempty.

Let k be the number of intervals defined above. First we show that if 1 ≤ i < k (i.e. Ii is
not the last interval), then the champion must perform at least n operations during Ii. Observe
that any collect that starts after ti cannot trust any value read before ti, so if Ci is nonempty,
at least n operations must be carried out by the champion after ti before any collect in Ci can
finish. If 1 ≤ i < k, then as observed above, Ci is nonempty, and by the definition of Ii, the
processes performing collects in Ci are together scheduled to perform n operations during Ii.
At each such step the process in the champion algorithm must perform its operation, unless
it has already finished its collect. So if none of these processes finish their collects, all n of
these scheduled operations are performed; but if a process has already finished its collect, by
the earlier observation some n operations must have been performed since ti (though possibly
by processes not performing collects in Ci). In either case, n operations are performed in Ii by
the champion.

Similarly, if Ck is nonempty, then the reasoning above immediately implies that the cham-
pion performs in Ik at least min{n, p} operations, where p is the number of operations that
the processes performing collects in Ck are together scheduled to perform in Ik. By our defi-
nition of Ii, it follows that p ≤ n. Thus, if Ck is nonempty, the champion performs at least p
operations in Ik.

To complete the proof it is enough to show that in our algorithm the collects starting in
each interval require at most L + n operations. For each 1 ≤ i < k, divide the operations
performed as part of collects in Ci into those occurring during Ii and those occuring after Ii,
i.e. after ti+1. The first set consists of at most n operations by the definition of Ii; the second
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consists of at most L operations since it is bounded by the collective latency of the group of
processes carrying out collects at time ti+1.

We now have two cases, according to whether or not Ck is empty. If Ck is empty, then
our algorithm performs at most (k − 1)n + (k − 1)L steps, while the champion performs at
least (k − 1)n steps. If Ck is nonempty, then let p be the number of steps that the processes
performing collects in Ck are together scheduled to perform in Ik. Our algorithm performs at
most (k − 1)n+ (k − 1)L+ p steps, while the champion performs at least (k − 1)n+ p steps.
In either case the work ratio is at most L/n+ 1.

Corollary 5.9 For any collect algorithm, if the processes can be divided into m groups such
that for all times t each group has a maximum collective latency of L at t, then the competitive
latency is at most mL/n+m.

Proof: Let w be the number of operations done by the champion. Then from Theorem 5.8,
no single group in the candidate algorithm does more than w(L/n+ 1) operations. It follows
that the m groups together do a total of at most wm(L/n+ 1) operations.

Lemma 5.10 Suppose that the set of permutations Π for each group satisfies Γ(Π) = O (T (
√
n)).

Then our algorithm has a competitive latency of O(T (
√
n) logn).

Proof: By Theorem 5.6, the collective latency for each group is L = O (T (
√
n)
√
n log n).

There are m =
√
n groups, so the result follows from Corollary 5.9

The set of permutations Π from Theorem 5.5 have T (
√
n) = O(

√
n log n), and thus:

Theorem 5.11 The competitive latency of the Speedy Collect algorithm is O(n1/2 log2 n).

Observe that for each schedule, the work performed by each of the
√
n-sized groups into

which the processes are partitioned is at most O(log2 n) times the total work performed by
all groups in the best possible algorithm for this schedule. Moreover, as can be seen in the
beginning of the proof of Theorem 5.6, one of the log n factors in the competitive latency is due
to the fact that the read-groups are performed using the atomic snapshot algorithm of Attiya-
Rachman. In this atomic snapshot a process takes O(n log n) operations to complete an atomic
snapshot of n registers. If one had a linear algorithm for snapshot, then the work performed
by each of the

√
n-sized groups would be just O(log n) times the total work performed by

all groups in the best possible algorithm for this schedule, matching (within each group) our
trivial lower bound of Section 7. Thus it is unlikely that substantial further improvements are
possible as long as a division of the processes into isolated groups is necessary.
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6 A Constructive Algorithm

The preceding section describes an O(n1/2 log2 n) competitive algorithm that is based on a set
Π of permutations which satisfy a very strong constraint. The existence of such a set is shown
probabilistically. In this section we develop an algorithm whose competitive latency is only
O(n(3/4)+ε log2 n), but which is based on an explicit set of permutations. The new algorithm
requires more machinery to make up for this set’s weaker properties.

