Message-Efficient Randomized Consensus

Dan Alistarh, James Aspnes, Valerie King, and Jared Saia

DISC 2014 / 13 October 2014
Consensus

Consensus (Pease, Shostak, Lamport, 1980) requires all processes to agree on the input to some process.

Want to solve in an asynchronous message-passing with $f < n/2$ crash failures.

Known to be impossible deterministically with even one failure (Fischer, Lynch, Paterson, 1985).

But can be solved with randomization (Ben-Or 1985).

How to minimize the number of messages?
Randomized consensus well-understood in shared memory.

- Expected $\Theta(n^2)$ memory operations necessary and sufficient for $f = n - 1$ crash failures with adaptive adversary (Attiya and Censor, 2008).

- Each process can do expected $O(n)$ operations (Aspnes and Censor, 2010).
Conversion to message passing

 - Write operation: send new value to a majority of processes.
 - Read operation
 - Solicit most recent value from a majority.
 - Send this back to a majority to ensure linearizability.

- Cost: $\Theta(n)$ messages per operation.
 - $\Rightarrow \Theta(n^3)$ expected total messages.
 - $\Rightarrow \Theta(n^2)$ expected messages per process.

- Our goal: per-process cost close to trivial $\Omega(n)$ lower bound.
Reduce randomized consensus to a shared coin. (Ben-Or, 1985)

- Each process can repeatedly flip a local coin not visible to other processes.
- Want to combine these local coins into a single shared coin.
- Adversary can stop a process before it propagates its local coin.
- Adversary wins if it can get control of the shared coin.
- ⇒ retry until adversary loses.
Generate sum V^t of $t \geq K = \Omega(f^2)$ independent ± 1 votes.

- Adversary can hide at most f votes by crashing processes.
- \Rightarrow observed sum U^t satisfies $|U^t - V^t| \leq f$.
- So if V^t exceeds f at $t = K$ and stays above f until process p looks at U, then p sees majority > 0.
Impatient voting (Aspnes and Waarts, 1996)

- One process might generate all n^2 votes!
- Solution: have processes cast bigger votes over time.
- One process can generate n^2 variance in $O(n)$ votes.
- Handful of fast processes don’t give adversary (much) more power.
How do I preserve a vote in message-passing?

1. Send it to all processes.
 - $\Theta(n)$ messages.
 - Adversary can’t hide vote once majority receive it.

2. Send it to one other process
 - 1 message.
 - Adversary can hide vote but must crash two processes.
 - But what about subsequent votes?

The big idea: Send big piles of votes to big quorums of processes.
Tree of nested quorums

- Every 2^k votes, I propagate them to 2^{k+1} processes.
- Cost: $O(2^k)$ messages for each packet of 2^k votes
 - $= O(1)$ amortized messages per vote per level
 - $= O(\log n)$ amortized messages per vote.
- Lost votes:
 - 2^k unreported votes \times 2^k processes $= 2^{2k}$ votes in subtree.
 - Adversary kills all of them with $\Theta(2^k)$ failures!
 - But sum of these votes is $O(2^k \sqrt{\log n})$ with high probability.
 - \Rightarrow lost votes per failure is still small.
Each node in the tree is implemented as a max register (Aspnes, Attiya, Censor-Hillel, 2012).

Reading a max register returns the largest value written.

This solves the lost update problem.

- Every write to a parent combines both children.
- Writes containing more votes win.

Max registers are easy in message-passing: use (Attiya, Bar-Noy, Dolev, 1995).

Messages = O(size of quorum).
The full shared-coin algorithm

At each node, we track (count, variance, total) in a max register ordered by count.

Each process repeats:

1. Generate a new vote \(v = \pm w \) (initially \(\pm 1 \)).
2. Add \((1, w^2, v)\) to local (count, variance, total).
3. For each ancestor I am scheduled to update this iteration:
 3.1 Read (count, variance, total) from both its children.
 3.2 Write sum of counts, variance, and total to ancestor’s max register.
4. If I have done \(4n \log_2 n\) votes since I last doubled my weight, set \(w \leftarrow 2 \cdot w \).
5. If I just updated the root:
 5.1 Read (count, variance, total) from root.
 5.2 If variance \(\geq n^2 \log_2 n\): return sgn(total).
Analysis: error due to missing votes

Basic idea is same as Bracha-Rachman: $|V^t_{\text{root}} - U^t_{\text{root}}|$ should be small.

- Why are they different?
- $U^t_x = U^{t_0}_{x_0} + U^{t_1}_{x_1}$ where x_0 and x_1 are children of x and t_0, t_1 are times in the past.
- So U^t_x is missing votes from between t_0 and t and t_1 and t.
- Similarly, $U^{t_0}_{x_0}$ is missing votes from a similar gap between t_0 and when x_0’s children are read.
- Expanding this out recursively shows that all missing votes are accounted for by these missing intervals.

But there are only polynomially-many such intervals, so w.h.p. every interval with variance v has sum $O(\sqrt{v \log n})$.

After some inequality-crunching, total error is $O(n\sqrt{\log n})$.
Analysis: variance and costs

Total messages:

- With error $O(n\sqrt{\log n})$, we need $O((n\sqrt{\log n})^2) = O(n^2 \log n)$ variance.
- This translates into $O(n^2 \log n)$ total votes.
- Each vote has $O(\log n)$ amortized message overhead.
- $O(n^2 \log^2 n)$ messages total.

Individual messages:

- If I have to generate $O(n^2 \log n)$ variance by myself, I may have to double my votes $\Theta(\log n)$ times.
- Each doubling happens after $O(n \log n)$ votes.
- So I alone may generate $O(n \log^2 n)$ votes.
- $O(n \log^3 n)$ messages for me.
We have shown how to implement randomized consensus in asynchronous message-passing with

- $O(n^2 \log^2 n)$ messages total.
- $O(n \log^3 n)$ messages per process.

Corresponding lower bounds are $\Omega(n^2)$ and $\Omega(n)$.

Can we get rid of the extra log factors?
Can we use selective propagation idea for other problems?