As before, the processes are divided into
√
n groups of

√
n processes each, and will read

registers in blocks of
√
n registers at a time. However, in this algorithm each process will

simulate O(n1/4) virtual processes running a one-time collect algorithm. For each of these
virtual processes, the process will maintain a separate view marked by a round number. Virtual
processes with a particular round number will cooperate only with other virtual processes with
the same round number.

The round numbers are assigned so that every virtual process in a given round can trust
other processes in the same round to supply it with only fresh values. This eliminates the use
of timestamps in deciding what values to read, and is the key technique that allows the use of
a simpler set of permutations than required by the non-constructive algorithm.

To obtain these round numbers, we need to use a slightly more elaborate version of the
timestamps used in the non-constructive algorithm. Each process p will include in its register a
value collect-nump that is a count of how many collects it has started. To initiate a collect,
the process will increase this value by one using a Scan-Update() operation as provided by the
Attiya and Rachman protocol. (This is the only time a process will change its collect-num

value.) Its initial round number in this collect is given by the sum of all the collect-num

values it sees in this Scan-Update() operation; essentially, it is this process’s view of how
many collects have been initiated by processes in its group.

The process starts by simulating just one virtual process, which will be marked with its
initial round number. It then proceeds through the following loop. (Note that the read-group

step during the very first pass through the loop is implemented using the same Scan-Update()
operation that is used to obtain the initial round number.)

1. read-group: p performs a Scan-Update() on the registers of all processes in the
group to obtain the views of all virtual processes being simulated by the group (

√
n log n

operations). For each virtual process that p is simulating, p will add to its view the union
of the views of all virtual processes with the same round number.

At this step p may also begin simulating a new virtual process. Let i be p’s starting
round number in this collect. For each round number j > i that is a multiple of n1/4, if
p observes a round number greater than or equal to j and p does not already simulate a
virtual process at round j, then p will start simulating a virtual process in round j with
an initial view equal to the union of the views of all virtual processes in round j.

2. multi-read-block: For each virtual process that p is simulating, p performs a read-

block on behalf of that process, reading the first block in p’s permutation that is not in
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the virtual process’s view (
√
n operations for each active virtual process). Add this block

to that process’s view, tagged with a timestamp that consists of the collect-numq

values read by the previous read-group.

3. write-view: p writes the current views of all simulated processes to its register using
Scan-Update() (O(

√
n log n) operations).

If at any time the union of the views read by p during its most recent read-group and
of the views of p’s own virtual processes contains a value for each register that is tagged with
a timestamp including collect-nump, p skips immediately to its next write-view step and
exits thereafter. In doing so, it stops simulating any virtual processes. However, it must still
maintain the views of all the virtual processes it has ever simulated in its register.6

To ensure that in the worst case process p performs at most O(n) operations, we interleave
the execution of this loop with a näıve collect, as done in Section 5.1. That is: after each
atomic operation performed in the loop above, insert a single read operation for a register for
which the process p does not yet have a trusted value. The values learned through these single
reads are not included in the process’s view and do not affect its behavior in the above loop;
however, if the union of its view and these directly-read values include fresh values for all n
registers, the process finishes its collect as soon as it is done with its current Scan-Update()
operation.

As observed in Section 5.1, also here a value read during a read-block operation, can be
tagged with only the round number of the virtual process that read it, instead of with the vector
of collect-nums read by the simulating process during the preceding read-group operation.
Again, for simplicity of exposition, we overlook this possible optimization.

Some properties of the algorithm do not depend on the choice of permutations. In partic-
ular, we note:

Lemma 6.1 Any value returned by the above algorithm is fresh.

Proof: At the end of a collect p returns a vector of values each of which was tagged with a
timestamp including the current value of collect-nump. But such a value must have been
read after a read-group that obtained this current value, which in turn must have followed
p’s write at the start of its collect.

The following lemma shows that virtual processes in the same round can always trust each
other’s values to be fresh.

Lemma 6.2 Let r be the initial round number calculated by a process p as part of a collect
C in which p sets collect-nump to c. Let S be any Scan-Update() operation that returns

6This is done for simplicity of exposition; the proofs hold unchanged also if each process only maintains the
views of the virtual processes it simulated in the most recent collect it completed.
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a vector of collect-num values that sum to r′ ≥ r. Then S returns a value c′ ≥ c for
collect-nump.

Proof: From the fact that the vector of collect-num values increase monotonically and
the linearizability of the snapshot object, it follows that r′ ≥ r if and only if the vector of
collect-num values obtained by S is componentwise greater than or equal to the vector
obtained by the first Scan-Update() operation in C. But the first Scan-Update() operation
in C returns a vector in which collect-nump = c.

An immediate corollary of the lemma is that it is not difficult to show that the number of
virtual processes active as part of any one collect is bounded:

Lemma 6.3 No process ever simulates more than n1/4 + 1 active virtual processes during a
single collect.

Proof: Consider a single collect of some process p and let i be its starting round number
for this collect. Suppose p sees a round number greater than or equal to i +

√
n during a

read-group phase; then at least
√
n collects have been started by the

√
n−1 processes other

than p since the beginning of p’s collect. By the Pigeonhole Principle, some process must have
started two of these collects. The first of these two collects has a starting round number j
greater than i, and must have written out a complete set of values in the views of virtual
processes with round numbers j or greater before it exited (and thus before the second collect
started). By Lemma 6.2, these values will be tagged with timestamps that include the current
value for collect-nump; so p takes this view and finishes. Consequently p never starts a
virtual process with a round number greater than or equal to i+

√
n, and the bound follows.

It remains to show that not too much work is done on behalf of the virtual processes. To
do so, we must choose our permutations carefully.

Recall that J. Naor and R. Roth [51] have constructed a set of m permutations on the
numbers 1 . . .m such that the sum of the lengths of all longest greedy monotonic increasing
subsequences on the set with respect to any ordering σ is O(m1+ε logm), where ε tends to
zero as n goes to infinity. Taking m to be

√
n gives us a set of permutations for each of our

processes that has the property that the sum of the lengths of the lgmiss is O((
√
n)1+ε logn).

Using this fact we prove the following lemma:

Lemma 6.4 At most O((
√
n)1+ε log n) read-blocks are done by virtual processes in each

round.

Proof: Fix an arbitrary round r, and define the adversary permutation σ of the blocks by
the order in which they are first written as parts of views of virtual processes in this round,
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as determined by the serialization order of the Scan-Update() operations. Note that it is an
immediate consequence of the serializability of the Scan-Update() operations that any view
for round r that is obtained in a read-group step will be a prefix of σ.

Let p be a virtual process in round r and let π be its permutation. We will show that every
block read by p as part of a read-block is in λ, the lgmis of π with respect to σ. The full
result then follows from the fact that the bound on the sum of the lengths of the lgmiss for
all virtual processes in round r is O((

√
n)1+ε log n).

Let b be a block that is not in λ. From the fact that b is not in λ it follows that there is
some a in λ that precedes b in π but follows b in σ.

Since the view for round r obtained in any read-group step is a prefix of σ, any such
view that contains a must also contain b. So after a read-group, either p’s view does not
contain a, in which case p will not read b in the immediately following read-block because
b cannot be the first unread block in the π ordering; or p’s view does contain a, in which case
it also contains b, and again p will not read b. Thus any block that p does read must be in λ,
as claimed above.

Recall that the collective latency of a set of processes at some time t is the sum the number
of operations done by each process between t and the time it finishes the last collect that it
started at or before t.

Theorem 6.5 The collective latency for each group of
√
n cooperating processes in our algo-

rithm is at most n(5/4)+ε log2 n.

Proof: Fix a time t. Analogously to the proof of Theorem 5.6, the bound on the number
of operations done by the processes will follow from a bound on the number of read-blocks
done on behalf of their virtual processes as part of the current collect. We restrict our attention
to read-blocks (and by extension multi-read-blocks) that are part of the current collect
of some process in the group.

Call a multi-read-block old if its preceding read-group starts before t, and new other-
wise. There is at most one old multi-read-block for each of the

√
n processes in the group,

for a total of
√
n old multi-read-blocks. From Lemma 6.3 these old multi-read-blocks

contribute O(n3/4) read-blocks.

To bound the number of new multi-read-blocks, we must look more closely at the
round structure. Let i be the largest round number of any virtual process being simulated
by a process in the group at time t. Let j− be the largest multiple of n1/4 less than or equal
to i and let j+ be the smallest multiple of n1/4 greater than or equal to i. Divide the new
multi-read-blocks into three classes based on the round numbers of the virtual processes
carrying out their component read-blocks: (i) those that include round j− but not round
j+; (ii) those that include neither round j− nor round j+; and (iii) those that include round
j+. By Lemma 6.4 there are no more than O((

√
n)1+ε log n) multi-read-blocks in each of
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classes (i) and (iii). Each such multi-read-block consists of O(n1/4) read-blocks for a
total of O(n(3/4)+ε log n) read-blocks for classes (i) and (iii) together.

Consider now a process p that performs a new multi-read-block of class (ii). Since its
preceding read-group was after time t, it must have observed virtual processes at all rounds
less than or equal to i. So the fact that p is not simulating a virtual process for round j−

implies that its starting round number i′ exceeds j−. But its starting round number must also
be at most i, which puts it between j− and j+. Since p does not do a read-block for round
j+, it must not have observed any process at round j+ or higher. But then it is simulating only
a single round i′ virtual process and its multi-read-block consists of a single read-block

for that virtual process.

Since each class (ii) multi-read-block consists of a single read-block in a round i′ with
j− < i′ < j+, and there are O((

√
n)1+ε log n) read-blocks for each of these rounds, there are

O(n(3/4)+ε log n) class (ii) multi-read-blocks altogether. The total number of read-blocks
contributed by both old multi-read-blocks and new multi-read-blocks of classes (i), (ii),
and (iii) is thus O(n(3/4)+ε log n), and since for each read-block that a process does it carries
out O(

√
n log n) operations (including operations that are parts of the corresponding read-

group and write-view phases) the collective latency is O(n(5/4)+ε log2 n).

Combining the above lemma with Corollary 5.9 gives:

Theorem 6.6 The competitive latency of our algorithm using the explicit construction of Naor
and Roth [51] is O(n(3/4)+ε log2 n).

7 Lower Bound on Competitive Latency

It is not difficult to show a lower bound of Ω(log n) on the competitive latency of any cooper-
ative collect protocol. The essential idea is that the adversary will run the processes one at a
time until each finishes a collect. In the champion, the first process will read all the registers (n
operations) and write out a summary of their values (1 operation). The other processes each
carry out one read operation to obtain this summary. In the candidate algorithm, however, the
adversary can arrange things so that later processes do not know which process went first. So
the second process will have to read (on average) n/2 output registers before it finds the first
process’s summary; the third process will have to read n/3 before it finds either the first or
the second process, and so forth, for a total of at least n(1 + 1/2 + 1/3 + · · · 1/n) = Ω(n log n)
expected operations.

To make this idea work, we need to deal with two technical issues. The first issue is that
we must consider freshness. In order for the processes in the champion algorithm to profit
from the efforts of the first process, that first process must be able to certify the values it
collects as fresh for the other processes. This means that we must prefix the main body of the
schedule with a preamble in which each process carries out one write (of a timestamp, in the
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champion) or possibly some other operation. The second issue is that we must ensure that the
processes in the candidate cannot guess which processes run first in the main body. This issue
is resolved by choosing the order in which the processes run uniformly at random, but some
care is needed to show that no information about the random permutation leaks.

Theorem 7.1 There exists a distribution over schedules such that the expected competitive
latency of any collect algorithm on a schedule drawn from this distribution is at least Ω(log n).

Proof: We define a probability distribution over schedules for which the expected competitive
latency of any candidate algorithm is at least Ω(log n). It follows that for any particular
algorithm, there is some fixed schedule that produces a competitive latency of Ω(log n).

The schedules we will consider consist of a preamble, in which each process starts a collect
and takes one step; and a main body, in which the processes are run sequentially. The structure
of the preamble is fixed: at the k-th time unit in the preamble, process k starts a new collect
and is given one step. The structure of the main body is slightly more complicated: it consists
of n intervals, one for each process. In each interval, only the process associated with that
interval may take steps; the length of the interval is 2n. Which interval is associated with
which process is controlled by a random permutation π, chosen from a uniform distribution.

In the champion algorithm: (1) each process writes out a timestamp during the preamble
(n operations total); (2) the first process in the main body reads the n output registers of all
processes, then the n registers containing the values to be collected (these registers may be
identical to the output registers of the processes), and writes out the result, tagged with the
timestamps of the other processes (2n operations); finally, (3) each of the other processes reads
the output register of the first process to obtain all of the values (n− 1 total operations). The
cost to the champion of completing one round is thus 4n operations.

In the candidate algorithm, first observe that the preamble is too short to allow any process
p to learn a secondhand value from another process q, since q would have to carry out at least
two operations to read an input register and write its value to the output register. Furthermore,
as the schedule in the preamble is fixed, it reveals no information about π.

Now fix a process p, and suppose that it is the k-th process to run in the main body. We
wish to show that p executes at least n

k − 1 operations in the main body before finishing its
collect. If k = 1, p is the first process, and it must execute at least n−1 reads of input registers
to obtain all n values (it may have read one value during the preamble, but it cannot learn
any values secondhand from other processes).

Alternatively, if k > 1, either p finishes its collect by reading all values directly (at the cost
of n− 1 main body operations), or at some point it learns a value secondhand. We will count
the expected number of steps until this latter event occurs. To do so we must be very careful
about what information p has at each point in time about the distribution of π.

Let ti be the earliest time in the main body at which p has read the output registers of
i other processes at least once. Let Pi be the distribution of values for π conditioned on the
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information obtained by p up to time ti and define P0 to be the uniform distribution.

Claim 7.2 If at time ti, p has not yet read the output register of any process that precedes it
in π, then each of the (n − i)! permutations of p and the (n − i − 1) processes it has not yet
read are equally likely according to Pi.

Proof: Suppose the claim is true for Pi−1, and that at time ti, p reads the output register of
a process q that follows p in π. Since q has not performed any operations in the main body,
the value in its register reveals nothing about the relative ordering of any processes except p
and q, and the claim follows for Pi.

From the claim it is immediate that if p has not yet found a process that precedes it, its
odds of finding one on its next read of an output register are no better than chance. Thus
since p is looking for the output of one of k − 1 earlier processes in n− 1 registers, it takes an
expected n/k reads until it finds one that could contain secondhand values that are fresh for
this round. This gives a lower bound of n

k − 1 on the expected number of operations executed
by p in the main body.

Summing these expectations over all processes p (which we can do even though the corre-
sponding random variables may not be independent) gives a total of n(1/1+1/2+ · · ·+1/n) =
Ω(n log n) operations per round. Since the champion needs only 4n operations for each round,
this gives a competitive ratio of Ω(log n).

In the above schedules each process performs at most one collect. However, roughly speak-
ing, for any integer p, one can construct a schedule in which each process performs p collects,
by simply iterating the above schedule p times. More specifically, the new schedule will consist
of a sequence of p rounds. Each round consists of a preamble in which each process starts
a collect and takes one step and a main body in which each process is given enough steps
to finish its collect. (We allow each process to complete a collect in each round in order to
guarantee that by the time a process receives a new request to perform a collect, it has al-
ready completed its previous collect; this requirement was not necessary in the construction
of Theorem 7.1 since there a process receives only a single request to perform a collect.) The
structure of the preamble is fixed: at the k-th time unit in the preamble, process k starts a
new collect and is given one step. The main body consists of n intervals, one for each process.
In each interval, only the process associated with that interval may take steps; the length of
the interval is the longer of 2n or the time needed by the process to complete its collect in
the candidate algorithm. Which interval is associated with which process is controlled by a
random permutation π, chosen from a uniform distribution independently of the choices made
in other rounds.

Exactly as in the proof of Theorem 7.1, it follows that the expected competitive latency
of any collect algorithm over the schedules constructed above is at least Ω(log n) per round,
and hence is Ω(log n) when we sum over all rounds. This shows that the lower bound of
Theorem 7.1 arises in arbitarily long schedules and is not merely a side effect of giving the
candidate too few steps.
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However, the above construction, in contrast to the construction of Theorem 7.1, assumes
that the adversary is either adaptive or knows a-prioiri some bound on the number of steps
a process may take to finish a collect. This is a consequence of the requirement that the
adversary supply a schedule that allows the candidate to complete its collects.
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